Problem 1. Let κ , λ and μ be cardinals.

- (1) Show that $(\kappa^{\lambda})^{\mu} = \kappa^{(\lambda \cdot \mu)}$.
- (2) Show that $\kappa^{\kappa} = 2^{\kappa}$.

Problem 2. Let A be an infinite set of size κ . Show that the set of all bijections from A to A has size 2^{κ} .

Problem 3. Let κ and λ be cardinals with $\lambda \leq \kappa$ and κ infinite. We write $[\kappa]^{\lambda}$ for the collection of all subsets of κ of size λ . Show that the cardinality of $[\kappa]^{\lambda}$ is κ^{λ} .

Problem 4. Show that the supremum of a set of cardinals is a cardinal.

Problem 5. Suppose that $\langle \alpha_i | i < \lambda \rangle$ is an increasing sequence of ordinals cofinal in some cardinal κ . Show that $cf(\kappa) = cf(\lambda)$.

Problem 6 (*). Without using the Axiom of Choice show that there is a surjection from $\mathcal{P}(\omega)$ to ω_1 .

Problem 7 (*). Let κ be an infinite cardinal. Construct a family \mathcal{F} of size κ of functions from κ^+ to κ^+ such that for all $\alpha, \beta < \kappa^+$ there is a function $f \in \mathcal{F}$ such that either $f(\alpha) = \beta$ or $f(\beta) = \alpha$.

Problem 8 (*). Define a set $S \subseteq \omega_1 \times \omega$ to be a large rectangle if $S = A \times B$ where A is uncountable and B is infinite. Show that CH implies that there is a set $T \subseteq \omega_1 \times \omega$ such that for all large rectangles $S, T \cap S \neq \emptyset$ and $T \cap ((\omega_1 \times \omega) \setminus S) \neq \emptyset$.

Problem 9 (*). Let κ be an infinite cardinal and \prec be a well-ordering of κ . Show that there is an $X \subseteq \kappa$ such that $|X| = \kappa$ and \prec and < agree on X.