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Abstract. We give a new, elementary, and self-contained proof of Laczkovich’s solution to Tarski’s
circle squaring problem: the result that a disk and a square of the same area in R2 are equidecom-
posable by translations. More generally, we give a new proof of Laczkovich’s 1992 theorem that
any two bounded Lebesgue measurable subsets of Rk with the same positive Lebesgue measure are
equidecomposable by translations, provided their topological boundaries have upper box dimension
less than k. Our proof is based on flows in infinite graphs. We consider a graph whose vertex set is
[0, 1)k and whose edges are generated by finitely many translations. In this graph, we show there is
a flow between the characteristic functions of the two sets. We then use the Axiom of Choice and
the integral flow theorem to construct an equidecomposition from this flow. To show that this flow
converges, we give a new proof of Laczkovich’s discrepancy estimates for certain translation actions
on the k-torus using only the Erdős-Turán inequality.

Our proof gives a new sufficient condition for when two sets are equidecomposable by translations
whose coordinates are integer linear combinations of finitely many given real numbers. We use this
to answer a 1990 question of Laczkovich by showing that the circle can be squared by translations
whose coordinates are algebraic irrational numbers. In our subsequent paper [MU2], we build on
this result to give improved upper bounds on the number of pieces needed to square the circle.

1. Introduction

The Banach-Tarski paradox states that, assuming the Axiom of Choice, a single unit ball in R3

can be partitioned into finitely many sets which can be rearranged by isometries to partition two
disjoint unit balls. That is, one unit ball and two unit balls are equidecomposable by isometries.
However, in two dimensions, the analogue of the Banach-Tarski paradox is false. One unit disk in
R2 is not equidecomposable by isometries with two unit disks. The reason for this is the existence
of Banach measures, which extend Lebesgue measure to all subsets of R2 and are finitely additive
and isometry invariant (see [TW, Corollary 12.9]). Thus, if two sets A,B ⊆ R2 are Lebesgue
measurable and equidecomposable by isometries, they must have the same Lebesgue measure. To
see this, let A1, . . . , An and B1, . . . , Bn be partitions of A and B respectively, where there is an
isometry mapping each Ai to Bi. If µ is a Banach measure extending Lebesgue measure λ, then
λ(A) = λ(B) since

λ(A) = µ(A) =

n∑
i=1

µ(Ai) =

n∑
i=1

µ(Bi) = µ(B) = λ(B).

Here we are using that µ extends λ for the first equality, µ is finitely additive for the second equality,
and µ is isometry invariant for the third equality.

In 1925, Tarski posed the question of whether a disk and a square of the same area are equide-
composable in R2. The question was motivated by this difference between equidecomposability in
R2 and R3, and the problem of understanding which subsets of R2 of the same Lebesgue measure
are equidecomposable.

Question 1.1 (Tarski’s circle squaring problem [T]). Suppose A ⊆ R2 is a closed disk and B ⊆ R2 is
a closed square so that A and B have the same area. Are A and B equidecomposable by isometries?
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Tarski’s circle squaring problem remained open for many years until it was answered positively
by Laczkovich in 1990 [L90] who showed that in fact there is an equidecomposition by translations.
Laczkovich’s proof used the Axiom of Choice, but unlike the Banach-Tarski paradox where the sets
used in the equidecomposition are necessarily nonmeasurable, in Tarski’s circle squaring problem
there is no measure-theoretic paradox so it was plausible that the pieces in the equidecomposition
could be chosen to be Lebesgue measurable. Such a Lebesgue measurable equidecomposition was
recently shown to exist by Grabowski, Máthe, and Pikhurko [GMP], though their proof still used
the Axiom of Choice to complete the equidecomposition on a Lebesgue null set. Soon after, the
authors of this note showed there is a completely constructive solution to Tarski’s circle squaring
problem (without the Axiom of Choice) using Borel pieces. Part of that proof relies on a new way
of squaring the circle using flows in graphs as an intermediate step.

In this paper, we adapt these tools to give a new and simpler flow-based proof of Laczkovich’s
theorem that a disk and a square of the same area in R2 are equidecomposable by translations.
We have made the proof as self-contained and elementary as possible. The only prerequisites are
some basic knowledge of graph theory, algebra (group actions), topology (Tychonoff’s theorem),
and measure theory (Lebesgue measure). Throughout, we discuss connections between this proof
and other parts of mathematics including combinatorics, ergodic theory, Diophantine approxima-
tion, and Fourier analysis. Although we will often give references to sources that can be used to
better understand the broader context for the results we are proving, none of them are required to
understand our proof.

Figure 1. An image of an equidecomposition of a disk and a square. Each piece
in the partition is represented by a different color. For more details on how this
diagram was generated, see [Ma].

The two main differences between our proof and earlier work are as follows. First, the flow we
define between the disk and the square (in Lemma 3.1) has a simpler definition than the flow in [MU,
Section 4], and its properties are easier to check. Second, our proof of Laczkovich’s discrepancy
lemma (Lemma B) in Sections 5 and 6 is new. We first use the Erdős-Turán inequality to give
a simple 1-dimensional discrepancy estimate for certain finite sets arising in translation actions
on T in Section 5. We then prove a lemma lifting these 1-dimensional discrepancy estimates to
k-dimensional discrepancy estimates in product actions on Tk (Lemma 6.2). This is the crucial
new ingredient, and we formulate a new sufficient condition for equidecomposability via a certain
set of translations that comes from this new approach (Theorem D). Our proof also contains many
other small improvements and simplifications.

This new proof also yields a new corollary. We show that the circle can be squared by translations
with algebraic irrational coordinates (as opposed to the random translations originally used by
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Laczkovich). This answers an open problem of Laczkovich [L90, Section 10.3] of whether the circle
can be squared using effectively given translations. The proof of this result uses a deep result of
number theory to verify the sufficient condition for equidecomposability in Theorem D: Schmidt’s
theorem on simultaneous approximation of algebraic irrationals [S70].

In our second paper, we build on this to prove [MU2] improved upper bounds on the number of
pieces needed to square the circle. Previously, Laczkovich had shown that a disk and square can
be equidecomposed using 1040 pieces [L02, Page 114]. We improve this upper bound to fewer than
100,000 pieces using our new proof, progress in number theory on the problem of proving effective
bounds for Roth’s theorem on Diophantine approximation of algebraic irrationals, and computer
assistance. In this paper we keep track of the number of pieces used in our equidecomposition to
aid in that calculation.

The authors would like to thank Frank Calegari for valuable discussions about the material of
the paper, and Edward Hou, Alekos Kechris, Forte Shinko, and Stan Wagon for helpful feedback
on an early draft.

2. Preliminaries and proof outline

If f, g are functions from R to R or N to R, we will use Vinogradov’s asymptotic notation f ≪ g
to denote that there are constants m and C > 0 so that f(n) ≤ Cg(n) for all n ≥ m. If f and g
depend on some additional parameters, we will use subscripts to denote the parameters on which
C and m depend in this notation. So for example, if k > 0, then log(kn) ≪k n, meaning that for
any k > 0 there exist mk and Ck > 0 so that for all n ≥ mk, log(kn) ≤ Ckn.

If X is a set, a finite partition of X is a finite sequence A1, . . . , An of disjoint subsets of X whose
union is X. We call the sets A1, . . . , An the pieces of the partition. If a : G ↷ X is an action of
a group G on a space X, then we say that A,B ⊆ X are a-equidecomposable if there exist a finite
partition A1, . . . , An of A and group elements g1, . . . , gn ∈ G so that g1 ·A1, . . . , gn ·An is a partition
of B. For example, the group Rk acts on itself by translations: each group element g ∈ Rk acts on
x ∈ Rk by g · x := g + x. We say A,B ⊆ Rk are equidecomposable by translations if A and B are
equidecomposable in this translation action. See [TW] for more context and an introduction to the
theory of equidecomposability.

Our first goal is to formulate equidecomposability in graph theoretic terms. The graphs we will
consider are the Schreier graphs associated to group actions:

Definition 2.1 (Schreier graph of a group action). If a : G ↷ X is an action of a group G on a
space X and S ⊆ G, then we let Sch(a, S) be the undirected graph with vertex set V = X where
{x, y} is an edge in Sch(a, S) if x ̸= y and g · x = y for some g ∈ S ∪ S−1.

If H is an undirected graph on X, we let dH(x, y) be the usual graph metric where dH(x, y) is
equal to the shortest length of a path from x to y in the graph H if one exists, and it is equal to
∞ otherwise.

Now we can restate equidecomposability in more graph theoretic terms: two sets A and B are
equidecomposable in some group action if and only if there is a bijection between A and B that
moves points a bounded distance in some Schreier graph of the action:

Proposition 2.2. If a : G ↷ X is an action of a group G on a space X, then A,B ⊆ X are
a-equidecomposable if and only if there exist a finite set S ⊆ G, a bijection f : A → B, and some
m ∈ N so that dSch(a,S)(x, f(x)) ≤ m for every x ∈ A.

Proof. First, suppose A and B are a-equidecomposable, so there is a partition A1, . . . , An of A and
group elements g1, . . . , gn ∈ G so that g1 ·A1, . . . , gn ·An is a partition of B. Let Bi = gi ·Ai. Now
define the function f : A → B by f(x) = gi · x where i is the unique value such that x ∈ Ai. We
claim that f is a bijection from A to B. First note that for each i, f(Ai) = gi · Ai = Bi by the
definition of f . So f is onto B since ran(f) =

⋃
i f(Ai) =

⋃
iBi = B because the Bi partition B. So
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it remains to show that f is an injection. To begin, note f ↾ Ai is an injection from Ai to Bi since
its inverse is given by acting by g−1

i . Now suppose x, x′ ∈ A are not equal. Then x ∈ Ai and x
′ ∈ Aj

for a unique i and j. If i = j, then f(x) ̸= f(x′) since f ↾ Ai is an injection. If i ̸= j, then f(x) ∈ Bi

and f(x′) ∈ Bj , and Bi and Bj are disjoint, so f(x) ̸= f(x′). So x ̸= x′ implies f(x) ̸= f(x′) and
so f is an injection. To finish, if we let S = {g1, . . . , gn}, then dSch(a,S)(x, f(x)) ≤ 1 for all x ∈ A.

Conversely, suppose S ⊆ G is a finite set and f : A → B is a bijection between A,B ⊆ X
so that dSch(a,S)(x, f(x)) ≤ m for all x ∈ A. Since adding inverses to S does not change the
graph Sch(a, S) (whose definition is symmetric), we may assume that S is closed under inverses.
Then there is an edge between distinct x and y if there is a g ∈ S so that g · x = y. Let
S≤m =

⋃
k≤m S

k be all products of at mostm elements from S, so S≤m is finite. By definition, S≤m

includes the identity (which we define to be the empty product). Note that if dSch(a,S)(x, y) ≤ m,

then g · x = y for some g ∈ S≤m. Let g1, . . . , gn enumerate the elements of S≤m. Now let
Ai = {x : f(x) = gi · x and f(x) ̸= gj · x for any j < i}. Then the sets Ai partition A. Since
f(x) = gi · x for all x ∈ Ai and f is an injection, the sets gi · Ai are disjoint. Their union
covers B since B = ran(f) = ∪igi · Ai. So the sets gi · Ai partition B, and so A and B are
a-equidecomposable. □

Remark 2.3. We make a remark about how many pieces such equidecompositions use. Suppose
f : A → B is a bounded distance bijection in Sch(a, S). Let T ⊆ G be a set of group elements
such that for all x ∈ A, there exists some g ∈ T such that f(x) = g · x. Then A and B are
equidecomposable using at most |T | pieces: the equidecomposition is by the sets Ai = {x : f(x) =
gi · x and f(x) ̸= gj · x for any j < i} as above, where {g1, . . . , gn} enumerates the elements of T .

To show the circle and the square are equidecomposable, we will use the above formulation of
equidecomposability and find such a bounded distance bijection.

If A is a set in a topological space such as Rk, we use the notation ∂A = cl(A) \ int(A) to denote
the topological boundary of a set A: its closure minus its interior. So if A is a disk in R2, then
∂A is the circle that is its boundary. Laczkovich’s theorem giving a sufficient condition for when
A,B are equidecomposable in Rk requires a bound on the upper box dimension of the topological
boundaries of A and B. So next we recall the definition of box dimension and prove some basic
properties of it.

The sets g + [0, 1)k for g ∈ Zk partition Rk into unit cubes. So scaling by a real number c > 0,
the sets c(g+[0, 1)k) for g ∈ Zk partition Rk into cubes of side length c. We call the elements of this
partition c-lattice cubes. The upper box dimension or upper Minkowski dimension of a bounded set
A ⊆ Rk is defined by

dimbox(A) = lim sup
n→∞

logN(n,A)

log n

where N(n,A) is the number of 1/n-lattice cubes that intersect A. So if N(n,A) ≪ nc, then
dimbox(A) ≤ c. See [F, Section 3.1] for an introduction to box dimension. Note that if A is
bounded and lies in [−m,m)k where m ∈ Z, then dimbox(A) ≤ k since N(n,A) ≤ (2m)knk. Next,
we show that the upper box dimension of the boundary of a disk or a square is at most 1. (In fact,
it is an easy exercise to show it is exactly equal to 1).

