
TREES IN SET THEORY

SPENCER UNGER

1. Introduction

Although I was unaware of it while writing the first two talks, my talks in the
graduate student seminar have formed a coherent series. This talk can be viewed
as the third in series entitled ‘The shortest path to difficult topics in set theory.’
The first talk that I gave was on the subject of forcing. The second talk was on the
subject of large cardinals. This talk will be on trees and their place in set theory.
The series is going to be culminated in this talk, since in connection with trees I
get to mention both forcing and large cardinals.

2. Mathematical Background

I thought that I would approach the notion of tree in set theory from the notion
of tree in combinatorics, since that is probably more familiar. Recall that a graph
is a set of vertices V and a set of edges between them E, which is best viewed as a
subset of [V ]2, the set of unordered pairs of vertices.

Defintion 2.1. A graph is a tree if it is connected and has no cycles.

A typical picture (taken from Wikipedia).

Now suppose that we choose a distinguished vertex, which we’ll call the root.
This allows us to turn our graph in to a directed graph in a natural way. We
simply say that vertex u is below vertex v if it is closer to the root. Since our tree
is connected and acyclic, this makes sense.

Here is a typical picture of a rooted tree with its directed graph structure (Taken
from a Wikibook on programming).
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So here the root is the vertex labelled ‘F’. Since we now have a sensible direction
for each edge, this defines a relation on the set V . Notice that it makes sense to
take the transitive closure of this relation to produce an ordering. Orderings like
this are partial, because for example the nodes ‘A’ and ‘D’ and incomparible in the
ordering. The properties of orderings that arise in this way can be axiomatized as
follows.

Defintion 2.2. A finite-ish, set theoretic tree is a set of nodes T together with a
binary relation <T on T such that

(1) <T is transitive and irreflexive,
(2) for every t ∈ T , the set {u ∈ T | u <T t} is finite and linearly ordered by

<T , and
(3) for every t, u ∈ T , there is v ∈ T with v ≤T t, u.1

So we have essentially proved one direction of the following easy proposition.

Proposition 2.3. Every graph theoretic tree with a chosen root corresponds in a
natural way to a finite-ish set theoretic tree and vice versa.

So there is a bit of a catch. And that is with the word ‘finite’ in the definition of
a finite-ish set theoretic tree. When we remove the word finite from condition (2) in
the definition, these trees no longer arise as the ‘rooting’ of a graph theoretic tree.
This is because of the essentially local nature of the edge relation in a graph and
the rather complex notion of a transitive ordering. Consider the natural ordering
on the set N ∪ {∞}. This satisfies all of the set theoretic tree defintions except for
the finite part, but it does not arise as a the rooting of a graph theoretic tree. In
particular∞ would have to be connected to some element of N, which kills the fact
that it is supposed to be above all elements of N in the tree ordering.

Here is the full definition of a set theoretic tree (which from here on we’ll call
just call a tree). Recall that a transitive relation is wellfounded if it has no infinite
decreasing sequences. As we’ll see, this additional requirement imposes alot of nice
structure.

Defintion 2.4. (T,<T ) is a tree if

(1) <T is a wellfounded partial ordering on T ,
(2) for all t ∈ T , {u ∈ T | u <T t} is linearly ordered by <T and
(3) for all t, u ∈ T , there is v ∈ T such that v ≤T t and v ≤T u.

1Here t ≤T t′ literally means t <T t′ or t = t′.
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3. Trees in set theory

We’ll start out by giving some examples. The following are all trees.

• N ∪ {∞} ordered in the natural way.
• The set of finite binary sequences ordered by end extension.
• The set of finite and countably infinite sequences of natural numbers or-

dered by end extension.

Here is a natural definition.

Defintion 3.1. A branch b through a tree T is a subset of the tree linearly ordered
by <T .

So for example we can view infinite binary sequences as branches through the
tree of finite binary sequences. Literally if s is an infinite binary sequence, then the
set {s � n | n ∈ N} is a branch through the tree.

The first theorem that one learns about in the theory of trees is König infin-
ity lemma. A tree is finitely branching if each node has finitely many immediate
successors.

Theorem 3.2. Every countably infinite, finitely branching tree has an infinite
branch.

Proof. Construct the branch by induction. Start at the root. Since the tree is
finitely branching, choose an immediate successor with infinitely many nodes above
it. Then continue picking in the same way. The result is an infinite branch. �

To go further we need a digression in to set theory on the topic of ordinals and
cardinals.

4. Ordinals and Cardinals

A few definitions.

