FORCING EXERCISES DAY 9

Problem 1. Show that if \mathbb{P} is a splitting partial order and G is M-generic over \mathbb{P} , then $G \notin M$. Hint: Suppose not. Show that $\mathbb{P} \setminus G$ is dense.

Problem 2. Let $\mathbb{P} \in M$ be a splitting partial order. Show that there are continuum many *M*-generic filters over \mathbb{P} .

Problem 3. Let M be a countable transitive model of ZFC, and let \mathbb{P} be a poset with $\mathbb{P} \in M$. Suppose that G is a subset of \mathbb{P} that intersects every dense set belonging to M, that whenever $p \in G$ and $p \leq q$ then $q \in G$, and that any two elements of G are compatible. Then show that G is a filter. (Another way of phrasing this problem is to say that if we weaken the condition $(\forall p \in G)(\forall q \in G)(\exists r \in G)r \leq p, q$ to $(\forall p \in G)(\forall q \in G)(\exists r)r \leq p, q$ for generic filters we still get the same notion).

Problem 4. Assume that $\mathbb{P} \in M$ and \mathbb{P} is infinite. Show that there is an $H \subseteq \mathbb{P}$ so that M[H] is not a model of ZFC. (Hint: Recall that M[H] and M have the same ordinals. We never used the fact that H is a generic filter to prove that!).

Problem 5. Let $\sigma, \tau \in M^{\mathbb{P}}$. Construct a name $\pi \in M^{\mathbb{P}}$ so that regardless of G, $i_G(\pi) = i_G(\sigma) \cup i_G(\tau)$. (Hint: this can be set up to work for any subset G of \mathbb{P}).

Problem 6. Let $\sigma \in M^{\mathbb{P}}$. Construct a name $\pi \in M^{\mathbb{P}}$ so that regardless of G, $i_G(\pi) = \bigcup (i_G(\sigma))$. (Hint: this can be set up to work for any filter; you don't have to use the fact that G is generic).

Problem 7. Let $\tau \in M^{\mathbb{P}}$ with $dom(\tau) \subseteq \{\check{n} : n \in \omega\}$. Construct a name $\sigma \in \mathbb{P}$ so that regardless of G, $i_G(\sigma) = \omega \setminus i_G(\tau)$. (Hint: you will have to make use of the genericity of G).