Proposition 2.4. Let A be a circle or the perimeter of a square in R2. Then dimbox(A) ≤ 1.

Proof. If A is a circle of radius r, any c-lattice cube that intersects A is contained in the annulus
with inner radius r−

√
2c and outer r+

√
2c (where

√
2c is the length of the diagonal of a c-lattice

cube). The total area of this annulus is π(r +
√
2c)2 − π(r −

√
2c)2 = 4π

√
2cr, and so since each

c-lattice cube has area c2, the annulus contains at most 4π
√
2cr/c2 = 4π

√
2r/c such c-lattice cubes.
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So if c = 1/n, then N(n,A) ≤ 4π
√
2rn so

dimbox(A) ≤ lim sup
n→∞

log
(
4π

√
2rn

)
log n

= 1

Similarly, if A is the perimeter of a square of side length r, any c-lattice cube that intersects A
is contained in the “square annulus” region enclosed by the concentric squares with parallel sides
where the larger square has side length r+2c and smaller square has side length r−2c. This region
has total area (r + 2c)2 − (r − 2c)2 = 8rc. So since each c-lattice cube has area c2, it contains at

most 8r/c such c-lattice cubes. So dimbox(A) ≤ lim supn→∞
log 8rn
logn = 1. □

Figure 2. A proof that the upper box dimension of a circle (the boundary of the
disk) is less than or equal to 1. Every box in the grid that intersects the black circle,
A, is shaded in gray. The number of these squares is defined to be N(n,A), where
1/n is the side length of the cubes in the grid. These cubes are all contained in the
annulus bounded by the circles of radius r−

√
2/n and r+

√
2/n, so the area of this

annulus gives an upper bound on N(n,A).

We let λ denote Lebesgue measure on Rk. Laczkovich’s first proof that a disk and square are
equidecomposable is the 1990 paper [L90]. The goal of this paper is to give a new proof of the
following more general result proved by Laczkovich in 1992 [L92]: if A,B ⊆ Rk are bounded
Lebesgue measurable sets such that λ(A) = λ(B) > 0, and dimbox(∂A) < k and dimbox(∂B) < k,
then A and B are equidecomposable by translations (see Theorem C). This implies a positive
solution to Tarski’s circle squaring problem since by Proposition 2.4, both the disk and square have
topological boundaries of upper box dimension at most 1.

We let Tk denote the k-dimensional torus Rk/Zk. Under the quotient group structure it is an
abelian group. We will often identify Tk with the fundamental domain [0, 1)k, which contains
exactly one point from each coset of Zk in Rk. For example, this identification lets us define
Lebesgue measure on Tk, by using the restriction of Lebesgue measure to [0, 1)k, so λ(Tk) = 1.
Now if x ∈ Tk, then multiplication of x by an integer n makes sense: we define nx to be the group
sum of x with itself n times. However, we caution the reader that scalar multiplication by arbitrary
real numbers is not defined on Tk, so cx is not defined when c ∈ R \ Z and x ∈ Tk.

A key insight of Laczkovich was to work in Tk instead of Rk. The following proposition shows this
does not change which sets are equidecomposable by translations. However, a benefit to this change
in ambient space is that we can naturally use ideas and intuitions coming from ergodic theory. For
example, for almost every v ∈ Tk, the transformation T (x) = v+x is an ergodic transformation (see
[H] for a definition of an ergodic transformation). By the Birkhoff ergodic theorem, this is equivalent

to the statement that for any measurable set A ⊆ Tk, we have limN→∞
|{0≤i<N : T i(x)∈A}|

N = λ(A)
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for almost every x ∈ Tk, where λ is Lebesgue measure. That is, the proportion of points in
x, T (x), . . . , TN−1(x) that are in A converges to the measure of A as N → ∞. Since this holds for
any measurable set A, intuitively the forward orbits of T are “uniformly distributed” or “randomly
distributed” throughout the space in the limit as N → ∞. We will not directly use the notion of
ergodicity or the ergodic theorem in this paper. However, precise quantitative bounds on the left
hand side of the above equation will play a key role in our proof (see Lemma B). The fact that
such quantitative bounds should exist is motivated by easier qualitative results such as the ergodic
theorem.

Proposition 2.5. A,B ⊆ [0, 1)k are equidecomposable in the translation action of Rk on Rk if
and only if A,B are equidecomposable in the translation action of Tk on Tk (viewing A and B as
subsets of Tk). Moreover, if A and B are equidecomposable in the translation action of Tk on Tk

using n pieces, then A and B are equidecomposable in the translation action of Rk on Rk using 2kn
pieces.

Proof. The forward implication is trivial so we prove the reverse implication. First, if A,B ⊆ [0, 1)k

and B is a translation of A inside the torus, then we claim that in Rk, A and B are equidecomposable
using at most 2k pieces. To see this, suppose first that B is a translation of A in the torus so
B = v + A (where the sum is computed in Tk). Now we partition A into at most 2k pieces
depending on which coordinates “overflow mod 1” when we add v. Let S = {0, 1}k = {g ∈
Zk : g(j) ∈ {0, 1} for all j}. For each g ∈ S, let Cg = g + [0, 1)k, so

⋃
g Cg = [0, 2)k contains every

sum of the form v + w for v, w ∈ [0, 1)k (where the sum is computed in Rk). For each g ∈ S,
let Ag = {x ∈ A : v + x ∈ Cg} (where the sum is computed in Rk). Then (Ag)g∈S is a partition

of A into 2k pieces, and the sets (v − g) + Ag for g ∈ S partition B = v + A. Hence A and B

are equidecomposable by 2k pieces in Rk. Intuitively, this partition of A corresponds to which
coordinates of x ∈ A have overflowed mod 1 after we translate by v.

It follows that if A and B are equidecomposable in Tk and A1, . . . , An is a partition of A,
B1, . . . , Bn is a partition of B, and Bi is a translation of Ai in Tk then we can further partition
each Ai and Bi into at most 2k pieces Ai,g and Bi,g for g ∈ S so that each Bi,g is a translation of

Ai,g in Rk. So A and B are equidecomposable by translations in Rk by at most 2kn pieces. □

Figure 3. Laczkovich’s first key insight is to work in the torus R2/Z2 instead of
R2. This change in ambient space does not change what sets are equidecomposable
by translations since any translation of a set A in the torus can be replicated in
R2 by partitioning A into at most 22 pieces (based on whether or not the x and
y coordinates have overflowed mod 1 after translating), and then translating these
four pieces separately. In the figure above, we show a translation of a disk in the
torus, which can be replicated in R2 by partitioning the disk into four pieces, and
translating them separately.

Next, we introduce notation for the action of the group generated by finitely many translations
of Tk on Tk. Since any two translations commute, we can view d many translations as generating
an action of Zd on Tk. Suppose u1, . . . , ud ∈ Tk, and let u = (u1, . . . , ud) ∈ (Tk)d be the d-tuple
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containing all the ui. Let au : Zd ↷ Tk be the action of Zd on Tk where the ith generator of Zd

acts by translating by ui. We use the symbol ·u to denote this action, so

(n1, . . . , nd) ·u x = n1u1 + . . .+ ndud + x.

Say that this action au is free if for all g ∈ Zd with g ̸= 0 and all x, g ·u x ̸= x or equivalently,
n1u1 + . . . + ndud ̸= 0 for all (n1, . . . , nd) ̸= 0. Note that the action au is free for almost every
u ∈ (Tk)d. This is because for every nonzero (n1, . . . , nd) ∈ Zd, the set of (u1, . . . , ud) ∈ (Rk)d

such that n1u1 + . . .+ndud = 0 is Lebesgue null since it is a hyperplane of dimension less than kd.
Hence its projection to Tk is also Lebesgue null.

x
u1 + x

u2 + x

x

(0, 1) ·u x

(1, 0) ·u x
...

...

· · · · · ·

Figure 4. Combining Propositions 2.5 and 2.2 we get a new perspective on the
problem of circle squaring as follows. Given u1, . . . , ud ∈ T2 consider the Schreier
graph of the action au of Zd that they generate on T2 where x, y ∈ T2 are adjacent
if there exists some ui so y = ui + x or x = ui + y. We can visualize each connected
component of this graph as a copy of Zd. We need to show there is some choice of
u1, . . . , ud so that there is a bounded distance bijection between the points of the
circle and the square, where distance is measured in the graph metric. In the figure
above we have drawn a small part of this graph and how we visualize the connected
component of some x in an action of Z2 by two vectors u1 and u2.

Fix some u ∈ (Tk)d. Key to the proof will be studying translates of the hypercube {0, . . . , N −
1}d ⊆ Zd of side length N under the action au, and we define specific notation for these sets. Let

FN (u, x) = {n1u1 + . . .+ ndud + x : 0 ≤ ni < N} = {0, . . . , N − 1}d ·u x.
for any x ∈ Tk and N ∈ N so FN (u, x) ⊆ Tk is a finite set. Note that ·u encodes the generators
u1, . . . , ud of the action on the right hand side of this equation.

If F is a finite set, we let |F | denote the cardinality of F . We now have the following propo-
sition, which motivates the main part of the circle squaring proof. It shows that if A and B are
equidecomposable by translations, then for all N and all x, the number of points in FN (u, x) ∩ A
and FN (u, x) ∩B must be very close to each other:

Proposition 2.6. Suppose u ∈ (Tk)d, au : Zd ↷ Tk is a free action, and A,B ⊆ Tk are equide-
composable in the action au. Then there exists a constant C so that for all N and all x,

(1)

∣∣∣∣ |FN (u, x) ∩A|
Nd

− |FN (u, x) ∩B|
Nd

∣∣∣∣ ≤ CN−1.

Proof. By Proposition 2.2, there is a finite S ⊆ Zd, a bijection f : A → B, and some m so that
dSch(au,S)(x, f(x)) ≤ m for all x ∈ A. Let b > 0 be such that ∥g∥∞ ≤ b for all g ∈ S. That is, b is
an upper bound on the absolute value on the coordinates of every g ∈ S.
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If x ∈ A, then f(x) = h · x for some h ∈ S≤m. Now h is a sum of at most m elements of S
and so each coordinate of h is at most mb in absolute value. Hence, for all N , f(A ∩ {0, . . . , N −
1}d ·u x) ⊆ B ∩ {−mb, . . . , N − 1 +mb}d ·u x. So since f is a bijection, |A∩ {0, . . . , N − 1}d ·u x| ≤
|B ∩ {−mb, . . . , N − 1 +mb}d ·u x|, and since {−mb, . . . , N − 1 +mb}d \ {0, . . . , N − 1}d contains
(N + 2mb)d −Nd ≪m,b,d N

d−1 elements, there is a constant C so that

|A ∩ FN (u, x)| ≤ |B ∩ FN (u, x)|+ (N + 2mb)d −Nd ≤ |B ∩ FN (u, x)|+ CNd−1,

A similar argument using the bijection f−1 : B → A in place of f shows that we must have
|B ∩ FN (u, x)| ≤ |A ∩ FN (u, x)|+ CNd−1, so we are finished. Figure 5 gives an illustration of this
proof. □

N

N + 2bm

N N + 2bm

Figure 5. An illustration of the proof of Proposition 2.6 in the case d = 2. The
grid of points represents vertices in a connected component of the graph Sch(au, S).
We have colored points in A red, and points in B blue. An equidecomposition
corresponds to a bijection of bounded distance in Sch(au, S) by Proposition 2.2.
Hence, if we take an N × N square in the grid, the points that are in A map to
points of B that are in a (N + 2bm)× (N + 2bm) square centered around it, where
bm is the largest distance (in the sup metric) a point can be moved by f . The
“square annulus” of points that are in the (N + 2bm)× (N + 2bm) square but not
in the N × N square has size at most 4(bm)2 + 4bmN ≤ CN for all N ≥ 1 where
C = 4bm + 4(bm)2. Thus, for all N , |A ∩ FN (u, x)| ≤ |B ∩ FN (u, x)| + CN and
|B ∩ FN (u, x)| ≤ |A ∩ FN (u, x)|+ CN .

Since equation (1) must be true if A and B are equidecomposable by Proposition 2.6, it is natural
that a key part of the proof of circle squaring is proving tight bounds on the number of points of
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A and B that intersect the set FN (u, x). Indeed, what Laczkovich shows is that a slightly stronger
condition than equation (1) suffices to prove that A and B are equidecomposable.

Suppose that A is a Lebesgue measurable subset of Tk and F is a finite subset of Tk. We define
the discrepancy of A with respect to F as

D(F,A) =

∣∣∣∣ |A ∩ F |
|F |

− λ(A)

∣∣∣∣ .
where |A ∩ F | denotes the cardinality of the set A ∩ F . If we randomly selected points to be in
F , then we would expect that the fraction of points of F that are inside A to be equal to λ(A).
Discrepancy measures the difference between the actual number of points of F that are inside A
compared to this expected value λ(A). It is a quantitative measure of the equidistribution of the
set F with respect to A. This notion of discrepancy has connections to many areas of mathematics
such as number theory, harmonic analysis, numerical integration, and optimal transport. See the
books [BC], [DT], and [KN] for introductions to the theory of discrepancy and its applications.

