A SHORT PROOF OF HALPERN-LAUCHLI

SPENCER UNGER

In this document, we give a short proof of the Halpern-Lauchli theorem. We hope that this is clearer than the proofs found in [2] and [1], although the contents appear to be roughly the same. Thanks to Jing Zhang for explaining the outline of the proof.

The proof is by induction on the dimension d of the product. For each d, we define three versions of the Halpern-Lauchli theorem: SD_d , DS_d and SS_d . These stand for somewhere dense, dense set and strong subtree, respectively.

Every tree T below is countable and finitely branching. For $x \in T$, $\operatorname{ht}(x)$ is the height of x. The words "above" and "below" refer to the natural tree order on whatever product of trees is relevant.

In what follows we use $\prod_{i < d} T_i$ and $\prod_{i < d}^{lev} T_i$ to distinguish between non-level and level products of trees. As the name suggests, a level product is a subset of the full product where every tuple consists of points of the same height/level.

For $\bar{x} \in \prod_{i < d} T_i$ and $k \in \mathbb{N}$, sets $X_i \subseteq T_i$ for i < d form a k- \bar{x} -dense matrix if for all $\bar{t} \in \prod_{i < d} T_i(k)$ above \bar{x} there is $\bar{y} \in \prod_{i < d} X_i$ above \bar{t} .

Definition 1 (SD_d) . For every coloring $c: \prod_{i < d} T_i \to r$, there are \bar{x} and $k \in \mathbb{N}$ such that there is a monochromatic $k-\bar{x}$ -dense matrix.

Definition 2 (DS_d) . For every coloring $c: \prod_{i < d} T_i \to r$, there is \bar{x} such that for all $k \in \mathbb{N}$ there is a monochromatic $k-\bar{x}$ -dense matrix.

For a tree T, a subset $S\subseteq T$ is a strong subtree if there is $A\subseteq \mathbb{N}$ infinite such that:

- (1) For all $s \in S$, $s \in T(n)$ for some $n \in A$ and for all $n \in A$, $S \cap T(n) \neq \emptyset$.
- (2) If m < n are consecutive elements of A and $s \in S \cap T(m)$, then every immediate successor of s in T has a unique extension in $S \cap T(n)$.

We call A the level set of S.

Definition 3 (SS_d). For every coloring $c: \prod_{i< d}^{lev} T_i \to r$, there are strong subtrees $S_i \subseteq T_i$ with the same level set such that c is constant on $\prod_{i< d}^{lev} S_i$.

The workflow is as follows:

- (1) Prove SD_1 .
- (2) For all d, SD_d implies DS_d .
- (3) For all d, DS_d implies SS_d .
- (4) For all d, DS_d implies SD_{d+1} .

As listed it looks like there is some redundancy but SS_d will be used in the proof of item (4).

Claim 1. SD_1

Proof. Let $c: T \to r$ be a coloring and suppose SD_1 fails for this coloring. Starting at the root of T build an increasing sequence t_i for $i \leq r$ in T such that for all i, $c \upharpoonright (T \upharpoonright t_{i+1})$ avoids color i. Then t_k cannot take any color, a contradiction. \square

Claim 2. SD_d implies SD_d where the sets in the k- \bar{x} -dense matrix share a common level

We call this a *level* matrix.

Proof. Fix a product of trees $\prod_{i < d} T_i$ and a number of colors r. A straightforward compactness argument shows that there is l such that letting T'_i be the restriction of T_i to the first l levels we have: For all colorings $c:\prod_{i < d} T'_i \to r$ there are $\bar{x} \in \prod_{i < d} T'_i$ and k < l for which there is a monochromatic k- \bar{x} -dense matrix.

Let $c^*: \prod_{i < d} T_i \to r$ be a coloring. For each $x \in T_i$ below level l, choose $h_i(x) \in T_i(l)$. Let $c: \prod_{i < d} T_i' \to r$ (with T_i' as above) be given by $c(\langle y_i \mid i < d \rangle) = c^*(\langle h_i(y_i) \mid i < d \rangle)$.

By the choice of l, there are $\bar{x} \in \prod_{i < d} T_i$ and k such that $\prod_{i < d} T'_i$ contains a monochromatic matrix X_i for i < d. It is straightforward to check that $h_i[X_i]$ for i < d is a monochromatic matrix for c^* and all of whose points are on level l. \square

Remark 1. The level product is an example of a dense "subproduct" of the full product. The same proof can work to find dense matrices in other dense "subproducts".

Remark 2. In versions of Halpern-Lauchli where we end up finding a monochromatic level matrix, it is enough consider colorings of the level product to begin with.

Claim 3. For all d, SD_d implies DS_d .

Proof. We argue by contradiction. Let $c: \prod_{i < d} T_i \to r$ be a coloring for which DS_d fails. Then for all $\bar{x} \in \prod_{i < d} T_i$ there is $k_{\bar{x}}$ such that for all $k \geq k_{\bar{x}}$ no k- \bar{x} -dense monochromatic matrix exists.

Construct an increasing sequence of levels l_n by induction on n. Let $l_0 = 0$ and let $l_{n+1} = \max_{\bar{x}} k_{\bar{x}}$ where the maximum is over all nodes in \bar{x} are on level at most l_n .

