FORCING EXERCISES DAY 6

Problem 1. Let κ be a regular cardinal. Construct a tree of height κ with no cofinal branch.

Definition 1. A tree T is normal if for all $\alpha < \beta < ht(T)$ and for all $x \in Lev_{\alpha}(T)$, there is a $y \in Lev_{\beta}(T)$ with $x <_T y$.

Problem 2. Let κ be a regular cardinal. Construct a normal tree of height κ with no cofinal branch.

Problem 3 (*). Let κ be a regular cardinal. Show that every κ -tree has a normal subtree.

Definition 2. Let $(T, <_T)$ be a partially ordered set. T is splitting if for every $x \in T$ there are $y_0, y_1 \in T$ such that $x <_T y_0, x <_T y_1$, and there is no $z \in T$ such that $y_0, y_1 \leq_T z$.

Problem 4. Let κ be a regular cardinal. Suppose that T is a normal κ -tree with no cofinal branch. Show that T is splitting.

Problem 5. Show that if T is a special ω_1 -tree, then T has no cofinal branch.

Problem 6. Show that if T is a special ω_1 -tree, then T is not Suslin.

Problem 7 (*). Let κ be an uncountable cardinal. Suppose that T is a tree of height κ^+ with levels of size less than κ . Show that T has a cofinal branch.

Theorem 1 (Finite Ramsey Theorem). For every $k < \omega$ there is $n < \omega$ such that for every $\chi : [n]^2 \to 2$ there is a monochromatic set of size k.

Problem 8. Use König Infinity Lemma and Infinite Ramsey Theorem to prove Finite Ramsey Theorem.