Note that if λ(A) = λ(B), then a bound on discrepancy of FN (u, x) with respect to A and B

gives a bound on the quantity
∣∣∣ |FN (u,x)∩A|

Nd − |FN (u,x)∩B|
Nd

∣∣∣ from Proposition 2.6 since

(2)

∣∣∣∣ |FN (u, x) ∩A|
Nd

− |FN (u, x) ∩B|
Nd

∣∣∣∣ = ∣∣∣∣ |FN (u, x) ∩A|
Nd

− λ(A) + λ(B)− |FN (u, x) ∩B|
Nd

∣∣∣∣
≤ D(FN (u, x), A) +D(FN (u, x), B)

The new proof we give of Laczkovich’s theorem on equidecompositions breaks down into the fol-
lowing two lemmas, just as in Laczkovich’s proof [L92]. First, a lemma showing that good estimates
on the discrepancy of FN (u, x) with respect to A and B imply that they are equidecomposable.
This is “almost” a converse to the necessary condition in Proposition 2.6; it replaces the exponent
1 in that proposition with 1 + δ for an arbitrarily small δ.

Lemma A ([L92, Theorem 1]). Suppose u ∈ (Tk)d, au : Zd ↷ Tk is a free action, A,B ⊆ Tk have
the same positive Lebesgue measure λ(A) = λ(B) > 0, and there are constants C and δ > 0 so that
D(FN (u, x), A) ≤ CN−1−δ and D(FN (u, x), B) ≤ CN−1−δ for all N that are powers of 2. Then A
and B are equidecomposable in the action au.

This lemma was originally proved by Laczkovich [L92, Theorem 1] using an ingenious counting
argument and the Hall-Rado matching theorem. The new proof we give of Lemma A uses ideas
from the theory of flows in graphs, and compactness arguments to turn finite combinatorics into
infinite combinatorics. We prove this lemma in Sections 3 and 4. In Section 3 we introduce flows
in graphs and show that under the assumptions of Lemma A, there is a bounded flow ϕ between
A and B. This flow ϕ is in a Schreier graph of the form Sch(au, S) as in Definition 2.1. Then in
Section 4 we show this bounded flow ϕ can be transformed into a bounded distance bijection, and
hence an equidecomposition by Proposition 2.2.

The second lemma shows we can find u ∈ (T k)d making the discrepancy estimates needed in
the hypothesis of Lemma A true in the case where A,B ⊆ Tk have boundaries with upper box
dimension less than k:

Lemma B ([L92, Lemma 2]). For every k and ϵ > 0, there exist a positive integer d, u ∈ (Tk)d,
and δ > 0 such that for all sets A ⊆ Tk with dimbox(∂A) < k − ϵ, there is a C such that

D(FN (u, x), A) ≤ CN−1−δ

for every x ∈ Tk and N that is a power of 2.

The proof of this second lemma uses ideas from Diophantine approximation, discrepancy theory,
and Fourier analysis. We give the proof in Sections 5, 6 and 7. In Section 5 we use the Erdős-
Turán inequality to prove discrepancy bounds for sets FN (u, x) in the 1-dimensional torus T for



10 ANDREW S. MARKS AND SPENCER T. UNGER

a.e. u ∈ (T)d. In Section 6 we lift these 1-dimensional discrepancy estimates to the k-dimensional
discrepancy estimates needed to prove Lemma B. Finally, in Section 7 we give a proof of the
Erdős-Turán inequality for self-containedness.

We note that in [L92], Laczkovich proves a stronger result than Lemma B using the Erdős-Turán-
Koksma inequality, which shows that the conclusion of Lemma B holds for almost every u ∈ (Tk)d,
for all N instead of just N that are powers of 2, and with a better bound on the right hands size.
We have proved the version above because it is all that is needed for the proof of the main theorem,
proving the above version simplifies many calculations. These simpler estimates also yield our new
corollaries.

Together the above two lemmas yield the following theorem of Laczkovich which is the main
result we give a new proof of:

Theorem C ([L92, Theorem 3]). Suppose k ≥ 1 and suppose A,B ⊆ Rk are bounded Lebesgue
measurable sets such that λ(A) = λ(B) > 0, and dimbox(∂A) < k and dimbox(∂B) < k. Then A
and B are equidecomposable by translations.

Proof. By scaling and translating A and B, we may assume A,B ⊆ [0, 1)k, since scaling both sets
by the same factor does not change whether they are equidecomposable by translations. Viewing
A and B as subsets of Tk, by Lemma B, there exist a positive integer d, u ∈ (Tk)d, δ > 0, and
C > 0 such that D(FN (u, x), A)+D(FN (u, x), B) ≤ CN−1−δ for all x and all N that is a power of
2. Note the constant C here is the sum of the two constants C obtained in Lemma B for the sets
A and B.

So by Lemma A, the sets A and B are equidecomposable in the action au, and hence A and B
are equidecomposable by translations in Tk. Finally by Proposition 2.5 this implies A and B are
equidecomposable by translations in Rk. □

A positive solution to Tarski’s circle squaring problem is a corollary of this theorem, since by
Proposition 2.4 the topological boundaries of a disk and square have upper box dimension 1, which
is strictly less than 2.

Finally, our proof also gives a new sufficient condition for when two sets can be equidecomposed
using translations whose coordinates are integer linear combinations of finitely many real numbers.
In this theorem, ∥x∥ denotes the distance from x to the nearest integer.

Theorem D. Suppose ϵ > 0 and A,B ⊆ Rk are bounded Lebesgue measurable sets such that
λ(A) = λ(B) > 0, and dimbox(∂A) ≤ k − ϵ and dimbox(∂B) ≤ k − ϵ. Suppose c > 0 and
u1, . . . , ud ∈ R are irrational numbers linearly independent over Q so that for all N that are powers
of 2,

N∑
n=1

1

n
∏

i∥nui∥
≪u N

c,

and c < dϵ − 1. Then A and B are equidecomposable in Rk by finitely many translations whose
coordinates are integer linear combinations of 1, u1, . . . , ud.

We note that summations of the above form:
∑N

n=1
1

n
∏

i∥nui∥ ≪u N c are studied in number

theory and are known as “sums of products of fractional parts” and are related to diophantine
approximation and the Littlewood conjecture. See for example [LV], [BHV], and [F19].1 The new
content of Theorem D compared to Laczkovich’s work in [L92] is that [L92] relies on upper bounds
on “higher-dimensional” sums of this form obtained from the Erdős-Turán-Koksma inequality (see
[L92, Lemma 2]). It is an open problem to find reasonable upper bounds on those higher dimensional

1Recall that the Littlewood conjecture is the famous open problem in Diophantine approximation that for any
two real numbers a and b, lim infn→∞ n∥na∥∥nb∥ = 0.
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sums in the case when the numbers are algebraic, which is why squaring the circle with algebraic
translations had previously been an open problem. (See the discussion in [MU2, Section 3].)

We can use Theorem D to answer an open 1990 question of Laczkovich [L90, Section 10.3],
by showing that the equidecompositions in Theorem C can be achieved using translations with
algebraic irrational coordinates. This is an immediate corollary of Schmidt’s theorem on simulta-
neous approximations of algebraic irrationals [S70]. Schmidt’s theorem is a generalization of Roth’s
fundamental theorem on Diophantine approximation that we discuss briefly in Section 5.

Theorem 2.7. Suppose k ≥ 1 and suppose A,B ⊆ Rk are bounded Lebesgue measurable sets
such that λ(A) = λ(B) > 0, and dimbox(∂A) < k and dimbox(∂B) < k. Then A and B are
equidecomposable by translations whose coordinates are algebraic irrationals.

Proof. Schmidt’s theorem on Diophantine approximation of algebraic irrational numbers [S70]
states that if u1, . . . , ud ∈ R are algebraic irrationals that are linearly independent over Q, then for

every δ > 0, there is a constant C so that for every integer n > 0,
∏d

i=1∥nui∥ > Cn−1−δ. In this
case

N∑
n=1

1

n
∏

i∥nui∥
≤

N∑
n=1

nδ ≪ N1+δ.

So if we choose d sufficiently large and δ sufficiently small, then the result follows by Theorem
D. □

In our subsequent paper [MU2] we also prove better upper bounds on these sums of products of
fractional parts for algebraic irrational numbers than those that come from this naive application
of Schmidt’s theorem. This yields improved bounds on the dimension d of the action of Zd in which
one can square the circle using algebraic irrational coordinates.

3. A flow from the circle to the square

In this section we introduce flows on graphs, and show that under the hypothesis of Lemma A,
there is a certain kind of flow between the characteristic functions of A and B.

Suppose G = (V,E) is a simple graph (an undirected graph without loops or multiple edges).

We define the associated directed graph G⃗ = (V, E⃗) by replacing each undirected edge {x, y} in G

with a pair of directed edges (x, y) and (y, x) in G⃗ going from x to y and from y to x. A flow of

G is a real-valued function ϕ : E⃗ → R on the directed edges of G⃗ so that ϕ(x, y) = −ϕ(y, x) for all
edges (x, y) ∈ E⃗. A potential function on G is a real-valued function f : V → R on the vertices of

the graph. The flow divergence operator assigns to each flow ϕ : E⃗ → R a potential div ϕ : V → R
by the formula:

div ϕ(x) =
∑

{x,y}∈E

ϕ(y, x).

That is, the potential at the vertex x in div ϕ is the sum of the flow on all incoming edges to x.

Since ϕ(x, y) = −ϕ(y, x) for all edges (x, y) ∈ E⃗, we can also think of div ϕ(x) as being the sum
of all incoming positive flow minus all positive outgoing flow. So div ϕ(x) measures the difference
between the inflow and outflow at x. If we think of a potential function f as assigning an amount
of some commodity to each vertex, then given a flow ϕ on G, div ϕ+f is the potential function that
measures the new amount of commodity at each vertex after we transport the amount ϕ(x, y) over
each edge from x to y. Note that div ϕ defines a homomorphism from the set of flows to the set
of potential functions, regarding both as additive abelian groups under the operation of pointwise
addition. That is, div (ϕ+ ψ) = div ϕ+ divψ for all flows ϕ and ψ.

These types of flows are often studied in graph theory, such as in the max-flow min-cut theorem
where flows ϕ with the property that div ϕ = 0 are called circulations. In the setting of homology
of graphs, a flow is called a 1-chain, a potential function is called a 0-chain, and the differential
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G

0 0

1

−1

−22
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ϕ

−2 −1

30

divϕ

Figure 6. An undirected graph G, a flow ϕ on the graph G (mapping each directed

edge of G⃗ to a real number), and the flow divergence operator applied to the flow
div ϕ, which gives a function measuring the net inflow at each vertex.

operator is called the boundary operator. However, we will not use any ideas or language from
homology in what follows.

Let A,B ⊆ Tk be two sets, au : Zd ↷ Tk be an action, and S be a generating set for Zd. In
this section, under certain conditions we will show that there is a flow ϕ of Sch(au, S,) such that
div ϕ + 1A = 1B. Recall here that if X is a space and A ⊆ X, we let 1A : X → {0, 1} be the
characteristic function of A, where 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. To motivate
our study of this flow problem, we note that flow can be viewed as giving a kind of real-valued
generalization of equidecompositions. Instead of partitioning A into pieces and translating them by
group elements to obtain a partition of B as in an equidecomposition, we can more generally write
the characteristic function 1A of A as a sum of finitely many bounded real-valued functions and
translate these functions by group elements so their sum becomes 1B. So an equidecomposition
corresponds to the case of such a decomposition when the functions are {0, 1}-valued.

Flows correspond to bounded real-valued equidecompositions as follows: if a : G↷ X is an action
of a group G on a space X, A,B ⊆ X, and S = {g1, . . . , gn} ⊆ G is finite, then there is a flow ϕ of
Sch(a, S) such that div ϕ+ 1A = 1B if and only if there are bounded functions f0, . . . , fn : X → R
such that 1A(x) =

∑n
i=0 fi(x) and 1B(x) =

∑n
i=0 fi(g

−1
i · x) where g0 is the identity. We will not

use this fact in our proof, so we leave it as an exercise for the reader.2

The idea of studying flows as an intermediate step towards finding an equidecomposition is an
instance of a general theme: when studying an integer optimization problem, it is often helpful to
study the relaxation of the problem obtained by removing the constraints that the solution must
be integer and working in this large space to make progress towards solving the problem. For
example, this idea is used in graph theory to prove theorems about matchings by studying the
matching polytope, and in computer science to make fast algorithms for solving many optimization
problems. We will see in Lemma 4.1 one method of converting real-valued solutions of such problems
to integer solutions: by taking an extreme point in the convex set of all real-valued solutions.

We now show that given a sufficiently small bound ρ(N) on D(FN (u, x), A) + D(FN (u, x), B)
(in particular such that

∑
n≥0 2

nρ(2n) < ∞), we can find a bounded flow ϕ of a Schreier graph

Sch(au, S) so that div ϕ + 1A = 1B. Below we use ∥ϕ∥∞ to denote the supremum norm of ϕ:
∥ϕ∥∞ = sup(x,y)∈E⃗ |ϕ(x, y)|.

