FORCING EXERCISES DAY 8

Problem 1. Do the exercise from class about showing that some basic concepts are absolute.

Let X be a countable elementary substructure of some H_{θ} where θ is regular and uncountable. Note that X is not transitive!

Problem 2. Suppose that $A \in X$ and $H_{\theta} \models$ "A is countable". Show that $X \models$ "A is countable" and $A \subseteq X$.

Problem 3. Show that $X \cap \omega_1 \in \omega_1$.

Problem 4. Define a countable set of ordinals that is not a member of X. Hint: It's easy.

Problem 5. Show that $\omega_1 \in X$. Hint: It's easy.

Problem 6. Define a subset of ω which is not a member of X.

Problem 7. Let $\langle X_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of elementary substructures of H_{θ} for some regular uncountable θ such that $X_{\alpha} \in X_{\alpha+1}$ for all $\alpha < \omega_1$ and $X_{\gamma} \bigcup_{\alpha < \gamma} X_{\alpha}$ for all limit γ . Show the following:

- (1) For all $\alpha < \beta < \omega_1, X_{\alpha} \prec X_{\beta}$.
- (2) $\{X_{\alpha} \cap \omega_1 \mid \alpha < \omega_1\}$ is club in ω_1 .
- (3) There is a club C in ω_1 such that for all $\gamma \in C$, $X_{\gamma} \cap \omega_1 = \gamma$.

Problem 8. Show that (X, \in) is a well-founded extensional model.

Definition 1. Let M, N be transistive models of set theory. Let $\pi : M \to N$ be an elementary embedding. Define the critical point of π to be the least ordinal α such that $\pi(\alpha) > \alpha$.

Let M be the Mostowski Collapse of X. Let $\pi : M \to X$ be the inverse of the Mostowski collapse map. Note that viewed as a map from M to H_{κ} , π is an elementary embedding.

Problem 9. Show that the critical point of π is a countable ordinal (which one?) and that π applied to the critical point is ω_1 .

Problem 10. Let M be a transitive model of set theory. Let κ be a regular cardinal with U an ultrafilter on κ . Define a structure $(\text{Ult}_U(M), E)$ as follows. $\text{Ult}_U(M)$ is the collection equivalence classes of functions from κ to M under the following equivalence relation. If $f, g \in \text{Ult}_U(M)$, then $f =_U g$ if and only if there is a measure one set $A \in U$ such that for all $\alpha \in A$, $f(\alpha) = g(\alpha)$. We define [f] E[G] if and only if there is a measure one set $A \in U$ such that for all $\alpha \in A$, $f(\alpha) \in g(\alpha)$. Prove the following facts:

- (1) $=_U$ is an equivalence relation.
- (2) The E relation is well-defined.

FORCING EXERCISES DAY 8

- (3) For every formula ϕ and functions $f_1, \ldots f_n$, $(\text{Ult}_U(M), E) \vDash \phi([f_1], \ldots [f_n])$ if and only if the set $\{\alpha < \kappa \mid M \vDash \phi(f_1(\alpha), \ldots f_n(\alpha))\} \in U$.
- (4) Show that the function $j: M \to \text{Ult}_U(M)$ given by $j(x) = [c_x]$ where c_x is the constantly x function is an elementary embedding.

Hint: Use induction on formulas for (3).