FORCING EXERCISES DAY 4

The exercises are not ordered by level of difficulty.

Problem 1. Let \mathbb{P} be as in the proof that MA implies $\mathfrak{b} = 2^{\aleph_0}$.

- (1) Give an explicit example of maximal antichain in \mathbb{P} .
- (2) For each $k \in \omega$, show that $\{(p, A) \mid k \in \operatorname{ran}(p)\}$ is not dense.

Problem 2. Prove the Theorem 4.3 from the notes. (There are hints in the notes.)

Problem 3. Show that MA implies $\mathfrak{s} = 2^{\omega}$.

Problem 4. Show that MA implies $\mathfrak{t} = 2^{\omega}$.

Problem 5. Suppose that $\{A_n \mid n < \omega\} \subseteq \mathcal{L}$ and for all $n, A_n \subseteq A_{n+1}$. Show that $\mu(\bigcup_{n < \omega} A_n = \lim_{n < \omega} \mu(A_n)$.

Problem 6. We define a poset \mathbb{P} . Conditions are subsets of the interval (0,1) which have positive Lebesgue measure and they are ordered by $p \leq q$ if and only if $p \subseteq q$.

- (1) Give a characterization of $p \perp q$ for $p, q \in \mathbb{P}$.
- (2) Show that if $\{p_n \mid n < \omega\}$ is an antichain, then $\mu(\bigcup_{n < \omega} p_n) = \sum_{n < \omega} \mu(p_n)$.
- (3) Show that \mathbb{P} is ccc.

Problem 7. Do the following.

- (1) Show that every open set can be written as the union of open intervals with rational endpoints.
- (2) Show that there are exactly 2^{\aleph_0} open sets.

Problem 8. Show that there are exactly 2^{\aleph_0} many Borel sets.

Problem 9. Show that there are Lebesgue measure zero sets which are not Borel. (*Hint: Think about the Cantor set.*)