Lemma 3.1. Suppose A,B ⊆ Tk are sets, u ∈ (Tk)d, au is a free action, and ρ : N → R+ is such
that

∑
n≥0 2

nρ(2n) <∞ and

D(FN (u, x), A) +D(FN (u, x), B) ≤ ρ(N)

2A simple case is where the action is free and there is no g ∈ S so that g2 = 1 (this is the case in this paper).
Then we can let fi(x) = ϕ(x, gi · x) for i ≥ 1, and f0(x) = 1A −

∑n
i=1 ϕ(x, gi · x).
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for all x ∈ Tk and N that are powers of 2. Let S = {0, 1}d \ {0}d be the nonidentity group elements
whose coordinates are all 0 or 1. Then there is a flow ϕ of Sch(au, S) such that div ϕ + 1A = 1B
and ∥ϕ∥∞ ≤ 2−d

∑
n≥0 2

nρ(2n).

Proof. Our proof will be by giving an explicit formula for ϕ and then proving that it works. The
idea behind the definition of ϕ will be based on iteratively averaging the difference 1A − 1B over
nested cubes of side length 2n and pushing mass along the directions in S to yield this averages at
larger and larger scales.

We will use the notation

R(n, d) = {0, . . . , n− 1}d

for the hypercube in Zd of side length n at the origin. Let

(3) fn(x) =
∑

z∈(−R(n,d))·ux

1A(z)− 1B(z)

nd
.

So fn(x) is the average value of 1A − 1B over the set (−R(n, d)) ·u x which has size nd. By
−R(n, d) we mean the set {−v : v ∈ R(n, d)} which is just the reflection of this hypercube around
the origin. Note f1 = 1A − 1B, since R(1, d) contains the single element 0 ∈ Zd. Now for all
x ∈ Tk, we have |fn(x)| ≤ ρ(n). To see this, note first that (−R(n, d)) ·u x = R(n, d) ·u y where
y = (−n + 1,−n + 1, . . . ,−n + 1) ·u x. That is, the reflection of a hypercube around the origin is
also a shift of the hypercube. So

(4) |fn(x)| =

∣∣∣∣∣∣
∑

z∈R(n,d)·uy

1A(z)− 1B(z)

nd

∣∣∣∣∣∣ =
∣∣∣∣ |Fn(u, y) ∩A|

|Fn(u, y)|
− |Fn(u, y) ∩B|

|Fn(u, y)|

∣∣∣∣
≤ D(Fn(u, y), A) +D(Fn(u, y), B) ≤ ρ(n).

Define the flow ϕ of Sch(au, S) by

ϕ(x, g ·u x) = 2−d
∑
n≥0

∑
0≤m<2n

f2n((−mg) ·u x)

for all x ∈ Tk and g ∈ S. We will decompose this infinite sum defining ϕ as follows:

ϕ =
∑
n≥0

ϕ2n

where ϕn is the flow defined by

(5) ϕn(x, g ·u x) = 2−d
∑

0≤m<n

fn((−mg) ·u x).

for all x ∈ Tk and g ∈ S. Note that the series defining ϕ converges since by the triangle inequality,
(4), and (5) we have

(6) |ϕn(x, g ·u x)| ≤ 2−dnρ(n).

Hence,

∥ϕ∥∞ ≤
∑
n≥0

∥ϕ2n∥∞ ≤ 2−d
∑
n≥0

2nρ(2n)

which converges by assumption and is our desired bound on ϕ.
The key property of ϕn we will show below is that

(7) div ϕn + fn = f2n.
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This implies that div (ϕ20 + ϕ21 + . . .+ ϕ2n−1) + f1 = f2n by induction. So

div ϕ+ (1A − 1B) =

∑
n≥0

div ϕ2n

+ f1 =

 lim
m→∞

(
∑

0≤n<m

div ϕ2n) + f1

 = lim
m→∞

f2m+1 = 0

using (10). The last equality is since
∑

n≥0 2
nρ(2n) converges, so ρ(2n) → 0 as n → ∞ and

f2m+1(x) ≤ ρ(2m+1) for all x by (4). So all that remains is to prove (7).
Figure 7 illustrates how the flows ϕn are defined and why the key property (7) is true. The

definition of ϕn is based on choosing a 2d-to-1 map from the set R(2n, d) to R(n, d), and ϕn flows
along paths from each point to its image under this map to convert averages over hypercubes of
side length n in fn to averages over hypercubes of side length 2n in f2n. The particular map we
have used here from R(2n, d) to R(n, d) is applying the mod n map in every coordinate. Then
the difference between any point and its image under this map is ng where g ∈ {0, 1}d, so we can
map along a straight line of length n in the direction g. This is why we have chosen the particular
generating set S that we are using.

We now prove (7). To begin, note that div ϕn+fn(x) = fn(x)+
∑

g∈S (ϕn((−g) ·u x, x)− ϕn(x, g ·u x)).
Now ϕn((−g) ·u x, x)− ϕn(x, g ·u x) is telescoping, using equation (5):

ϕn((−g) ·u x, x)− ϕn(x, g ·u x) = 2−d

 ∑
0≤m<n

fn((−mg) ·u (−g ·u x))−
∑

0≤m<n

fn((−mg) ·u x)


= 2−d

 ∑
1≤m≤n

fn((−mg) ·u x)−
∑

0≤m<n

fn((−mg) ·u x)


= 2−d (fn((−ng) ·u x)− fn(x))

(8)

To simplify the last expression on the right hand size, of (8), note first thatR(2n, d) =
⊔

g∈{0,1}d(ng+

R(n, d)) since these sets partition the hypercube of side length 2n into 2d hypercubes of side length
n. Now since f2n(x) is the average of the function f1(x) over the set (−R(2n, d)) ·u x, by breaking
up the set R(2n, d) as above, and using that fn(x) is the average of f1 over the set (−R(n, d)) ·u x,
we get the formula 2df2n(x) =

∑
g∈{0,1}d fn((−ng) ·u x) = fn(x) +

∑
g∈S fn((−ng) ·u x).

(9)
∑
g∈S

(fn((−ng) ·u x)− fn(x)) = 2df2n(x)− 2dfn(x).

since |S| = 2d − 1 and so
∑

g∈S fn(x) = (2d − 1)fn(x).

Combining (8) and (9), we have

div ϕn + fn(x) = fn(x) +
∑
g∈S

(ϕn((−g) ·u x, x)− ϕn(x, g ·u x))

= fn(x) + 2−d
∑
g∈S

(fn((−ng) ·u x)− fn(x))

= fn(x) + f2n(x)− fn(x)

= f2n(x).

(10)

which concludes the proof of (7). □

Remark 3.2. We remark that the proof above actually gives a slightly stronger theorem. If we
replace the assumption thatD(FN (u, x), A)+D(FN (u, x), B) ≤ ρ(N) in Lemma 3.1 with the weaker
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Figure 7. A depiction of the flows ϕ1, ϕ2 in the case when d = 2 and f1 is supported
at a single point x where f1(x) = 1, showing how div ϕ1 averages out the value of f1
over a 2× 2 square, and div ϕ1 + ϕ2 averages out the value of f2 over a 4× 4 square.
The flow ϕ1 splits the value 1 into 4 parts, and flows 1/4 to each of the points in the
2× 2 box whose bottom left corner is x (also keeping 1/4 stationary at the point).
Then ϕ2 splits the value of 1/4 at each point in the 2 × 2 square into 4 parts once
more, and flows an amount of 1/16 along a path of length 2 to 4 of the 16 points in
the 4 × 4 box whose bottom left corner is x. Black, red, green, and blue are used
to show these four different starting point in the flow. And each arrow corresponds
to a flow amount of 1/16, so the paths where there are two arrows correspond to
a total flow of 1/8 along this edge. In the case when f1(x) has a different value,
then the values in the flow are scaled by f1(x). And in general if f1(x) is supported
on more than one point, then the flows ϕn consists of many shifted copies of this
picture added together: one starting at each x where f1(x) is nonzero.

assumption ∣∣∣∣ |FN (u, x) ∩A|
|FN (u, x)|

− |FN (u, x) ∩B|
|FN (u, x)|

∣∣∣∣ ≤ ρ(N).

Then we still have the same result that there is a flow ϕ of Sch(au, S) such that div ϕ+1A = 1B and
∥ϕ∥∞ ≤ 2−d

∑∞
n=0 2

nρ(2n). This is because our bound D(FN (u, x), A) + D(FN (u, x), B) ≤ ρ(N)

in the lemma above is just used to establish the inequality
∣∣∣ |FN (u,x)∩A|

|FN (u,x)| − |FN (u,x)∩B|
|FN (u,x)|

∣∣∣ ≤ ρ(N) in

equation (4) in the proof above. We will use this slightly stronger version of Lemma 3.1 in [MU2].

For context, recall Cauchy’s condensation test for the convergence of a series: if ρ : N → R
is a decreasing sequence of non-negative real numbers, then

∑
n≥1 ρ(n) converges if and only if∑

n≥0 2
nρ(2n) converges. So a sufficient condition for there to be a bounded flow from A to B is for

D(Fn(u, x), A) + D(Fn(u, x), B) ≤ ρ(n) for a decreasing function ρ so that
∑∞

n=1 ρ(n) converges.
We have kept the “condensed” version

∑∞
n=0 2

nρ(2n) of the sum in Lemma 3.1 because later in
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Lemma 6.2, it will be easier to bound D(FN (u, x), A) and D(FN (u, x), B) for only N that are
powers of 2.

To define the flow above, we have used the unusual generating set S = {0, 1}d \ {0}d for Zd

instead of the standard generating set E = {e1, . . . , ed} where the ith coordinate of ei is 1 and all
other coordinates of ei are 0. We finish by noting that it is easy to convert the bounded flow ϕ in
the graph Sch(a, S) to a bounded flow ψ in the graph Sch(a,E) with the standard generating set,
but keeping div ϕ = divψ. Indeed, if a : G ↷ X is any free action of a group G, and S and T are
two different finite sets of generators for G, then we can convert any bounded flow ϕ in the graph
Sch(a, S) into a bounded flow ψ in the graph Sch(a, T ) so that div ϕ = divψ. To prove this, pick
for each (x, y) ∈ Sch(a, S) a path p(x, y) of minimal length in Sch(a, T ) from x to y. Then add an
amount of ϕ(x, y) to ψ along each edge in the path p(x, y). Intermediate vertices z along this path
will have an amount of ϕ(x, y) flowing both into and out of z, so the total contribution to divψ is
0. However, the endpoints of this path still have a factor of ϕ(x, y) in the sum defining divψ and
so divψ = div ϕ.

We will give a specific formula that works in the case that we need, and which we’ll use in
our subsequent paper [MU2]. If g ∈ {0, 1}d, then we use the obvious path from 0 to g which is
ei1 , ei2 , . . . , ein where ij is the jth coordinate where g is 1. Here we introduce a small piece of

notation. If g ∈ {0, 1}d, let g<k ∈ {0, 1}d be defined by letting its ith coordinate be g<k(i) = g(i)
if i < k and g<k(i) = 0 if i ≥ k. So for example if g = (1, 0, 1, 0), then g<3 = (1, 0, 0, 0).

Proposition 3.3. Suppose a is a free action of Zd, and ϕ is a bounded flow of Sch(a, S) where
S = {0, 1}d \ {0}d. Then there is a bounded flow ψ of Sch(a,E) where divψ = div ϕ defined by

ψ(x, ei · x) =
∑

{g∈S : g(i)=1}

ϕ(−g<i · x, g · (−g<i) · x)

Proof. As we explained above, we’ll show that when we compute divψ, the terms from intermediate
steps along these paths cancel in a telescoping sum, and the only terms that remain are the ones
in div ϕ. Formally,

divψ =
∑
i≤d

(
ψ(−ei · x, x)− ψ(x, ei · x)

)
=

∑
i≤d

∑
{g∈S : g(i)=1}

(
ϕ
(
(−g<i − ei) · x, g · (−g<i − ei) · x

)
− ϕ

(
− g<i · x, g · (−g<i) · x

))
=

∑
g∈S

∑
{i : g(i)=1}

(
ϕ
(
(−g<i − ei) · x, g · (−g<i − ei) · x

)
− ϕ

(
− g<i · x, g · (−g<i) · x

))
=

∑
g∈S

(ϕ(−g · x, g · (−g) · x)− ϕ(x, g · x))

= div ϕ.

Where the second-to-last step above follows because if g ∈ S, then
∑

{i : g(i)=1} ϕ((−g<i − ei) · x, g ·
(−g<i − ei) · x)− ϕ(−g<i · x, g · (−g<i) · x) is telescoping. This is because if g(i) = 1, and j > i is
least so that g(j) = 1, then g<i + ei = g<j . The only two terms which do not cancel in this sum
are the ones where i is least such that g(i) = 1 where g<i = 0 and the one where i is greatest such
that g(i) = 1 where g<i + ei = g. So the remaining terms are ϕ(−g · x, g · (−g) · x)− ϕ(x, g · x).

We finish by noting that since the total number of elements of S that contain a 1 in the ith
position is 2d−1, this new flow is bounded by ∥ψ∥∞ ≤ 2d−1∥ϕ∥∞. □
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4. Converting flows into equidecompositions

Now we convert this bounded flow ϕ so that div ϕ + 1A = 1B into an equidecomposition of A
and B. First, we show how we can turn real-valued flows into integer-valued flows. Recall that a
graph is locally finite if every vertex has finitely many neighbors.

