Problem 1. Let $\kappa, \lambda$ and $\mu$ be cardinals.
(1) Show that $\left(\kappa^{\lambda}\right)^{\mu}=\kappa^{(\lambda \cdot \mu)}$.
(2) Show that $\kappa^{\kappa}=2^{\kappa}$.

Problem 2. Let $A$ be an infinite set of size $\kappa$. Show that the set of all bijections from $A$ to $A$ has size $2^{\kappa}$.
Problem 3. Let $\kappa$ and $\lambda$ be cardinals with $\lambda \leq \kappa$ and $\kappa$ infinite. We write $[\kappa]^{\lambda}$ for the collection of all subsets of $\kappa$ of size $\lambda$. Show that the cardinality of $[\kappa]^{\lambda}$ is $\kappa^{\lambda}$.
Problem 4. Show that the supremum of a set of cardinals is a cardinal.
Problem 5. Suppose that $\left\langle\alpha_{i} \mid i<\lambda\right\rangle$ is an increasing sequence of ordinals cofinal in some cardinal $\kappa$. Show that $\operatorname{cf}(\kappa)=\operatorname{cf}(\lambda)$.

Problem 6 (*). Without using the Axiom of Choice show that there is a surjection $^{*}$ from $\mathcal{P}(\omega)$ to $\omega_{1}$.

Problem $7\left(^{*}\right)$. Let $\kappa$ be an infinite cardinal. Construct a family $\mathcal{F}$ of size $\kappa$ of functions from $\kappa^{+}$to $\kappa^{+}$such that for all $\alpha, \beta<\kappa^{+}$there is a function $f \in \mathcal{F}$ such that either $f(\alpha)=\beta$ or $f(\beta)=\alpha$.
Problem $8\left(^{*}\right)$. Define a set $S \subseteq \omega_{1} \times \omega$ to be a large rectangle if $S=A \times B$ where $A$ is uncountable and $B$ is infinite. Show that CH implies that there is a set $T \subseteq \omega_{1} \times \omega$ such that for all large rectangles $S, T \cap S \neq \emptyset$ and $T \cap\left(\left(\omega_{1} \times \omega\right) \backslash S\right) \neq \emptyset$.

Problem $9\left(^{*}\right)$. Let $\kappa$ be an infinite cardinal and $\prec$ be a well-ordering of $\kappa$. Show that there is an $X \subseteq \kappa$ such that $|X|=\kappa$ and $\prec$ and $<$ agree on $X$.

