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Abstract. We present an alternative proof that from large cardinals,
we can force the tree property at κ+ and κ++ simultaneously for a
singular strong limit cardinal κ. The advantage of our method is that
the proof of the tree property at the double successor is simpler than in
the existing literature. This new approach also works to establish the
result for κ = ℵω2 .

1. Introduction

A regular uncountable cardinal κ has the tree property if every κ-tree has
a cofinal branch, or equivalently there are no κ-Aronszajn trees. The tree
property belongs to a family of compactness properties which are of great
interest in combinatorial set theory. Compactness is the phenomenon where
if some property holds for every strictly smaller substructure of an object,
it holds for the entire object. Like other compactness properties such as
stationary reflection, the tree property is a property of “large cardinal type”
which can consistently hold at certain small regular cardinals.

An old question due to Magidor asks whether the tree property can consis-
tently hold simultaneously at all regular κ > ℵ1. There are several obstacles
to obtaining a positive consistency result for this problem:

• Specker showed that if τ<τ = τ , then there is a special τ+-Aronszajn
tree. So a positive result requires a model where there are no strongly
inaccessible cardinals and the GCH fails everywhere. In particular
the SCH must fail at every singular strong limit cardinal.
• Jensen showed that the weak square principle �∗τ is equivalent to the

existence of a special τ+-Aronszajn tree. Results from inner model
theory show that the failure of �∗τ for any singular τ requires very
substantial large cardinal hypotheses.

A test question which exposes some of the main difficulties asks whether
there can exist a singular strong limit cardinal κ such that both κ+ and κ++
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have the tree property. This question was resolved positively by Sinapova
[5], and in subsequent work Sinapova and Unger [6] showed that the singular
cardinal κ can consistently be ℵω2 .

In [5], the main forcing was diagonal Prikry forcing interleaved into a
Mitchell style poset. The proof of the tree property at κ++ generalized
an argument of Cummings and Foreman [1]; this form of argument also
appears in work of Unger [7]. The hardest point in the argument of [5] was
to show the tree property at κ+, which required a complicated argument.
One disadvantage to interleaving the Prikry forcing inside the Mitchell poset
is that the construction is not amenable to including collapses to make κ
small; in particular this approach is not suited to make κ into ℵω2 .

That motivated the construction in [6], where the main forcing is a two
step iteration, with a Mitchell’s forcing poset followed by diagonal Prikry
forcing. In that case one can incorporate collapses between the Prikry points.
However, the argument for the tree property at the double successor of the
singular cardinal became much more complicated. The hardest technical
issue was “branch preservation” with respect to a quotient forcing of the form
j(Mitchell ∗Prikry)/Mitchell ∗Prikry, where j is an appropriate elementary
embedding.

Here we present a simpler construction for the results of [5] and [6]. More
precisely, we give an alternative proof that forcing with certain iterations of
the form Mitchell ∗ Prikry yields the tree property at κ++. Our argument
avoids dealing with the above-mentioned quotient poset, and so bypasses all
the technical issues connected with that poset.

2. The forcing posets

In this section, we describe the two main posets in our construction: a
Mitchell style forcing and a diagonal Prikry forcing.

We will use the following version of the Mitchell forcing from [3]. Given
regular cardinals κ, µ, λ where κ < µ < λ, κ<κ = κ and λ is strongly
inaccessible, we define a forcing poset M = M(κ, µ, λ). Conditions are pairs
(p, q) such that:

(1) p ∈ Add(κ, λ).
(2) q is a partial function on λ such that |q| < µ.
(3) For all α ∈ dom(q), q(α) is an Add(κ, α)-name for a condition in

Add(µ, 1).

The ordering is given by (p1, q1) ≤ (p0, q0) iff p1 ≤ p0, dom(q0) ⊆ dom(q1),
and p � α q1(α) ≤ q0(α) for all α ∈ dom(q0).

We refer the reader to [1] for a detailed account of the properties of M.
We will use the following facts:

• M is κ-directed closed and λ-cc.
• M is the projection of Add(κ, λ)× R, where R is µ-closed1.