Lemma 4.1 (The integral flow theorem). Suppose that G = (V,E) is a locally finite directed graph,
f : V → R is a potential function on G taking values in Z, ϕ is a flow of G such that div ϕ = f , and

c : E⃗ → N is such that |ϕ(e)| ≤ c(e) for all e. Then there is some integer-valued flow ϕ∗ : E⃗ → Z
with the same properties: div ϕ∗ = f and |ϕ∗(e)| ≤ c(e) for all e.

Proof. For finite graphs, this is a standard fact in graph theory called the integral flow theorem
(e.g. [D, Corollary 6.2.3]). Solutions to such flow problems can be found using the Ford-Fulkerson
algorithm which gives integer solutions provided the constraints (the function f and the capacity
function c) are integer. Note that if we add a single source s to the graph G and a single sink t,
and an edge from s to x with capacity f(x) if f(x) > 0, and an edge from x to t with capacity
−f(x) if f(x) ≤ 0, then finding a flow ϕ of G so that div ϕ = f is exactly the type of flow problem
considered in the max-flow min-cut theorem. Hence if a flow problem has an R-valued solution
obeying integer constraints, it has a Z-valued solution.

An alternate proof of this fact for finite graphs G is as follows. For any f : V → Z, the set

Cf = {ϕ : div ϕ = f and (∀e ∈ E⃗)|ϕ(e)| ≤ c(e)} of all flows satisfying these conditions is a compact

convex subset of the finite dimensional vector space RE⃗ . Convexity follows since if ϕ and ψ are
such that div ϕ = f and divψ = f , then for every t ∈ [0, 1],

div (tϕ+ (1− t)ψ) = t(div ϕ) + (1− t)(divψ) = tf + (1− t)f = f.

The set Cf is nonempty since it contains ϕ. By the special case of Krein-Milman theorem that
any convex compact set in Rn is the convex hull of its extreme points, set Cf therefore has an
extreme point ϕ′. We claim ϕ′ must take only integer values. If it does not, then there must be a
cycle C in G so that each edge in the cycle has ϕ′(e) /∈ Z. This is since any vertex x incident to a
non-integer edge must be incident to at least two non-integer edges since

∑
{x,y}∈E ϕ(y, x) = f(x)

is an integer. So following such edges must eventually give a cycle in a finite graph. Now we can

represent ϕ′ as a nontrivial convex combination. Let ψ : E⃗ → R be the function that takes values
1 on the edges around the cycle C, −1 on these same edges in the opposite direction, and 0 on
all other edges. Take ϵ > 0 smaller than the distance from ϕ′(e) to the nearest integer for every
e ∈ C. Then both ϕ′ + ϵψ and ϕ′ − ϵψ are in Cf , and ϕ′ is the nontrivial convex combination
1/2(ϕ′ + ϵψ) + 1/2(ϕ′ − ϵψ).

Now that we have proved this lemma for finite graphs, the case when G is infinite follows from the
finite case by a standard compactness argument that is similar to the proof of the De Bruijn-Erdős
theorem that a graph G has a k coloring if and only if all its finite subgraphs have a k-coloring [D,

Theorem 8.1.3]. Let Φ≤c = {ϕ : ϕ is a flow of G and (∀(x, y) ∈ E⃗)|ϕ(x, y)| ≤ c(x, y) ∧ ran(ϕ) ⊆ Z}.
Endow Φ≤c with the product topology, so basic open sets are of the form {ϕ : (∀i ≤ m)ϕ(ei) = ni}
for a finite sequence e0, . . . , em ∈ E⃗ of directed edges and values n0, . . . , nm ∈ Z. The space Φ≤c is
compact by Tychonoff’s theorem.

For each finite set F ⊆ V of vertices, consider the closed set AF = {ϕ ∈ Φ≤c : (∀x ∈ F ) div ϕ(x) =
f(x)}. We will show that AF is nonempty by using the integral flow theorem for finite graphs. To
see this, consider the finite graph GF with vertex set F ∪ {x0} consisting of F and one new point
x0 defined as follows, where intuitively x0 will represent all other vertices in G. Given x ∈ F , there
is an edge {x, x0} from x to x0 in GF if x is G-adjacent to y for some y /∈ F . An illustration of

the construction of GF from G and F is shown in Figure 8. Now let ϕF : G⃗F → R be the flow
of GF defined by ϕF (x, y) = ϕ(x, y) if x, y ∈ F , and ϕF (x, x0) =

∑
{y : (x,y)∈G∧y/∈F} ϕ(x, y), so the

flow from x to x0 in ϕF is the total flow from x to all its neighbors not in F . Similarly define
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cF : E⃗F → Z by cF (x, y) = c(x, y) if x, y ∈ F and cF (x, x0) =
∑

{y : (x,y)∈G∧y/∈F} c(x, y). Now

div ϕ(x) = div ϕF (x) for all x ∈ F . Since Lemma 4.1 is true for finite graphs, GF has an integer
flow bounded by c, and so AF is nonempty.

To finish, the collection of sets AF is a family of closed sets with the finite intersection property.
Hence, since Φ≤c is compact,

⋂
F⊆V finiteAF is nonempty. An element of

⋂
F⊆V finiteAF gives the

desired ϕ∗. □

F

...

...

· · · · · ·

GF

x0

Figure 8. A picture of the construction of GF from G and F in the proof of
Lemma 4.1. The new vertex x0 and edges we add are drawn in brown.

For the specific case of the graph Sch(au, S) in Lemma 3.1, there are other ways of proving
Lemma 4.1. Suppose ϕ is a flow in a graph G, f : V → R, and div ϕ = f . Then if C is a cycle in
G and we add ϵ to a flow ψ along each edge of C to obtain a new flow ϕ′, then the divergence is
the same: div ϕ′ = f since there is both a new inflow of ϵ and outflow of ϵ at each vertex of the
cycle, which cancel. This process can be used to make a single edge (x, y) in the flow ϕ integer-
valued by letting ϵ equal the fractional part of ϕ(x, y). Then by taking a suitable sequence of cycles
and iteratively performing this process one can make the flow integer valued in each connected
component. For example, one can use an Euler path on the 3-cycles of the graph which renders
two 3-cycles adjacent if they intersect in exactly one edge.

We are now ready to convert flows into equidecompositions. We can do this provided there is a
number n so that Fn(u, x) = {0, . . . , N − 1}d ·u x contains sufficiently many point of A and B for
all x. Note that below E = {e1, . . . , ed} is the usual generating set for Zd where the ith coordinate
of ei is ei(i) = 1 and ei(j) = 0 if j ̸= i.

Theorem 4.2. Suppose A,B ⊆ Tk are sets, E = {e1, . . . , ed} is the standard generating set for Zd,
and there is a flow ψ of Sch(au, E) such that divψ+1A = 1B and ∥ψ∥∞ ≤ b where b ∈ N. Suppose
also that there is an n so that for all x ∈ Tk, |Fn(u, x)∩A| ≥ 2dnd−1b and |Fn(u, x)∩B| ≥ 2dnd−1b.
Then A and B are equidecomposable in Tk by at most (2d+ 1)nd pieces.

Proof. In what follows, write · instead of ·u. By the Axiom of Choice, let C ⊆ Tk be a set
that meets each connected component of Sch(au, E) in exactly one point. As in Lemma 3.1,
write R(n, d) = {0, . . . , n − 1}d for the hypercube in Zd of side length n at the origin. Let Y =
{(ng +R(n, d)) · x : x ∈ C ∧ g ∈ Zd}, so Y is a partition of Tk into sets of the form Q = R(n, d) · y
where y ∈ Tk. Our plan is to, as much as possible, map the points of A in each set Q in Y to the
points of B in Q. However, each set Q may have a different number of points of A and B. To fix
these “errors”, we will map excess points of A to points of B in adjacent cubes, and excess points
of B to points of A in adjacent cubes. Solving this problem is a flow problem, which one can use
to motivate our original definitions of flows.
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Precisely, define a graph H on Y where Q0 ∈ Y is adjacent to Q1 ∈ Y if there is an edge
(x, y) ∈ Sch(au, E) so that x ∈ Q0 and y ∈ Q1. So H is the graph minor obtained from G by
contracting each set of vertices of the form (ng + R(n, d)) · x in Sch(au, E) into the single vertex
Q = (ng +R(n, d)) · x in H.

Let ψ′ be the flow of H where

ψ′(Q0, Q1) =
∑

(x0,x1)∈E : x0∈Q0∧x1∈Q1

ψ(x0, x1).

Since there are exactly nd−1 edges between Q0 and Q1, ψ
′ is bounded by bnd−1. Applying

Lemma 4.1, we may assume ψ′ takes integer values so ran(ψ′) ⊆ Z while it is still bounded by
bnd−1. Since each Q ∈ H is adjacent to 2d other vertices (two for each ei), the total outflow from
each vertex is at most 2dnd−1b.

Let fA, fB : Y → Z be defined by fA(Q) =
∑

z∈Q 1A(z) and fB(Q) =
∑

z∈Q 1B(z). So by

assumption, fA(Q), fB(Q) ≥ 2dnd−1b are both at least as large as the total outflow given by ψ′.
So we can construct a partial injection f from A to B so that for every Q0, Q1 ∈ Y if ψ′(Q0, Q1) >

0, then |{(x, y) ∈ Q0 ×Q1 : f(x) = y}| = ψ′(Q0, Q1), and otherwise |{(x, y) : f(x) = y}| = 0. After
doing this, since divψ′ + (fA − fB) = 0 for every Q ∈ Y , |A ∩ Q \ dom(f)| = |B ∩ Q \ dom(f)|.
Hence, we can extend f to a bijection from A→ B by mapping the remaining points of A to points
of B in the same element Q of the partition Y . Note that for every x ∈ A ∩ Q0, f(x) is either in
Q0 or in some Q1 adjacent to Q0 in H. Since each Q ∈ Y has nd elements, the number of elements
of Q0 plus the number of elements of the 2d many sets Q1 adjacent to Q0 is a total of (2d+ 1)nd

elements. So by Remark 2.3, the equidecomposition uses (2d+ 1)nd pieces. □

...

...

· · · · · ·

Figure 9. An illustration of the proof of Theorem 4.2. We partition the action
into hypercubes of side length n. We use red and blue in our diagram to represent
the points that are in the sets A and B. There is an integer flow ψ′ which tells us
how many points of A in each hypercube to map to points of B in each neighboring
hypercube, and vice versa. After this process is finished, the number of points in
each hypercube of A and B that remain are equal, and we map them to each other.
This gives a bounded distance bijection from A to B (where each point of A is
mapped inside either the same hypercube or an adjacent one).

So we can now finish proving the first key Lemma A, which we restate for convenience:
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Lemma A. Suppose u ∈ (Tk)d, au : Zd ↷ Tk is a free action, A,B ⊆ Tk have the same positive
Lebesgue measure λ(A) = λ(B) > 0, and there are constants C and δ > 0 so that D(FN (u, x), A) ≤
CN−1−δ and D(FN (u, x), B) ≤ CN−1−δ for all N that are powers of 2. Then A and B are
equidecomposable in the action au.

Proof of Lemma A. By Lemma 3.1 there is a bounded flow ϕ of Sch(au, S) such that div ϕ+ 1A =
1B where S = {0, 1}d − {0}d. By Proposition 3.3 there is also a bounded flow ψ of Sch(au, E)
where E = {e1, . . . , ed} is the standard generating set such that divψ + 1A = 1B. Let b be

an integer such that ∥ψ∥∞ ≤ b. Now |FN (u,x)∩A|
|FN (u,x)| ≥ λ(A) − D(FN (u, x), A) by the definition

of discrepancy. So since |FN (u, x)| = Nd, our bound on the discrepancy D(FN (u, x), A) above
gives that |FN (u, x) ∩ A| ≥ λ(A)Nd − CNd−1−δ. An identical argument shows |FN (u, x) ∩ B| ≥
λ(B)Nd − CNd−1−δ. Let m = λ(A) = λ(B). To finish, since b, C, d,m are all fixed, if N is large
enough then mNd − CNd−1−δ ≥ 2dNd−1b and mNd − CNd−1−δ ≥ 2dNd−1b. So A and B are
equidecomposable by Theorem 4.2. □

So we have finished proving Laczkovich’s circle squaring theorem, modulo proving the second
key Lemma B, which we prove in the remaining sections of the paper.

To finish this section, we make a few remarks about recent work showing that there is a con-
structive solution to Tarski’s circle squaring problem without using the Axiom of Choice and with
explicitly definable Borel pieces in the partition (see [GMP], [MU], and [MNP]). In particular, we
discuss how the proof of Theorem C can be modified to yield these constructive solutions.

Note first that the flow between the circle and square constructed in Lemma 3.1 has a simple
and explicit definition. Precisely, the flow is a pointwise limit of continuous functions. To prove
Theorem C, the only place where we needed the Axiom of Choice is in the proofs of Lemma 4.1,
and in Theorem 4.2 above. Now it is not possible to make a partition Y as in Theorem 4.2 of the
space Tk into hypercubes of the form {0, . . . , n− 1}d ·u x in a Borel (or even Lebesgue measurable)
way. This can be seen using a straightforward argument of ergodic theory. However, the proof of
Theorem 4.2 can be modified where instead we use a tiling by hypercubes whose sides are all of
length n or n + 1. There is a Borel tiling of this form that can be found using tiling machinery
of Gao-Jackson [GJ]. These kinds of tilings of group actions are an important topic of study in
ergodic theory, dating back to Ornstein and Weiss [OW].