Defintion 4.1. A set X is transitive if and only if for every x, y, if x ∈ y ∈ X,
then x ∈ X.

We are interested in transitive sets, because we are going to turn ∈ into an
ordering on our sets. To make sense of this we need out sets to be transitive.

Defintion 4.2. (W,<) is a well ordering if and only if it is a linear ordering with
no infinite decreasing chain.

Set theorists like things with ‘well’ in front of them. We’ll see why in a second.

Defintion 4.3. A set α is an ordinal if and only if α is transitive and (α,∈) is a
well order.

Some facts about ordinals.

Fact 4.4. If α is an ordinal, then α ∪ {α} is an ordinal. The union of a set of
ordinals is an ordinal.

This gives a more constructive way to think about the ordinals. To get from an
ordinal α to its successor in the ∈ ordering, I take α∪{α}. If at some point I reach
an infinite limit of ordinals, then I can just take the union of the sets that I’ve built
so far.
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Fact 4.5. Every well ordering is isomorphic to an ordinal.

This fact is really important. It shows that the ordinals characterize all well
orderings. So in some sense they are the only ones that we need to consider. If
(W,<) is a well-ordering, then we’ll denote the unique ordinal, which it is isomorphic
to by o. t.(W,<). We’ll drop the ordering if it is natural to do so. Some ordinals
are special in the following sense.

Defintion 4.6. An ordinal κ is a cardinal if and only if there is no surjection from
an ordinal β < κ on to κ.

Cardinals that you know:

• o. t.({0, . . . , n− 1})
• o. t.(N)
• If (R, <R) is a well ordering of the reals, then o. t.(R, <R) is a cardinal.

Set theorists call these n,ℵ0 and 2ℵ0 respectively.
Cardinals you might not know: for all n ≥ 1, ℵn is the nth uncountable cardinal.

In particular ℵ1 is the least uncountable cardinal. The Continuum Hypothesis is
the statement that the size of the reals is the least uncountable cardinal.

Fact 4.7. (Assuming the axiom of choice) Every set is in bijection with a unique
cardinal.

5. Definitions about trees with ordinals

Using ordinals we can define many natural objects.

Defintion 5.1. Assume that (T,<T ) is a tree.

• For t ∈ T , the height of t is ht(t) = o. t.{u ∈ T | u <T t}.
• The αth level of T is Levα(T ) = {t ∈ T | ht(t) = α}.
• The height of the tree ht(T ) is the least α so that Levα(T ) =

6. The tree property

With this we can formulate a generalization of König Infinity Lemma.

Defintion 6.1. Let κ be a cardinal. T is a κ-tree if ht(T ) = κ and every level has
size less than κ.

Defintion 6.2. A κ-tree is Aronszajn if it has no branches of order type κ.

Recall that a branch is just a subset of the tree linearly ordered by the tree
relation.

Defintion 6.3. A cardinal κ has the tree property if there are no κ-Aronszajn trees.
(Equivalently we could have said ‘every κ-tree has a branch of ordertype κ.)

Note that König infinity lemma is precisely the statement that ℵ0 has the tree
property.

Theorem 6.4. There is an ℵ1-Aronszajn tree.

Recall that ℵ1 is the least uncountable cardinal. So this result says that ℵ1 does
not have the tree property.

The first tree that we’ll construct is a tree of increasing sequences of rational
numbers with a top element. As a corollary of the proof we’ll have the following
fact.
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Fact 6.5. Let α be a countable ordinal. There is A ⊆ Q such that A with the usual
ordering on the rationals is isomorphic to α.

Before the construction a small piece of notation. If t is an increasing sequence
of rationals with a top element, then top(t) denotes the top element of t. We’ll
construct by induction on ordinals α < ℵ1, a tree T of increasing sequences of
rationals with a top element satisfying the following properties.

(1) Suppose that α < β < ℵ1, t ∈ Levα(T ) and r ∈ Q with r > top(t), then
there is a u ∈ Levβ(T ) such that t ≤ u and r > top(u).

(2) For all α < ℵ1, Levα(T ) is countable.

So induction on ordinals is just like induction on N except that we have to deal
with ‘limit stages’. Suppose that we’ve constructed Levn(T ) for all n ∈ N, then we
need a way to continue the construction, that is put points on top of some of the
branches that we’ve constructed so far.

We need some kind of base case, so we let Lev0(T ) = {〈0〉}.
Now the successor step. Suppose that we’ve constructed the tree up through

level β. We have a tree we’ve constructed so far, which we call Tβ . We want to end
extend the sequences on level β to construct level β + 1. Moreover we want to do
this while satisfying conditions (1) and (2) above.