1This means decreasing < µ sequences have lower bounds.
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• All < µ-sequences of ordinals in the generic extension by M lie in
the subextension by Add(κ, λ).
• M preserves all cardinals except those in the interval (µ, λ), which

are collapsed to µ.
• M forces 2κ = λ = µ+.

If λ is measurable2 then λ still has the tree property in the extension by
M. The key points are that if j : V → M is an embedding with critical
point λ into a model M such that λM ⊆M , then:

• In M , M is an initial segment of j(M).
• j � M is a complete embedding of M into j(M).
• If G is M-generic then in M [G] the quotient forcing j(M)/G is the

projection of a product A×Q, where A = Add(κ, j(λ)− λ).
• In V [G], A is κ+-Knaster and Q is µ-closed.

Next, we describe the diagonal supercompact Prikry forcing P. This forc-
ing was first defined by Gitik and Sharon [2] to prove the consistency of
failure of SCH at κ with failure of �∗κ, and then modified by Neeman [4] to
prove the consistency of failure of SCH at κ with the tree property holding
at κ+.

Let 〈κn | n < ω〉 be an increasing sequence of regular cardinals. Let
κ = κ0 and assume that κ is a supercompact cardinal. Let µ = (supn κn)+.
Let U be a normal measure on Pκ(µ), and for every n let Un be the projection
of U to Pκ(κn). The measure Un concentrates on x such that x ∩ κ is an
inaccessible cardinal: we only consider x ∈ Pκκn with this property, and
write κx for x ∩ κ.

Conditions in P are of the form p = 〈x0, ..., xn−1, An, An+1 . . .〉, where
each xi ∈ Pκ(κi), xi ≺ xi+1 (i.e. xi ⊆ xi+1 and |xi| < κxi+1), and each
Ak ∈ Uk. We say that lh(p) = n and the stem of p is s(p) = 〈x0, ..., xn−1〉.

The ordering is given by q ≤ p iff:

• lh(q) ≥ lh(p).
• For all i with i < lh(p), xqi = xpi .
• For all i with lh(p) ≤ i < lh(q), xqi ∈ A

p
i .

• For all i with lh(q) ≤ i, Aqi ⊆ A
p
i .

We say that q is a direct extension of p, and write q ≤∗ p, if q ≤ p and they
have the same length,

The following are standard facts about P:

(1) P has the Prikry property: for any statement in the forcing language
φ and any p ∈ P, there is q ≤∗ p deciding φ. In particular P adds no
bounded subsets of κ.

(2) Conditions with the same stem are compatible, and so P has the
µ-chain condition.

(3) P forces that cf(κn) = ω for all n ≥ 0.
(4) P preserves κ and µ, and forces that µ = κ+

2With a bit more work, weak compactness suffices here.
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Given a formula φ and a stem h, we will say that h ∗ φ if there is a
condition p with stem h which forces φ. Note that by the Prikry property,
for every φ, h either we have h ∗ φ or h ∗ ¬φ.

3. The main construction

Let 〈κn | n < ω〉 be an increasing sequence of indestructible supercompact
cardinals with limit κω. Let µ = κ+ω and κ = κ0. Suppose also that λ is a
measurable cardinal above µ. Let M be the Mitchell forcing M(κ, µ, λ) from
the last section, and G be M-generic. Since M is κ-directed closed, κ is still
supercompact in V [G].

In V [G] let P be the diagonal Prikry forcing described in the preceding
section, built using normal measures Un on Pκ(κn) for n < ω. Let H
be P-generic over V [G]. In V [G][H], κ is preserved, cf(κ) = ω, κ+ = µ,
κ++ = λ = 2κ.

Theorem 3.1. The tree property holds at λ in V [G][H].

Proof. In V [G] let Ṫ be P-name for a λ-tree that is forced to be a counterex-

ample. As usual assume that for α < λ, the levels Ṫα are simply {α} × µ.
Let j : V → M be the ultrapower map by a normal measure on λ. Lift

it to j : V [G] → M [G∗] in V [G][K × A], where K is generic for a µ-closed
forcing Q and A is generic for a κ+-Knaster forcing A. Of course we could
have lifted j working in V [G∗], but Q× A is more tractable than j(M)/G.

