Problem 1. Let κ be an infinite cardinal. Show that κ^+ is a regular cardinal.

Problem 2. A family $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is called a splitting family if for every infinite $X \subseteq \omega$ there is a set $A \in \mathcal{F}$ such that $|X \cap A| = |X \setminus A| = \omega$. The splitting number \mathfrak{s} is the minimal cardinality of a splitting family. Show that $\omega < \mathfrak{s} \leq 2^{\omega}$.

Problem 3. Let A, B be subsets of ω . We write $A \subseteq^* B$ when $A \setminus B$ is finite. A sequence $\langle A_{\alpha} \mid \alpha < \kappa \rangle$ of distinct infinite subsets of ω is a tower if $A_{\beta} \subseteq^* A_{\alpha}$ whenever $\alpha < \beta$. The tower number t is the minimal length of a maximal tower (a maximal tower is one for which no further set is almost contained in every member of the tower).

- (1) Show that $\omega < \mathfrak{t} \leq 2^{\omega}$.
- (2) Show that \mathfrak{t} is a regular cardinal.

Problem 4. Show that \mathfrak{b} is a regular cardinal.

Problem 5 (*). Show that there is a MAD family of cardinality 2^{\aleph_0} .