Work on condition (1), suppose that t ∈ Levβ(T ) and that r > top(t), then
by the density of the rationals we can pick a q with top(t) < q < r. We then
add t _ 〈q〉 to the tree. This completes the construction of the level β + 1. We
only added countably many points (thus satisfying condition (2)), since Levβ(T ) is
countable by induction and Q is countable.

Suppose that γ is a limit ordinal and we have constructed all levels for ordinals
less than γ. So we have a tree which we’ll call T<γ . We need to put points on top
some of the branches through T<γ in a way that satisfies (1) and (2).

Since γ is countable and it is not equal to α ∪ {α} for any α. We can choose an
increasing sequence of ordinals αn for n ∈ N, which is cofinal in γ. By this I mean
that for all β < γ there is an n such that β < αn.

We want satisfy (1). So we take t ∈ T<γ and r ∈ Q above the top of t. Then we
construct a branch through T<γ that extends t and stays below r. Let n(t) be the
least n such that ht(t) < αn.

We construct tn for n ≥ nt with the following properties,

• t = tn(t),
• for all n ≥ n(t), tn ∈ Levαn

(T )
• for all n ≥ n(t), tn+1 end extends tn.

We are just going to apply the inductive hypothesis (2) countably many times.
Fix in advance r′ so that top(t) < r′ < r. Suppose that we’ve constructed up to
stage n. Then apply the inductive hypothesis to with levels αn < αn+1, tn and r′

to obtain tn+1. Then add ∪n≥n(t)tn _〉r′〈 to the tree.
Similar counting to before shows that we still have (2).
This does it. Notice that our tree T cannot have a branch of order type ℵ1,

since that would be an uncountable strictly increasing sequence of rationals. More
over the function top is a function from T to Q such that if t end extends t′, then
top(t) 6= top(t′). Such a function is called a specializing function. It provides a
concrete witness that the tree has no branches.
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It is natural to ask about ω2. The ‘answer’ here is much more complex, since
it involves the notions of consistency and large cardinals. To introduce this let me
say a few things about consistency and models of set theory.

Informal Definition 6.6. A model of a set of axioms is a structure where those
axioms are true

So for example the reals with the usual operations are a model of the field axioms.
The n × n matrices with coefficients in C together with the operator norm are a
model of the axioms of C∗-algebras. A model of set theory is a set M together with
an interpretation of the ∈M relation, which satisfies the axioms of ZFC set theory.

Informal Definition 6.7. A set of axioms is consistent if it has a model

Defintion 6.8. Let κ be an uncountable cardinal. κ is weakly compact if for every
map f : [κ]2 → 2 there is an H of size κ such that f is constant on [H]2.

Notice that the ‘weak compactness’ of ℵ0 is exactly infinite ramsey theorem.
However, the existence of a weakly compact cardinal cannot be proven from the
axioms of set theory. Much of modern set theory begins by assuming ZFC and
the existence of large cardinals. Why? The answer is that there are statements in
set theory whose strength can only be measured by large cardinals. Consider the
following theorem.

Theorem 6.9. The axioms ZFC + ‘there is a weakly compact cardinal’ are con-
sistent if and only if the axioms ZFC + ‘ℵ2 has the tree property’ are consistent

Let me say something about the proof. The reverse direction of the theorem
requires the use of the Gödel’s constructible universe L. Using L Gödel proved
that the continuum hypothesis is consistent with ZFC. The forward direction of
the theorem requires the notion of forcing, which was developed by Paul Cohen to
prove that the failure of the continuum hypothesis is consistent with ZFC. (See my
Graduate Student Seminar on Forcing for more detail.) The idea of the construction
is to start with a model of set theory and pass to a larger one in which the dersired
axioms hold. In particular we start with a model of ZFC with a weakly compact
cardinal and we add objects which show that the some of the cardinals of the
previous model are not actually cardinals and at the same time we add many
elements of the powerset of the natural numbers. In the end, we have that the
continuum is our formerly weakly compact cardinal is ℵ2.

Having said a bit extra about a the forcing direction of the theorem, I can also
mention a theorem of mine.

Theorem 6.10. Let α be an ordinal. If the axioms ZFC + ‘there is a weakly
compact cardinal’ are consistent, then the axioms ZFC + ‘ℵ2 has the tree property’
+ ‘the continuum is greater than α’ are consistent.

This is a strengthening of the forward direction of Mitchell’s theorem. That’s
all. Thanks!