Lemma 3.2. In V [G] there exist an unbounded set J ⊆ λ, a stem h, and a
function f : J → µ, such that for all α < β both in J ,

h ∗ 〈α, f(α)〉 <Ṫ 〈β, f(β)〉.

Proof. Work in V [G][K×A]. Let u = 〈λ, 0〉, so that u is a node on the λ-th

level of j(Ṫ ). Then for all α < λ there exist pα ∈ j(P) and ξα < µ such that
pα  〈α, ξα〉 <j(Ṫ ) u. Let hα be the stem of pα, and note that hα is a stem

in the original forcing P.
Since there are only κω-many stems and the cofinality of λ is µ in M [G∗],

there exist an unbounded J ⊆ λ and a stem h̄, such that for all α ∈ J we
have h̄ = hα. For all α < λ, if α ∈ J then h̄ ∗ 〈α, ξα〉 <j(Ṫ ) u. Increasing

J if needed we may assume that the converse also holds.
Define f : J → µ by f(α) = ξα. Then if β ∈ J , we have that for all α < β,

α ∈ J if and only f there is some ξ < µ such that h̄ ∗ 〈α, ξ〉 <Ṫ 〈β, f(β)〉,
and in this case ξα is the unique ξ with this property. This implies that for
all γ < λ both J ∩ γ and f � γ are in V [G].

Next we want to find such a J and f in V [G]. Since A2 has the κ+-
approximation property in V [G][K], it is easy to see that the versions of J
and f which we just constructed lie in V [G][K]. In V [G][K × A], for every
stem h extending h̄, let Jh = {α ∈ J | ∃ξ(h ∗ 〈α, ξ〉 <j(Ṫ ) u)} and define

fh : Jh → µ by setting fh(α) to be the unique ξ witnessing that α ∈ Jh.
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As above, if Jh is unbounded then Jh and fh are in V [G][K]. Let ᾱ < λ be
forced by A to be a bound for all Jh which are bounded in λ.

For each h, let J̇h, ḟh ∈ V [G][K] be A-names for Jh, fh. In V [G][K] let

Ch = {C ⊆ λ | C \ ᾱ 6= ∅,∃b ∈ A(b  C = J̇h)}. Then by the above remark
and since A is κ+-Knaster, if Jh is unbounded in λ, we have that 1 ≤ |Ch| ≤
κ. Enumerate Ch as 〈Ch,η | η < κ〉 (possibly with repetitions) when it is not

empty. For every η < κ pick some bη ∈ A forcing that Ch,η = J̇h, and let
fh,η : Ch,η → µ be defined by setting fh,η(α) equal to the unique ξ witnessing

α ∈ Ch,η as forced by bη. That is to say, bη 
V [G][K]
A (h ∗ 〈α, ξ〉 <j(Ṫ ) u).

Working in V [G], for each h such that Ċh is not the empty set and for each

η < κ, fix Q-names Ċh,η and ḟh,η. We want to show that for some h and η

the pair (Ċh,η, ḟh,η) can be forced to be in V [G]. Towards a contradiction,

suppose that for all h and η we have 1Q  (Ċh,η, ḟh,η) /∈ V [G].

We say that q0, q1 in Q force contradictory information about ḟh,η(α) if

q0, q1 both decide “α ∈ Ċh,η” with at least one of them forcing a positive

decision, and (q0, q1) Q×Q ḟh,η[ĠL](α) 6= ḟh,η[ĠR](α).

Since we have assumed that each ḟh,η is forced to be new, we have the
following in V [G]:

Claim 3.3. Suppose that q0, q1 ∈ Q, h is a stem extending h̄, η < κ, and
α < λ. Then there are α′ > α and q′0 ≤ q0, q

′
1 ≤ q1, forcing contradictory

information about ḟh,η(α
′).

Working in V [G] we build a binary tree of conditions in Q, forcing contra-
dictory information about fh,η for every pair (h, η) at every splitting. More
precisely we build 〈qσ, ασ,h,η | σ ∈ 2<κ, h a stem , h w h̄, η < κ〉, such that
for all (σ, h, η) the conditions qσ_0 and qσ_1 force contradictory information
about fh,η(ασ,h,η). We build this tree by induction on |σ|, and at every stage
we apply Claim 3.3 repeatedly for each h and η. We use that Q is µ-closed
and the number of pairs (h, η) is κω.