The most difficult step to make constructive in the proof of the circle squaring theorem is
Lemma 4.1. It is false in general that if a : G ↷ X is a continuous action of a countable group
G, f : X → Z is Borel, and there is a bounded Borel flow ϕ of Sch(a, S) so that div ϕ + f =
0, then there is an integer-valued Borel flow ϕ∗ so that div ϕ∗ + f = 0. However, there is a
“Borel integral flow theorem” in the case when the group is Zd for d ≥ 2, and S is a finite
generating set. Proving this requires using a recent theorem of Gao, Jackson, Krohne, and Seward
giving particularly nice witnesses to the hyperfiniteness of actions of Zd (see [MU, Appendix A]
and [GJKS]). Hyperfiniteness is a way of writing the orbit equivalence relation of the action
as an increasing union of equivalence relations with finite classes, and is an important notion of
“tameness” of group actions in descriptive set theory and ergodic theory[K25]. Hyperfiniteness
also has deep connections to related notions in topological dynamics and operator algebras. These
types of hyperfiniteness witnesses are now called “toasts” in the literature, and have since been
used extensively to study the Borel combinatorics of these actions (see e.g. [BBLW], [BKS], [BPZ],
and [GJKS]).

5. A discrepancy bound in T

If J = [a, b) ⊆ R where 0 ≤ b − a ≤ 1, then we call the quotient I = J/Z of J modulo 1 an
interval in the torus T. If F ⊆ T is finite, we define D(F ) to be the supremum of the discrepancy
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of F over all intervals:

D(F ) = sup
intervals I⊆T

D(F, I) = sup
intervals I⊆T

∣∣∣∣λ(I)− |F ∩ I|
|F |

∣∣∣∣ .
Recall here we already defined the discrepancy D(F,A) of F relative to a set A in Section 3

as D(F,A) =
∣∣∣λ(A)− |F∩A|

|F |

∣∣∣. Now taking the complement of A does not change discrepancy:

D(F,A) = D(F,T \A) since λ(A) = 1− λ(T \A) and |F∩(T\A)|
|F | = 1− |F∩A|

|F | . So we also have that

D(F ) = sup0≤a<b≤1D(F, [a, b)) since if I is an interval, then either I or its complement is of the
form [a, b) where 0 ≤ a < b ≤ 1.

Note also that D(F ) ≥ 1
|F | for any nonempty finite set F since we can take an arbitrarily small

interval around a single point.

Remark 5.1. Note that discrepancy is “shift-invariant”. That is, if F ⊆ T is any finite set, and
x ∈ T, then D(F ) = D(x+ F ). For this reason, and notational convenience, we define

FN (u) = FN (u, 0) = {n1u1 + . . .+ ndud : 0 ≤ ni < N} = {0, . . . , N − 1}d ·u 0.

to be one particular representative of the set FN (u, x) for all x ∈ T. So D(FN (u, x)) = D(FN (u))
for all N , u, and x.

In this section we will prove a bound on the discrepancy D(FN (u)) of the sets FN (u) in T, when
the d many translations u ∈ (T)d we use are random translations (i.e. we will prove that a measure
one set of translations have the property we want). In the next section, we will then use this to
establish the second key Lemma B which will conclude our proof the main theorem of the paper.

We will use the Erdős-Turán inequality to bound the discrepancy D(FN (u)). The Erdős-Turán
inequality bounds the discrepancy of a finite set F by certain Fourier coefficients. We will prove
this inequality in Section 7. As is customary in number theory, we write e(x) := e2πix for x ∈ R.
We regard e as a function from T to C since it is periodic with period 1.

Theorem 5.2 (Erdős-Turán [ET], see also [KN, Theorem 2.2.5] and [M, Corollary 1.1]). There are
constants C1, C2 such that for all finite F ⊆ T and all m ∈ N,

D(F ) ≤ C1
1

m+ 1
+ C2

m∑
k=1

1

k|F |

∣∣∣∣∣∑
x∈F

e(kx)

∣∣∣∣∣
For x ∈ R, let ∥x∥ be the distance from x to the nearest integer, so 0 ≤ ∥x∥ ≤ 1/2 for all x ∈ R.

We will use only this notation in the next two sections, and there should be no confusion with the
supremum norm ∥·∥∞ used in Sections 3 and 4.

In the specific case of the finite sets FN (u), we have the following bound:

Lemma 5.3. For any u = (u1, . . . , ud) ∈ (T)d, for all m,

D(FN (u)) ≤ C1
1

m+ 1
+ C2

1

2dNd

m∑
k=1

1

k
∏d

i=1∥kui∥

where C1, C2 are the constants from the Erdős-Turán inequality.

Proof. To begin, recall the standard bound on a finite geometric series with base e(z):∣∣∣∣∣
N−1∑
n=0

e(nz)

∣∣∣∣∣ =
∣∣∣∣e(Nz)− 1

e(z)− 1

∣∣∣∣ = ∣∣∣∣e(Nz/2)(e(Nz/2)− e(−Nz/2)
e(z/2)(e(z/2)− e(−z/2))

∣∣∣∣ = ∣∣∣∣e(Nz/2) sin(πNz)e(z/2) sin(πz)

∣∣∣∣
=

∣∣∣∣sin(πNz)sin(πz)

∣∣∣∣ ≤ 1

|sin(πz)|
≤ 1

2∥z∥
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Above we are using the formula for the sum of a geometric series, the fact that Euler’s identity
implies e(x)− e(−x) = 2i sin(2πx), and the fact that sin(πx) ≥ 2∥x∥ for all x.

Hence, we have∣∣∣∣∣∣
∑

y∈FN (u)

e(ky)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
(n1,...,nd)∈{0,...,N−1}d

e(k(n1u1 + . . .+ ndud))

∣∣∣∣∣∣
=

∣∣∣∣∣
d∏

i=1

N−1∑
n=0

e(nkui)

∣∣∣∣∣ ≤
d∏

i=1

1

2∥kui∥

by using the bound on finite geometric series with base e(z) above, and the fact that |e(kx)| = 1
since kx is a real number.

The lemma follows by substituting the above formula into the Erdős-Turán inequality. □

So our goal now is to bound summations of the form
∑m

k=1
1

k
∏d

i=1∥kui∥
for a.e. u1, . . . , ud. Below

we change the index in this summation to n, and we begin with a simple lower bound on the size
of ∥nu∥:

Lemma 5.4. For every ϵ > 0, for almost all u in T, there is a constant C such that for all positive
integers n, ∥nu∥ ≥ Cn−1−ϵ.

Proof. It is enough to show that for almost every u ∈ T, there are finitely many n > 0 such that
∥nu∥ < n−1−ϵ. For each n > 0, let En be the set of u ∈ T such that ∥nu∥ < n−1−ϵ. Clearly, u is in
En if and only if there is an integer 0 ≤ m ≤ n such that

|nu−m| < n−1−ϵ.

For each m, the above condition implies that u lies in the interval of length 2n−2−ϵ around m/n.
Summing over all integers 0 ≤ m ≤ n, we have that the measure of En is at most 2(n + 1)/n2+ϵ.

Note that these measures are summable:
∑∞

n=1
2(n+1)
n2+ϵ ≤

∑∞
n=1

4
n1+ϵ <∞.

One can finish now by quoting the Borel-Cantelli lemma to conclude that the set of u that lie
in infinitely many En has measure 0. To prove this directly, for each positive integer m, the set
of u ∈ T that are contained in infinitely many En is contained in

⋃
n≥mEn. By the summability

of the measures of the En, the measure of
⋃

n≥mEn goes to 0 as m goes to infinity. So the set of
u ∈ T that are contained in infinitely many En must have measure 0. So for almost every u ∈ T,
there are only finitely many n ∈ N such that ∥nu∥ < n−1−ϵ as desired. □

The above lemma is a basic argument from the theory of Diophantine approximation. See [C] for
an introduction to this subject. Diophantine approximation studies how well irrational numbers
can be approximated by rational numbers. Note that ∥qu∥ < c if there is an integer p so that
|qu − p| < c, and so |u − p

q | <
c
q . So ∥qu∥ being small means that u has a close approximation by

a rational number with denominator q. Dirichlet’s theorem on Diophantine approximation (which
is proved by an application of the pigeonhole principle) shows that for any irrational x, there are
infinitely many p and q such that |x− p

q | <
1
q2
. Equivalently (after multiplying this equation by q),

there are infinitely many q such that ∥qx∥ < 1
q (see e.g. [HW, Theorem 185]). So Lemma 5.4 shows

that the exponent in Dirichlet’s theorem is as good as possible in general. A deep and fundamental
theorem of Roth in Diophantine approximation states that if u is an algebraic irrational number
then conclusion of Lemma 5.4 holds for u: there is a constant C so that for all h, ∥hu∥ > Ch−1−ϵ.
We use progress finding effective bounds for special cases of Roth’s theorem in our second paper
[MU2] to improve the upper bound on the number of pieces needed to square the circle.

Recall that our goal is to study the discrepancy of the set FN (u). In the case d = 1 where
u ∈ T, the discrepancy of FN (u) (which is equal to D({u, 2u, . . . , Nu}) by Remark 5.1) is highly
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studied, dating back to work of Behnke, Ostrowski, Hardy and Littlewood, Hecke, and Khintchine
in the 1920s. See [DT, Section 1.4.1] for a detailed history and bibliography. If u has a close
rational approximation |u − p

q | < ϵ where ϵ ≪ 1/q2, then this will make D({u, 2u, . . . , Nu}) large
(i.e on the order of 1/q for N ≪ 1/(qϵ)), since the points of {u, 2u, . . . , Nu} will cluster around the
rationals p/q with denominator q. It is a beautiful theorem that the converse is true. If u has no
good rational approximations, then D({u, 2u, . . . , Nu}) will be small for all N , and in fact there
are precise equivalences between how well u is approximated by rationals, and the rate of decay of
D({u, 2u, . . . , Nu}) (see e.g. [KN, Chapter 2.3]). We will discuss more about connections between
Diophantine approximation and discrepancy in our second paper [MU2].

However, for almost every u, there is an easier way to obtain an upper bound on the summations∑N
n=1

1
n
∏d

i=1∥nui∥
and hence get an upper bound on D(FN (u)), which does not go through the

theory of Diophantine approximation, and which works for all d. We can simply integrate over all
u1, . . . , ud to find a bound that holds for almost every u1, . . . , ud. We will use Lemma 5.4 above in
this calculation. Similar estimates go back to work of Schmidt [S64] and are an important part of
Laczkovich’s proofs.

Lemma 5.5. Let d ≥ 1. For every ϵ > 0, for almost every u = (u1, . . . , ud) ∈ (T)d,
N∑

n=1

1

n
∏d

i=1∥nui∥
≪u logd+1+ϵ(N).

Proof. Let ϵ′ = ϵ/(1 + d). By Lemma 5.4, for a.e. u = (u1, . . . , ud), there is a C so that for all

i ≤ d, ∥nui∥ ≥ Cn−1−ϵ′ (by taking C = minCi where ∥nui∥ ≥ Cin
−1−ϵ′). Taking the log of both

sides and applying the absolute value, we have | log(∥nui∥)| ≥ | log(C)| + (1 + ϵ′) log(n) and so
| log(∥nui∥)| ≥ C ′ log(n) for n ≥ 1 where C ′ = | log(C)|/ log(2) + (1 + ϵ′). So for a.e. u1, . . . , ud, we
have the following asymptotic upper bounds where we regard u as a fixed parameter:

N∑
n=1

1

n
∏d

i=1∥nui∥
≪u logd+1+ϵ(N)

N∑
n=2

1

n logd+1+ϵ(n)
∏d

i=1∥nui∥

≪u logd+1+ϵ(N)
N∑

n=2

1

n log1+ϵ′(n)

d∏
i=1

1

∥nui∥| log(∥nui∥)|(1+ϵ′)
.

Note that we have dropped the first term in the summation above since it is just a constant.
To complete the proof it suffices to show that for a.e. u = (u1, . . . ud), the final summation above

is bounded by a constant. To do this we show that its integral over all u1, . . . , ud ∈ [0, 1) is finite. (If
the summation was infinite for a positive measure set of u1, . . . , ud, the integral would be infinite).
Now for each positive integer h, using the fact that u 7→ ∥hu∥ is periodic with period 1/h, and

∥hu∥ = ∥h(1− u)∥ we have that for any function f ,
∫ 1
0 f(∥hu∥) du = 2

∫ 1/2
0 f(x) dx. Hence,

∫ 1

0
· · ·

∫ 1

0

N∑
n=2

1

n log(1+ϵ′)(n)

d∏
i=1

1

∥nui∥| log(∥nui∥)|(1+ϵ′)
du1 . . . dud

=
N∑

n=2

1

n log(1+ϵ′)(n)

d∏
i=1

∫ 1/2

0

1

x| log x|(1+ϵ′)
dx≪

N∑
n=2

1

n log(1+ϵ′)(n)
≪ 1

In the first equality, we have exchanged the summation and integral, and then using that the

integral of the product is the product of the integrals. In the last two steps,
∫ 1/2
0

1
x| log(x)|(1+ϵ′) dx

converges, and
∑∞

n=2
1

n log(1+ϵ′)(n)
converges by the integral test. □
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See [LV] for a more detailed study of these sums, including an upper bound replacing the factor
of log(N)ϵ with a log log(N) factor, and also lower bounds for a.e. u.

