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Last time we defined a certain kind of ordering. Namely we took functions
f : X → On and we ordered them using a filter, F .

f <F g ⇔ {x : f(x) < g(x)} ∈ F

Recall filters specify large sets and so the above definition says that f <F g
if and only if f beats g on a large set of coordinates. Next we had the definition
of an ordering modulo an ideal, which is really the same concept. If I is an
ideal then f <I g if and only if f <Î g, where Î is the dual filter, ie the set of
complements of members of I.

To be explicit, we could write f <I g if and only if {x : f(x) ≥ g(x)} ∈ I.
Last time, I also mentioned something about the relationship between certain

kinds of upperbounds. Let me record the definitions here again.
Given 〈fi : i < η〉 <I -increasing.

1. h is an upper bound for ~f if and only if for all i, fi <I h.

2. h is a least upper bound if and only if h is an upper bound and for all
upperbounds h′, h′ ≤I h.

3. h is an exact upperbound if and only if h is an upper bound and for all
g <I h, there is i < η such that g <I fi.

Theorem 1. Let X, I, ~f be as above. Let h be an eub for ~f modulo I. Suppose
that we have a function H : X → On such that for all α < η, gα <I H, then
h ≤I H.

We are showing that eubs are lubs. The converse is false in general and we
will give an example below.

Proof. Let y = {x : H(x) < h(x)}. We want to show that y ∈ I. Define
g : X → On, by g(x) = H(x) for x ∈ y and g(x) = 0 for x /∈ y.

Claim. g <I h.
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We may assume that f0 6=I 0̄. So since f0 <I h, we have {x : h(x) = 0} ∈ I.
The claim follows, because for x ∈ y, g(x) = H(x) < h(x). Because h is an
eub, there is an α < η, such that g <I fα. By assumption we have gα <I H, so
we have that g <I H by transitivity. This shows that {x : g(x) = H(x)} ∈ I,
by the definition of the ordering modulo I. This last set is just y, so y ∈ I as
required.

Corollary 1. If h1, h2 are both eubs for 〈fα : α < η〉, then h1 =I h2

Proof. h1 ≤I h2 ≤I h1, by the previous result.

Now I will give an example of an lub that is not an eub. We will work
modulo the ideal of nonstationary sets on ω1. So f beats g just in case there is
a club on which f(x) beats g(x). Let X = ω1, fα be the constantly α function
for α < ω1 and h = idω1 . Then h is an lub but not an eub.

Claim. h is an lub for ~f mudolo I = NSω1

Proof. First, we show that h is an upperbound. Fix α < ω1 and show fα <I h.
Notice that {x : h(x) > α} = {x : x > α}, which is certainly a club.

Next we show that it is infact a least upperbound. Fix F an upperbound
for ~f . We claim that h ≤I F . By hypothesis the set {x : F (x) > α} contains a
club. Call this club Cα. Then take the diagonal intersection of the Cα.

For those of you who don’t know, 4α<ω1Cα = {x : x ∈
⋂
α<x Cα}. It is

a standard fact that the diagonal intersection is a club. Let x ∈ 4Cα, then
x ∈

⋂
α<x Cα. This last says that for all α < x, F (x) > α by the definition

of Cα. So F (x) ≥ x. So F is greater than or equal to the identity on a club,
namely the diagonal intersection. So we have that h is an lub.

Now we have to show that h is not an eub. To do this we produce a function
g, such that g <I h, but for all α < ω it’s not true that g <I fα.

By a theorem of Solovay, we can partition ω1 in to ω1 many pairwise disjoint
stationary sets, call them Sα. Define g as follows. For each β < ω1, there is an
α < ω1 such that β ∈ Sα. If α < β then let g(β) = α. Otherwise, let g(β) = 0.

Claim. g <I h = idω1

This is easy. We have defined g to be a regressive function everywhere.

Claim. For all α < ω1, it’s not true that g <I fα.

Suppose not. Then there is an α < ω1 and a club C in ω1, such that for all
x ∈ C, α > g(x). Clearly, C ′ = C r (α + 2) is still club and so C ′ ∩ Sα+1 is
nonempty. Let x ∈ C ′ ∩ Sα+1, then g(x) = α + 1. This is impossible, because
x ∈ C so we should have had g(x) < α.

Keeping this example in mind we can state and prove Shelah’s Trichotomy
theorem. I’m guessing that I will not get to the details today, but I want to
point out some of the key technical differences between this theorem and the
dichotomy theorem from last time.
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Theorem 2 (Trichotomy). Let I be an ideal on X and 〈fi : i < λ〉 be <I-
increasing in X On with λ = cf(λ) > |X|+. Then atleast one of the following
holds:

1. There is an eub, h for ~f and for all x ∈ X, cf(h(x)) > |X|.

2. There is a sequence 〈Sx : x ∈ X〉 with |Sx| ≤ |X| and an ultrafilter U with
U ∩ I = ∅, such that ~S is cofinally interleaved with ~f modulo U .

3. There is a function g : X → On, such that 〈{x : g(x) < fi(x)} : i < λ〉 is
not eventually constant modulo I.

We will often call case (1) the good case, where as cases (2) and (3) are
respectively called the bad and the ugly cases.