Let $L = \{l_n \mid n \in \mathbb{N}\}$. Let T_i' be the obvious restriction of T_i to levels from L. We apply SD_d to the restriction of c to $\prod_{i < d} T_i'$ to get $\bar{x} \in \prod_{i < d} T_i'$ and $n \in \mathbb{N}$ such that there is a monochromatic n- \bar{x} -dense matrix X_i for i < d in $\prod_{i < d} T_i'$.

It follows that X_i for i < d is a monochromatic l_n - \bar{x} -dense matrix in $\prod_{i < d} T_i$, contradicting our choice of l_n .

We note that the same argument implies a version of DS_d where every witnessing matrix is a level matrix as in Claim 2

Claim 4. For all d, DS_d implies SS_d .

This is a straightforward inductive construction.

Proof. Fix a coloring $c: \prod_{i < d} T_i \to r$. Let \bar{x} witness DS_d with level matrices. By induction choose an infinite sequence k_n and monochromatic level matrices X_i^n for i < d which are k_n - \bar{x} -dense and such that k_{n+1} is above the level of X_i^n for i < d. By the pigeonhole principle, we can assume that every matrix is monochromatic with the same color.

From this sequence it is straightforward to construct a sequence of strong subtrees S_i for i < d with a common level set such that c is monochromatic on $\prod_{i < d}^{lev} S_i$.

Claim 5. For all d, DS_d implies SD_{d+1} .

Proof. Let $c: \prod_{i \leq d} T_i \to r$ be a coloring. For each $t \in T_d$ we can define a coloring $c_t: \prod_{i \leq d} T_i \to r$ by $c_t(\bar{x}) = c(\bar{x} \frown t)$.

By a straightforward fusion argument, we can find strong subtrees $S_i \subseteq T_i$ for i < d with a common level set and the following property: For all $t \in T_d$ and all $\bar{x} \in \prod_{i < d}^{lev} S_i$ with $\operatorname{ht}(\bar{x}) \geq \operatorname{ht} t$, c_t is constant on $(\prod_{i < d} T_i) \upharpoonright \bar{x}$. We note here that the $\operatorname{ht}(\bar{x})$ is as computed in $\prod_{i < d}^{lev} S_i$.

Next, we derive a different family of colorings. For each $b \in [T_d]$, we define a coloring $f_b: \prod_{i< d}^{lev} S_i \to r$ by $f_b(\bar{x}) = c(\bar{x} \frown y)$ for the unique $y \in b$ with height $\operatorname{ht}(\bar{x})$. We apply DS_d to this coloring to obtain \bar{x}_b and a color $i_b < r$ such that for all k, there is a k- \bar{x}_b -dense level matrix which is monochromatic with color i_b .

We pause for a claim.

Claim 6. Let T be an infinite, finitely branching tree and $g:[T] \to \mathbb{N}$ be a coloring. There are $t \in T$, a dense subset $D \subseteq T \upharpoonright t$ and $j \in \mathbb{N}$ such that for all $s \in D$, there is $b \in [T]$ such that $s \in b$ and g(b) = j.

Proof. Otherwise, for all t and all colors j there is t' above t such that $c \upharpoonright [T \upharpoonright t']$ avoids color j. From this it is straightforward to construct a branch $b \in [T]$ which is uncolored.

Apply this claim to the coloring of $[T_d]$ which takes b to (\bar{x}_b, i_b) . Let $t \in T_d$, $D \subseteq T_d \upharpoonright t$ dense, $\bar{x} \in \prod_{i < d} S_i$ and i < r witness the claim.

We construct a k- $(\bar{x} \frown t)$ -dense matrix as follows. Enumerate the immediate successors of t as t_k for k < n. From the conclusion of the previous claim, we can build sequences

- (1) $b_k \in [T_d]$ with $t_k \in b_k$,
- (2) $\operatorname{ht}(\bar{x}) + 1$ - \bar{x} -dense level matrices $X_i^k \subseteq S_i$ for i < d such that each $u \in X_i^k$ has a unique extension in X_i^{k+1} and $\prod_{i < d} X_i^k$ gets color i under f_{b_k} .
- (3) $s_k \in b_k$ is the unique element whose height in $\prod_{i < d}^{lev} S_i$ is the same as the common height of the X_i^k .

By the choice of the trees S_i , we have that for k < k', c takes color i on the set $\left(\prod_{i < d} X_i^{k'}\right) \times \{s_k\}$ since c_{s_k} takes color i on $\prod_{i < d} X_i^k$ and every element of $\prod_{i < d} X_i^{k'}$ is above an element of $\prod_{i < d} X_i^k$.

It follows that $(\prod_{i < d} X_i^n) \times \{s_k \mid k < n\}$ is monochromatic under c with color i.

References

- [1] Pandelis Dodos and Vassilis Kanellopoulos, Ramsey theory for product spaces, Mathematical Surveys and Monographs, vol. 212, American Mathematical Society, Providence, RI, 2016. MR 3469779
- [2] Stevo Todorcevic, Introduction to Ramsey spaces, Annals of Mathematics Studies, vol. 174, Princeton University Press, Princeton, NJ, 2010. MR 2603812