From these results we get a bound on the discrepancy of the sets FN (u) for a.e. u ∈ (T)d:

Lemma 5.6. For all positive integers d, for all real numbers c < d, for a.e. u = (u1, . . . , ud) ∈ (T)d
there is a C so that for all N , D(FN (u)) ≤ CN−c.

Proof. Let u = (u1, . . . , ud) be in the measure one set satisfying Lemma 5.5. Then by applying
Lemma 5.3 with m = Nd, we get:

D(FN (u)) ≪u
1

Nd
+

1

Nd

Nd∑
n=1

1

n
∏d

i=1∥nui∥
≪u

logd+1+ϵ(Nd)

Nd
≪ N−c.

□

6. Discrepancy in Tk

The goal of this section is to bound D(F,A) when F ⊆ Tk is a finite set that is a product
of 1-dimensional sets, and where the boundary of A has upper Minkowski dimension less than k:
dimbox(∂A) < k. We will use our bound from Lemma 5.6 as part of this proof. We will end by
proving the key Lemma B.

We begin with a simple lemma in relating the discrepancy of a set F = {x0, . . . , xn−1} ⊆ [0, 1),
where x0 < x1 < . . . < xn−1, to the distance between xi and i/n.

Lemma 6.1. Suppose F = {x0, . . . , xn−1} ⊆ [0, 1) is a finite set where x0 < . . . < xn−1. Then for
all i < n, |xi − i

n | ≤ D(F ).

Proof. The interval [0, xi) has length xi and contains i points of F . Hence D(F, [0, xi)) =
∣∣xi − i

n

∣∣.
Finally, D(F, [a, b)) ≤ D(F ) for any 0 ≤ a ≤ b ≤ 1 by definition. □

In fact, there is a very close connection between the quantity maximax(|xi − i
n |, |xi −

i+1
n |) and

the discrepancy D({x0, . . . , xn−1}). This maximum is in fact equal to the “one-sided discrepancy
D∗({x0, . . . , xn−1}) := supx∈[0,1]D({x0, . . . , xn−1}, [0, x)), and D(F ) and D∗(F ) are always within

a factor of 2 (see [KN, Page 92]). So the lower bound in Lemma 6.1 is quite good.
Suppose F1, . . . , Fk ⊆ T are finite sets in the 1-dimensional torus, and the Fi all have the same

cardinality which is a power of 2. We now have the following lemma bounding the discrepancy of

their product
∏k

i=1 Fi ⊆ Tk in terms of the 1-dimensional discrepancies of the original sets D(Fi).

More strongly, we bound the discrepancy of F =
∏k

i=1 Fi with respect to any set A of upper box

dimension dimbox(∂A) < k. Recall from Section 2 that upper box dimension is:

dimbox(A) = lim sup
n→∞

logN(n,A)

log n

where N(n,A) is the number of 1/n-lattice cubes that intersect A. Note that if dimbox(∂A) < k− ϵ
(our hypothesis in Lemma B), then for sufficiently largem, N(m, ∂A) ≤ mk−ϵ. This latter condition
is something we assume below.

Lemma 6.2. For all ϵ > 0 and integers k > 0, there is a constant ck,ϵ so that if F1, . . . , Fk ⊆ T are

sets all of the same cardinality n, n is a power of 2, and N(m, ∂A) ≤ mk−ϵ for all m ≥ 1
2 supi D(Fi)

,

then

D(
∏
i

Fi, A) ≤ ck,ϵ(sup
i
D(Fi))

ϵ

Proof. Let Fi = {xi,0, . . . , xi,n−1}, where xi,0 < xi,1 < . . . < xi,n−1. Each point (x1,j1 , x2,j2 . . . , xk,jk) ∈∏
i Fi has supi |xi,ji − ji/n| ≤ supiD(Fi) by Lemma 6.1. So (x1,j1 , x2,j2 . . . , xk,jk) ∈ F is “close” to
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the lattice point (j1/n, . . . , jk/n) in each coordinate. Our proof will be based on counting upper
and lower bounds on the number of such lattices points close to A, compared to its measure.

Let m be the greatest power of 2 such that m ≤ 1/ supiD(Fi). So 1
2m ≤ supiD(Fi) ≤ 1

m .

Since n = |Fi| is also a power of 2 and D(Fi) ≥ 1
|Fi| by the first paragraph of Section 5, we have

1
n ≤ D(Fi) ≤ 1. Hence, 1 ≤ m ≤ n and n/m is an integer by our assumption that n is a power of
2.

Now if x = (x1,j1 , . . . , xk,jk) ∈ F , then the point (j1/n, . . . , jk/n) is either in the same 1/m-
lattice cube as x, or it is in an adjacent 1/m-lattice cube (where we say distinct 1/m-lattice cubes
cg = 1/m(g + [0, 1)k) and ch = 1/m(h + [0, 1)k) are adjacent if |g(i) − h(i)| ≤ 1 for all i ≤ k). So
to upper bound the number of points in |F ∩A| we just need to bound the number of 1/m-lattice
cubes that intersect A or are adjacent to cubes that intersect A.

Let D1 be the set of 1/m-lattice cubes that intersect A or are adjacent to cubes that intersect
A. Since each 1/m-lattice cube contains exactly nk/mk points of the form (i1/n, . . . , ik/n), the
number of points in |F ∩A| is at most |D1|nk/mk. So |F ∩A|/|F | is at most |D1|/mk.

Let D0 be the number of 1/m-lattice cubes entirely contained in A. Then the measure of A
satisfies λ(A) ≥ |D0|/mk since each such cube has volume 1/mk. Hence |F ∩ A|/|F | − λ(A) ≤
|D1 −D0|/mk. Every cube in D1 −D0 either intersects ∂A or is adjacent to a cube that intersects
∂A. Since each 1/m-lattice cube is adjacent to 3k − 1 other cubes, and ∂A contains at most mk−ϵ

1/m-cubes, |D1 −D0| ≤ 3kmk−ϵ. Hence,

|F ∩A|/|F | − λ(A) ≤ 3k

mϵ
≤ 2ϵ3k(sup

i
D(Fi))

ϵ.

This is since 1
m ≤ 2 supiD(Fi). A similar argument giving a lower bound for |F ∩ A|/|F | and an

upper bound for λ(A) shows that λ(A) − |F ∩ A|/|F | ≤ 2ϵ3k(supiD(Fi))
ϵ. Hence, the theorem is

true with the constant ck,ϵ = 2ϵ3k.
□

Putting the above lemma together with Lemma 5.6, we can now prove Lemma B which concludes
our proof of circle squaring, modulo a proof of the Erdős-Turán inequality which we give in the
next section. We restate the lemma for convenience:

Lemma B. For every k and ϵ > 0, there exist a positive integer d, u ∈ (Tk)d, and δ > 0 such that
for all sets A ⊆ Tk with dimbox(∂A) < k − ϵ, there is a C such that

D(FN (u, x), A) ≤ CN−1−δ

for every x ∈ Tk and N that is a power of 2.

Proof. Suppose k and ϵ > 0 are given. Fix an integer d large enough such that dϵ > 1, and let
c < d be so that cϵ > 1. Then by Lemma 5.6, there is u = (u1, . . . , ud) ∈ (T)d and C so that
D(FN (u)) ≤ CN−c.

Let {e1, . . . , ed} be the usual set of generators of Zd and let

v = (u1e1, u2e1, . . . , ude1, u1e2, . . . , ude2, . . . , u1ek, . . . , udek) ∈ (Tk)dk

so that av : Zdk ↷ Tk is the k-fold product of the action au, so (g1, . . . , gk) ·v (x1, . . . , xk) =

(g1 ·u x1, . . . , gk ·u xk), and so FN (v, (x1, . . . , xk)) =
∏k

i=1 FN (u, xi).

Now if A is such that dimbox(∂A) < k − ϵ, there must be some m0 so that for all m ≥ m0,
log(N(m,A))

log(m) ≤ k− ϵ, and hence N(m,A) ≤ mk−ϵ. Now since N−c → 0 as N → ∞, and D(FN (u)) ≤
CN−c, if N is a sufficiently large power of 2, we have that 1

2D(FN (u)) ≥ m0. And so by Lemma 6.2,

for all sufficiently large N , for all x ∈ Tk, D(FN (v, (x1, . . . , xk)), A) ≤ ck,ϵ(CN
−c)ϵ. Setting δ =

cϵ−1 > 0, this is ≪ N−1−δ for sufficiently large powers of 2, and increasing the constant if necessary
covers the finitely many smaller powers of 2. □
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Note that the bounds we have proved above in Lemma B can be improved in several ways. One
can extend this lemma to a bound that is true for all N instead of just N that are powers of 2
using a dyadic decomposition and at the expense of an additional logarithmic factor on the right
hand side. It is also possible to use the Erdős-Turán-Koksma inequality (see [DT, Theorem 1.21])
and largely mimic the proof of Lemma 5.6 to obtain a bound in Lemma B for a measure one set of
u and for smaller values of d. This is the approach taken by Laczkovich’s [L92, Proof of Theorem
3] (see also [GMP, Lemma 6]). We have used the approach above since it is more elementary, and
the Erdős-Turán inequality we have used is simpler than the Erdős-Turán-Koksma inequality. This
also lets us prove our new sufficient condition for equidecomposability:

Theorem D. Suppose ϵ > 0 and A,B ⊆ Rk are bounded Lebesgue measurable sets such that
λ(A) = λ(B) > 0, and dimbox(∂A) ≤ k − ϵ and dimbox(∂B) ≤ k − ϵ. Suppose c > 0 and
u1, . . . , ud ∈ R are irrational numbers linearly independent over Q so that for all N that are powers
of 2,

N∑
n=1

1

n
∏

i∥nui∥
≪u N

c,

and c < dϵ − 1. Then A and B are equidecomposable in Rk by finitely many translations whose
coordinates are integer linear combinations of 1, u1, . . . , ud.

Proof. By Lemma 5.3, and our assumption on the growth of
∑N

n=1
1

n
∏

i∥nui∥ , for all integers m > 0,

D(FN (u)) ≪ 1

m+ 1
+

1

Nd

m∑
n=1

1

n
∏d

i=1∥nui∥
≪ 1

m+ 1
+
mc

Nd

We set m = ⌊Nd/(c+1)⌋ to optimize this bound so that both terms are equal. This gives

D(FN (u)) ≪ 1

Nd/(c+1)
+
N cd/(c+1)

Nd
≪ 1

Nd/(c+1)
.

Now following the proof of Lemma B, let av be the action of Zdk on Tk which is the k-fold
product of the action au of Zd on T so v = (u1e1, u2e1, . . . , ude1, u1e2, . . . , ude2, . . . , u1ek, . . . , udek).
Now since dimbox(∂A) and dimbox(∂B) < k − ϵ, for sufficiently large m, N(m, ∂A) < mk−ϵ and

N(m, ∂B) < mk−ϵ. So D(FN (v)) ≪
(
N−d/(c+1)

)ϵ
= N−dϵ/(c+1).

Finally, by Lemma A, this implies that A and B are equidecomposable in av provided dϵ > c+1.
Hence by the proof of Proposition 2.5 they are equidecomposable in Rk by translations whose
coordinates are integer linear combinations of 1, u1, . . . , ud. □

7. A proof of the Erdős-Turán inequality

The only remaining ingredient we have used in our proof of the circle squaring theorem above
is the Erdős-Turán inequality. For the sake of self-containment, we include a proof of this inequal-
ity. Our proof largely follows [KN, Theorem 2.2.5] but we give some additional motivation and
simplifications.

We’ll begin by recalling a couple definitions from Fourier analysis. First, if f : T → R is a
function, its kth Fourier coefficient is

f̂(k) =

∫ 1

0
f(x)e(−kx) dx.

Next, recall the definition of the Fejér kernel Fm : T → R where m is a nonnegative integer:

Fm(x) =

m∑
k=−m

m+ 1− |k|
m+ 1

e(kx)
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These kernels are an important tool in Fourier analysis. They are key to showing Fejér’s funda-
mental theorem that the Cesàro means of the Fourier series of a continuous function f : T → R
converge to f . The interested reader may want to read a proof of this theorem for additional
context (see [K, Theorem 2.3]), though we will not use it in what follows. This proof uses the
convolutions of f with the Fejér kernels that we calculate in Lemma 7.1.(3) below. Recall that if
f and g are functions from T to R, then their convolution f ∗ g : T → R is the function defined by

(f ∗ g)(t) =
∫ 1
0 f(x)g(t− x) dx.

We record a few simple properties of Fejér kernels.

Lemma 7.1. For every integer m ≥ 1, and every integrable function f ,

(1)

Fm(x) =
1

m+ 1

sin2((m+ 1)πx)

sin2(πx)
.

(2)
∫ 1
0 Fm(x) = 1 and

∫ 1/2
0 Fm(x) dx = 1

2 .

(3) (f ∗ Fm)(t) =
∑m

k=−m
m+1−|k|
m+1 e(kt)f̂(k)

Proof. We begin with (1). Using the formula for the sum of a finite geometric series and Euler’s
formula, for x ̸= 0 we have:

m∑
k=−m

(m+ 1− |k|) e(kx) =

 m∑
j=0

e((j −m/2)x)

2

=

(
e(−mx/2)1− e(m+ 1)x

1− e(x)

)2

=

(
e(−(m+ 1)x/2)− e((m+ 1)x/2)

e(−x/2)− e(x/2)

)2

=

(
sin((m+ 1)πx)

sinπx

)2

where the first equality above is by expanding the right hand side.