Let α∗ = supσ,h,η ασ,h,η. For each i ∈ 2κ, let qi ≤ qi�η for all η < κ. Now
let q′i ≤ qi be such that there are hi, ηi < κ, ξi < µ and b ∈ A such that:

• (q′i, b) Q×A “hi ∗ 〈α∗, ξi〉 <j(Ṫ ) u”,

• (q′i, b) Q×A Ċhi,ηi = J̇hi , ḟhi = ḟhi,η
3 (and so q′i  α∗ ∈ Ċh,ηi)

Note that for all α < α∗, q′i  ḟhi,ηi(α) = δ iff hi ∗ 〈α, δ〉 <Ṫ 〈α
∗, ξi〉.

Since 2κ = λ > µ, there exist distinct i, j ∈ 2κ and (h, η, ξ) such that
hi = hj = h, ηi = ηj = η and ξi = ξj = ξ. Let σ be the node where i and
j split. By construction the conditions qi and qj cannot force contradictory

information about ḟh,η(αh,σ,η). This is a contradiction, so in V [G] we may
find a stem h, set J and function f as required. �

Let J, f, h be given by Lemma 3.2, and let n = |h|. As above, let ξα =
f(α).

3Here we identify J̇h, ḟh and Ċhi,ηi , ḟhi,η with their natural corresponding Q×A-names.



6 CUMMINGS, HAYUT, MAGIDOR, NEEMAN, SINAPOVA, AND UNGER

Lemma 3.4. There are ρ < λ and Un-measure one sets 〈Aα | α ∈ J \ ρ〉 in
V [G], such that for all x ∈ Aα ∩Aβ, h_x ∗ 〈α, ξα〉 <Ṫ 〈β, ξβ〉.

Proof. By the same ideas as in [4], such measure one sets exist in V [G][K].
We go over the proof for completeness:

Claim 3.5. There are 〈A∗α | α ∈ J \ρ〉 in V [G][K], satisfying the conclusion
of Lemma 3.4.

Proof. For every x ∈ Pκ(κn) let Jx = {α ∈ J | h_x ∗ 〈α, ξα〉 <j(Ṫ ) u}. Let

ᾱ < λ be such that if J ′x is bounded in λ, then J ′x ⊆ ᾱ. Here we use that

the number of x’s is less than µ = cfM [G∗] λ.
Redefine Jx = {α ∈ J \ ᾱ | h_x ∗ 〈α, ξα〉 <j(Ṫ ) u} Then each Jx

is either empty or unbounded. In particular each Jx ∈ V [G][K], since A
has the κ+-approximation property. In V [G][K], define Cx to be the set of
possible values for Jx. Then it is routine to show:

• |Cx| ≤ κ.
• For all C ∈ Cx and for all α < β both in C, h_x ∗ 〈α, ξα〉 <Ṫ
〈β, ξβ〉.
• Distinct elements C and C ′ of Cx are disjoint on a final segment of
λ.

Fix ρ < λ such that ᾱ < ρ, and C ∩ C ′ ⊆ ρ for all x and all pairs
of distinct elements C and C ′ in Cx. Let α0 = min(J \ ρ), and define
f(x, α) to be the unique C ∈ Cx such that α ∈ C, if such exists. Then let
A∗α = {x | f(x, α) = f(x, α0)}, where the equality means that the values
f(x, α) and f(x, α0) are defined and equal. It is clear that A∗α ∈ Un. �

Fix 〈A∗α | α ∈ J \ ρ〉 as in Claim 3.5. By construction, we have that
for all α < β both in J \ ρ and for all x ∈ A∗β, x ∈ A∗α if and only if

h_x ∗ 〈α, ξα〉 <Ṫ 〈β, ξβ〉.
Working in V [G][K], for each x we let bx = {α ∈ J \ ρ | x ∈ A∗α}. By

increasing ρ, we may assume that each bx is unbounded in λ or empty. We
say that †x holds if bx is unbounded and bx ∈ V [G]. Let A = {x ∈ Pκ(κn) |
†x holds }. Then A ∈ V [G] since Q is µ-closed.