Proof. We assume that both (2) and (3) fail and produce an lub which we
then argue is an eub. As in the dichotomy theorem we construct a decreasing
sequence of upperbounds and argue that the construction terminates, this time
in an lub.

Let h0(x) = sup(fi(x) + 1). If hi is an lub then stop. If hi is not an lub,
then there is an upper bound g such that {x : g(x) < hi(x)} ∈ I+. The reason
that we are not decreasing to an eub is that we are no longer working in a linear
order as in the case of the dichotomy theorem. In particular, the statement
hi is not an eub modulo I is not sufficient to produce a suitable hi+1 for our
construction and this is precisely, because we are working modulo an ideal.

Let hi+1 = min{g, hi}. So hi+1 ≤ hi and {x : hi+1(x) < hi(x)} ∈ I+.
Moreover, hi+1 is an upper bound for the fs.

As in the dichotomy theorem the interesting part is at the limit step. Let
i < |X|+ be a limit ordinal. Define Sx,i = {hj(x) : j < i} and Hi

k = min(Sx,i r
(fk(x) + 1)) for each k < λ.

It is easy to see that

j1 < j2 ⇒ fj1 <I fj2 ⇒ Hi
j1 ≤I H

i
j2

Claim. If j1 < j2, then Hi
j1

=I H
i
j2

if and only if fj2 <I H
i
j1

.

For I-almost every x, fj1(x) < fj+2(x). For each such x, Hi
j1

(x) ≤ Hi
j2

(x).
So then it is clear that for each such x, Hi

j1
(x) =I H

i
j2

(x) if and only if fj2(x) <I
Hi
j1

(x).

Key Point. 〈Hi
j : j < λ〉 is eventually constant modulo I.

This is the same kind of claim that we made in the dichotomy theorem.
However, working modulo an ideal this is going to be more difficult to prove. In
particular, we see why there is a third case in the theorem.

Suppose not. Let j1 < j2 and define Bj1,j2 = {x : fj2(x) > Hi
j1

(x)}. By our
assumption, for all j1, Bj1,j2 ∈ I+ for all large enough j2 < λ. Since condition
(3) of the theorem fails, there is a set Cj1 ∈ I+ such that Cj1 ≡I Bj1,j2 for all
large j2 < λ.
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Notice that for j < j′, we have Hi
j ≤I Hi

j′ and thus Cj′ ⊆ Cj . It is easy to
show that {C : ∃j < λCj ⊆I C} is a filter. We can extend it to an ultrafilter U
such that U ∩ I = ∅ and for all j < λ, Cj ∈ U .

We check that the sequence of Sx,i defined above is cofinally interleaved with
~f modulo U as witnessed by the Hi

ks. Let k < λ, then fk < Hi
k. Then we can

find k′ large enough so that Ck ≡I Bk,k′ . Then Bk,k′ ∈ U and so Hi
k <U fk′ .

This contradicts that we are not in case (2) of the theorem.
So 〈Hi

k : k < λ〉 stabilizes modulo I. Choose hi ≡I Hi
k for all large k < λ.

Now we have finished the construction and we want to show that it halts at a
successor step before stage |X|+.

Suppose not. Proceed as in the proof of the dichotomy theorem.
For all x and all k < λ, for all large i, Hi

k(x) is constant. Notice that for
a fixed x and k, Hi

k(x) is decreasing as i increases. Then as |X|+ is regular
and bigger than |X|, we have for all large i, Hi

k is constant, say for i ≥ αj . As
λ > |X|+ there is an unbounded A ⊆ λ and α such that for all k ∈ A, α = αk.
Choose k ∈ A so large that hα =I H

α
k and hα+ω =I H

α+ω
k . Then by the above

argument we have Hα
k = Hα+ω

k , which gives hα =I hα+ω, contradicting the fact
that the sequence of h was decreasing.

Let h be a lub for ~f .

Claim. h is an eub.

If not then there is a function g <I h such that for no j < λ is g <I fj .
Consider Bj = {x : g(x) < fj(x)}. Note that Bj ∈ I+ for j large enough. By
our assumption there is no j such that Bj is equivalent to X modulo I. By the
fact that case (3) fails, there is a C such that for all large j Bj ≡I C. For x ∈ C
define k(x) = h(x) and for x /∈ C define k(x) = g(x).

Then k is an upper bound, since the complement of C must be positive.
If the complement of C were in I, then we would have a j such that Bj was
equivalent to X modulo I. Moreover, ¬(h ≤I k) since C ∈ I+. This contradicts
that h is an lub.

Lastly we claim that {x : cf(h(x) > |X|+} ∈ I+. With the claim in hand we
can change h on an I-small set to get large cofinalities everywhere.

Suppose that the B = {x : cf(h(x)) ≤ |X|} /∈ I. Then choose U with B ∈ U
and U ∩ I = ∅ along with for x ∈ B, Sx ⊆ h(x) cofinal and |Sx| ≤ |X|. Then ~S

is confinally interleaved with ~f modulo U , a contradiction. This concludes the
proof of the trichotomy theorem.
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