To prove (2), note that
∫ 1
0 e(kx) dx = 0 for k ̸= 0, so

∫ 1
0 Fm(x) = 1 by definition of Fm(x). Since

Fm(x) is even and Fm(x) ≥ 0 for all x ∈ T, we also have that
∫ 1/2
0 Fm(x) dx = 1

2

∫ 1/2
−1/2 Fm(x) dx = 1

2 .

We can change the limits of integration from (0, 1) to (−1/2, 1/2) since Fm(x) is periodic.
To prove (3), note that

(f ∗ Fm)(t) =

∫ 1

0
f(x)Fm(t− x) dx =

m∑
k=−m

m+ 1− |k|
m+ 1

e(kt)

∫ 1

0
f(x)e(−kx) dx

=
m∑

k=−m

m+ 1− |k|
m+ 1

e(kt)f̂(k)

□

Let Sn(x) =
∑n

k=−n f̂(k)e(kx) be the partial Fourier series of f . It is easy to check that the

mean 1
m+1

∑m
n=0 Sn(x) of the first m+1 partial Fourier series is exactly the convolution f ∗Fm we

have calculated in part (3) of the Lemma above. Fejér’s theorem states that if f is continuous, then
for all x, the Cesàro limit of the partial Fourier series of f is equal to f , so 1

m+1

∑m
n=0 Sn(x) → f(x)

as m→ ∞ [K, Theorem 2.3]. This theorem motivates a key step in the proof below.
We are now ready to prove the Erdős-Turán inequality, which we restate for clarity.

Theorem 7.2 (The Erdős-Turán inequality [ET]). There are constants C1, C2 so that for all finite
sets F ⊆ T and all integers m,

D(F ) ≤ C1
1

m+ 1
+ C2

m∑
k=1

1

k|F |

∣∣∣∣∣∑
x∈F

e(kx)

∣∣∣∣∣
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Proof. We will use the following variant of discrepancy where we only consider intervals whose left
endpoint is zero that we defined earlier in Section 6. Recall if F ⊆ [0, 1) is a finite set, then

D∗(F ) = sup
x∈[0,1]

D(F, [0, x)) = sup
x∈[0,1]

∣∣∣∣ |[0, x) ∩ F ||F |
− λ([0, x))

∣∣∣∣ .
Note that D(F ) ≤ 2D∗(F ), since∣∣∣∣λ([x, y))− |[x, y) ∩ F |

|F |

∣∣∣∣ = ∣∣∣∣(λ([0, y))− λ([0, x)))−
(
|[0, y) ∩ F |

|F |
− |[0, x) ∩ F |

|F |

)∣∣∣∣
≤

∣∣∣∣(λ([0, y))− |[0, y) ∩ F |
|F |

)∣∣∣∣+ ∣∣∣∣(λ([0, x))− |[0, x) ∩ F |
|F |

)∣∣∣∣ .
Hence, we may show the inequality in the theorem forD∗(F ) instead ofD(F ) sinceD(F ) ≤ 2D∗(F ).
D∗(F ) is easier for us to calculate with since we take a supremum over a single endpoint instead
of two endpoints.

Let f(x) = |[0,x)∩F |
|F | − λ([0, x)) for x ∈ [0, 1), so D∗(F ) = supx f(x). The first step of our

proof will be calculating the Fourier coefficients of f . To begin, we consider the case when f̂(0) =∫ 1
0 f(x) dx = 0. We will show this case suffices at the end of the proof.
We compute the kth Fourier coefficient of f for k ̸= 0.

f̂(k) =

∫ 1

0
f(x)e(−kx) dx =

∫ 1

0

|[0, x) ∩ F |
|F |

e(−kx) dx−
∫ 1

0
xe(−kx) dx

=
∑
y∈F

1

|F |

∫ 1

y
e(−kx) dx+

1

2πik
=

∑
y∈F

1

|F |
1

−2πik
(1− e(−ky)) + 1

2πik
=

∑
y∈F

1

|F |
e(−ky)
2πik

Now combining the above equation for f̂(k) with Lemma 7.1, we get that for all t,

(11) |(f ∗ Fm)(t)| ≤

∣∣∣∣∣
m∑

k=−m

m+ 1− |k|
m+ 1

e(kt)f̂(k)

∣∣∣∣∣ ≤
m∑

k=−m

∣∣∣f̂(k)∣∣∣ ≤ 1

π

m∑
k=1

1

k|F |

∣∣∣∣∣∣
∑
y∈F

e(ky)

∣∣∣∣∣∣
where we’ve used the triangle inequality, our assumption that f̂(0) = 0, that |f̂(−k)| = |f̂(k)|
for all k (since f̂(−k) and f̂(k) are complex conjugates), and that e(−ky) and e(ky) are complex
conjugates.

Our idea now is to take a value of s so that |f(s)| is close to D∗(F ) = supx f(x). Then since most
of the mass of Fm(x) is concentrated around x = 0, we can use this to get a good lower bound for
|(f ∗ Fm)(s)| involving D∗(F ). (Indeed, as we have recalled above, Fejér’s theorem is that f ∗ Fm

converges to f and so we should expect that |(f ∗ Fm)(s)| should also be close to |f(s)| which is
close to D∗(F )).

For ease of notation, let D = D∗(F ). Since D∗(F ) = supx f(x), we can choose s0 ∈ T so that
|f(s0)| ≥ 3/4D. Assume that f(s0) ≥ 3

4D (the case where f(s0) ≤ −3
4D is analogous). Now for

0 ≤ y < 1, we have f(s0 + y) = f(s0) +
|F∩[s0,s0+y)|

|F | − λ([s0, s0 + y)) ≥ f(s0)− y ≥ 3/4D− y, since

µ([s0, s0 + y)) ≥ 0. So for |x| ≤ D/4, we have f(s0 +D/4− x) ≥ 1
4D. Let s = s0 +D/4.

Since f(y) ≥ −D for all y, and by changing variables to let y = s − x, and using periodicity to
change the limits of integration, we have

(f ∗ Fm)(s) =

∫ 1

0
f(x)Fm(s− x) dx =

∫ s

s−1
f(s− y)Fm(y) dy =

∫ 1/2

−1/2
f(s− y)Fm(y) dy.
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By our choice of s we have f(s − y) ≥ D/4 for |y| ≤ D/4, and in general f(s − y) ≥ −D. Using
this and then evenness of Fm, we obtain

(f ∗ Fm)(s) ≥
∫
|y|≤D/4

D

4
Fm(y) dy +

∫
D/4<|y|≤1/2

(−D)Fm(y) dy

=
D

4

∫ 1/2

−1/2
Fm(y) dy −

(
D

4
+D

)∫
D/4<|y|≤1/2

Fm(y) dy =
D

4
− 5D

4
· 2

∫ 1/2

D/4
Fm(y) dy

=
D

4
− 5D

2

∫ 1/2

D/4
Fm(y) dy ≥ D

4
− 5D

2

∫ 1/2

D/4

1

4(m+ 1)y2
dy

=
D

4
− 5

2

1

(m+ 1)

(
1− D

2

)
≥ D

4
− 5

2(m+ 1)
.

where we have used the standard upper bound Fm(x) ≤ 1
4(m+1)x2 for x ∈ [0, 1/2] since on that

domain sin(πx) ≥ 2x, and also the fact that since D > 0, we have 1−D
2 ≤ 1. By the same argument

in the case f(s) ≤ −3
4D (replacing f by −f), we also obtain

|(f ∗ Fm)(s)| ≥ D

4
− 5

2(m+ 1)
.

Now combining the above equation with (11), we have that

D

4
− 5

2(m+ 1)
≤ |(f ∗ Fm)(s)| ≤ 1

π

m∑
k=1

1

k|F |

∣∣∣∣∣∣
∑
y∈F

e(ky)

∣∣∣∣∣∣
and so the theorem follows in the case f̂(0) = 0 with C1 = 5 and C2 =

8
π (after multiplying by 2 to

convert from a bound on D = D∗(F ) to a bound on D(F )).

It remains to show that the case where f̂(0) = 0 suffices to prove the theorem. If a ∈ T, let Fa =

a+ F = {a+ x : x ∈ F} be the finite set F “shifted” by a. Let fa(x) = λ([0, x))− |[0,x)∩Fa|
|Fa| . These

shifted sets are useful since the discrepancy D(F ) is shift-invariant by definition, so D(F ) = D(Fa)

for all a. We also have that for all k ̸= 0 and a ∈ T , that |f̂a(k)| = |f̂(k)| since∫ 1

0

|[0, x) ∩ Fa|
|Fa|

e(−kx) dx =

∫ 1−a

−a

|[0, x) ∩ Fa|
|Fa|

e(−kx) dx

=

∫ 1

0

|[0, x) ∩ F |
|F |

e(−k(x− a)) dx = e(ka)

∫ 1

0

|[0, x) ∩ F |
|F |

e(−kx) dx.

So it will suffice to show that there is some a so that the 0th Fourier coefficient of fa is zero:
f̂a(0) = 0.

Since fa(x) = |F∩[0,x+a)|
|F | − |F∩[0,a)|

|F | − (λ([0, x + a)) − λ([0, a))) = f(a + x) − f(a), we have

that f̂a(0) =
∫ 1
0 f(a + x) − f(a) dx =

∫ 1
0 f(x) dx − f(a). So it suffices to find some a so that

f(a) =
∫ 1
0 f(x) dx.

There must be some b ∈ [0, 1) so that f(b) ≥
∫ 1
0 f(x) dx, and c ∈ [0, 1) so that f(c) ≤

∫ 1
0 f(x) dx.

Since f is periodic with period 1, by replacing c with c+1 if necessary, we may assume b < c. Now
f is left-continuous and its only discontinuities are jump discontinuities at the finitely many x such

that x ∈ F , where f increases by 1
|F | . So setting a = sup{x ∈ [b, c] : f(x) ≥

∫ 1
0 f(x) dx}, we have

that f(a) =
∫ 1
0 f(x) dx. □

This concludes our proof of Laczkovich’s circle squaring theorem.
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If µ is a measure on T, the discrepancy of µ is defined to be D(µ) = supintervals I |µ(I))− λ(I)|.
If F ⊆ T is a finite set and µF is the uniform probability measure supported on F : µF (A) =

|F∩A|
|F | ,

then D(F ) = D(µF ) by definition. Recall the kth Fourier coefficient of a measure µ on T is defined

to be µ̂(k) =
∫ 1
0 e(−kx) dµ(x). So in the case where µF is the uniform measure supported on a

finite set F , |µ̂F (k)| = 1
|F |

∣∣∑
x∈F e(kx)

∣∣. Thus, the Erdős-Turán inequality is the special case of the

following theorem for measures of the form µ = µF . This theorem can be proved almost identically
to the above

Theorem 7.3. There are universal constants C1, C2 so that for all measures µ on T and all m,

D(µ) ≤ C1

m+ 1
+ C2

m∑
k=1

|µ̂(k)|
k

A more modern (but technical) proof of the Erdős-Turán inequality shows that for any interval
[a, b) and for any m, there are trigonometric polynomials S−(x)m, S

+
m(x) of degree at most m such

that for all x ∈ [0, 1)

S−
m(x) ≤ 1[a,b) ≤ S+

m(x)

and so that
∫
x S

−
m(x)dx ≥ b − a − 1

m+1 and
∫
x S

−
m(x)dx ≤ b − a + 1

m+1 . These S±
m are known as

the Selberg polynomials and rely crucially on Vaaler’s polynomials approximating the saw-tooth
function, a calculation of the error in this approximation, and Vaaler’s lemma [M, Page 6]. By
using S±

m as upper and lower bounds for 1[a,b), and writing everything in terms of Fourier series,

one can get an upper bound on |µ([a, b)) − λ([a, b))| of
∑

0<|k|<m Ŝ
+
m(k)µ̂(k). The Erdős-Turán

inequality follows easily from this. See [M, Chapter 1] for a detailed proof based on this idea and
[DT, Theorem 1.21] for a similar proof of the Erdős-Turán-Koksma inequality.

We mention also that the Erdős-Turán inequality is a quantitative refinement of Weyl’s famous
theorem on equidistribution which preceded it:

Theorem 7.4 (Weyl [KN, Theorem 1.2.1]). For an infinite sequence of points (xn)n∈N in [0, 1),
the following are equivalent:

(1) (xn) is equidistributed, that is for all [a, b) ⊆ [0, 1),

lim
N→∞

|{xi : i < N} ∩ [a, b)|
N

= b− a.

(2) For all k ̸= 0,

lim
N→∞

N−1∑
n=0

e(kxn) = 0.

This theme of finding quantitative “hard analysis” refinements of qualitative “soft analysis”
theorems (like Erdős-Turán’s refinement of Weyl’s theorem) is an important recurring theme in
many areas such as ergodic theory and harmonic analysis. While the Erdős-Turán theorem was
proved after Weyl’s theorem, it has also been the case that difficult qualitative results have been
proved by first finding quantitative hard analysis estimates which imply them.
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