Claim 3.6. A ∈ Un.

Proof. Suppose otherwise. Then Ac = Pκ(κn) \ A ∈ Un. Find q0 and q1 in

Q with the following property: for all x ∈ Ac such that ḃx is not forced to
be empty, there is αx < λ such that q0 and q1 decide “αx ∈ ḃx” in opposite
ways. Let β ≥ supx αx with β ∈ J .

Extend each condition qi to q′i such that for each x ∈ Ac, q′i ‖ x ∈ Ȧ∗β.

This is possible by the closure of Q. Let Ai = {x ∈ Ac | q′i  x ∈ Ȧ∗β}, then
Ai ∈ Un because Ac ∈ Un.

Take x ∈ A0 ∩ A1 and let α = αx. Then both q′0, q
′
1 force that x ∈ Ȧ∗β.

Then ḃx is forced to be nonempty, so q′0 and q′1 decide “α ∈ ḃx” in opposite
ways. Without loss of generality:
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(1) q′0  α ∈ ḃx.

(2) q′1  α /∈ ḃx.

The first item implies that q′0  x ∈ Ȧ∗α ∩ Ȧ∗β, and so h_x ∗ 〈α, ξα〉 <Ṫ
〈β, ξβ〉. But then since q′1  x ∈ Ȧ∗β, we get that q′1  α ∈ bx. Contradiction.

�

So, we have A ∈ Un. By the closure of Q, the sequence 〈bx | x ∈ A〉 is
also in V [G]. Let Aα = {x ∈ A | α ∈ bx}. Since each Aα = A ∩ A∗α and
A∗α ∈ j(Un), we get that Aα ∈ Un. This completes the lemma. �

We can now apply this lemma inductively as in [4] to get conditions
〈pα | α ∈ J \ ρ〉 so that for all α < β, pα ∧ pβ  〈α, ξα〉 <Ṫ 〈β, ξβ〉. By the
µ chain condition, there are unboundedly many α’s such that pα is forced
into a generic for P. This gives a branch. �

Remark 3.7. The above arguments can also be carried out by assuming that
λ is weakly compact.

The arguments of [6, Section 3] can be used to show that µ has the tree
property in V [G][H]. The setting here is rather simpler and we just outline

the argument. Let Ṫ ∈ V [G] be a P-name for a µ-tree. Recalling that M can
be written as a projection of Add(κ, λ) × R for a suitable term forcing R,
we force to obtain V [G] ⊆ V [A×B] where A×B is Add(κ, λ)×R-generic.
The Prikry poset P has the same definition in V [A × B] as in V [G], and
in this model the cardinals κn are generically supercompact via reasonably
nice forcing. We can use this to argue as in [4] that T has a branch in
V [A×B][H], and then use a suitable “branch lemma” to pull back and get
a branch of T in V [G][H].

We have therefore given a new proof of the main theorem of [5].

Theorem 3.8. From ω many supercompact cardinals and a weakly compact
λ above them, it is consistent to have the tree property at both κ+ and κ++

for a singular strong limit cardinal κ.

Next, we use the above arguments to give another proof of the main
theorem of [6].

Theorem 3.9. From ω many supercompact cardinals and a weakly compact
λ above them, it is consistent to have the tree property at both ℵω2+1 and
ℵω2+2, where ℵω2 is strong limit.

Proof. We use the same forcing as in [6]. Namely, we prepare the ground
model V , so that:

(1) κn = κ+n, and κn is generically supercompact.
(2) After we force with the Mitchell forcing M×Add(κ, λ+ \λ), for each

n we have normal measures Un on Pκ(κn), and “guiding generics”
Kn, for Col(κ+ω+3, < jUn(κ)) over the ultrapower by Un.
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(3) The guiding generics above are for a λ+ = µ++-closed forcing since,
they are pulled back from a genering for a Col(κ+ω+3, < j∗(κ)) where
j∗ is a λ-supercompact embedding with critical point κ, and there
the ultrapower is closed under λ-sequences. For more details, see
Section 2 of [6].

Let G be M × Add(κ, λ+ \ λ)-generic. In V [G] define the diagonal Prikry
forcing P with interleaved collapses to make κ = ℵω2 as follows. Conditions
are of the form p = 〈d, x0, co, ..., xn−1, cn−1, An, Cn, ...〉, where,

(1) 〈x0, ..., xn−1, An...〉 is in the diagonal Prikry forcing defined from the
measures 〈Ui | i < ω〉, as defined in section 2.

(2) d ∈ Col(ω, κ+ωx0 ),

(3) for i < n− 1, ci ∈ Col(κ+ω+3
xi , < κxi+1), cn−1 ∈ Col(κ+ω+3

xn−1
, < κ),

(4) for i ≥ n, dom(Ci) = Ai, each Ci(x) ∈ Col(κ+ω+3
x , < κ), [Ci]Ui ∈ Ki.

Let H be P-generic over V [G]. In V [G][H], κ = ℵω2 , µ = ℵω2+1, λ =
ℵω2+2, 2

κ = ℵω2+3. By the arguments of [6, Section 3], which we already
sketched above in the setting of Theorem 3.1, we have the tree property at
µ = ℵω2+1.

To prove the tree property at ℵω2+2, we use the the same approach as in
Theorem 3.1. Note that we still have that the number of stems is κω. Also,
any two conditions with the same stem are compatible, as witnessed by a
common lower bound with that same stem. So P has the µ-chain condition,
and we can define as before the notion of h ∗ φ.

Let j : V →M be an elementary embedding with critical point λ. As in
Theorem 3.1, we lift j to j : V [G] → M [G∗] in V [G][K × A], where K is
generic for a µ-closed forcing Q and A is generic for a κ+-Knaster forcing.
The critical point is still above any fixed condition p ∈ P, that is to say
j(p) = p. So we have the analogue of Lemma 3.2: in V [G], there is an
unbounded J ⊆ λ, a stem h, and a function f : J → µ, such that for all
α < β both in J ,

h ∗ 〈α, f(α)〉 <Ṫ 〈β, f(β)〉.
Next we prove the following analogue of Lemma 3.4.

Lemma 3.10. There are ρ < λ and a sequence 〈Aα, Cα | α ∈ J \ρ〉 in V [G],
such that:

• Aα ∈ Un, dom(Cα) = Aα, Cα(x) ∈ Col(κ+ω+3
x , < κ) for all x ∈ Aα,

and [Cα] is in the guiding generic Kn.
• For all x ∈ Aα ∩Aβ, if Cα(x) and Cβ(x) are compatible, then

h_〈x,Cα(x) ∪ Cβ(x)〉 ∗ 〈α, ξα〉 <Ṫ 〈β, ξβ〉.

Proof. For every α < β both in J , let rα,β ∈ P be a condition with stem h,
such that rα,β  〈α, ξα〉 <Ṫ 〈β, ξβ〉. Denote rα,β = h_(Aα,β, Cα,β)_rα,β �
[n + 1, ω). Since each [Cα,β] belongs to a µ++-closed guiding generic Kn,
there is a lower bound [C] in Kn for all of them. So we may assume that
dom(C) = Pκ(κn) and that Cα,β = C � Aα,β for all α and β, by shrinking
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measure one sets and extending values of Cα,β(x) as needed. It follows that
for every α < β both in J , for Un-many x,

h_〈x,C(x)〉 ∗ 〈α, ξα〉 <Ṫ 〈β, ξβ〉.
The rest of the proof is exactly as in Lemma 3.4, only we replace instances
of h_x with h_〈x,C(x)〉. �

Now we can apply Lemma 3.10 inductively, exactly as we applied Lemma
3.4 in the proof of Theorem 3.1. We construct conditions 〈pα | α ∈ J \ ρ〉 so
that for all α < β, pα ∧ pβ  〈α, ξα〉 <Ṫ 〈β, ξβ〉. By the µ chain condition,
there are unboundedly many α’s such that pα is forced into a generic for P.
This gives a branch. �
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