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1 Why not use the Levy Collapse?

We are now ready to start motivating mitchell’s proof. Let’s let κ be measurable
and show that we can get a generic elementary embedding with critical point
(κ = ω2)V [G], but that this alone is not enough! The first thing that comes to
mind in trying to arrange the tree property at ω2 is the Levy collapse. Why not
just collapse all of the ordinals less than κ on to ω1, then extend the elementary
embedding to the generic extension and use the same argument as last time for
κ measurable has TP? Well this proof fails for a lot of reasons, but I want to
show that we can get an appropriate elementary embedding and even a branch,
but this can’t help us.

Proposition 1.1. Let G be V -generic for Coll(ω1, < κ). Then V [G] |= CH.
In fact we can get a diamond sequence.

I think that this is a modification of an exercise in our forcing class. So
already from last time we know that living in V [G] there is a special ω2-A-
tree. So something must go wrong in the elementary embedding proof, but it is
instructive to see exactly what goes wrong.

Let j : V → N witness κ measurable. Then by elementarity j(Coll(ω1, <
κ)) = Coll(ω1, < j(κ))N , which is equal to Coll(ω1, < j(κ))V by the closure of
N under κ-sequences. In fact, given G Coll(ω1, < κ)-generic over V , we can
find H ⊇ G which is Coll(ω1, <j(κ))-generic over V . This is because the Levy
collapse factors nicely. We have the following isomorphism, Coll(ω1, < j(κ)) ∼=
Coll(ω1, <κ)× Coll(ω1, [κ, j(κ))).

Now as the members of Coll(ω1, < κ) are small and crit(j) = κ, for p ∈
Coll(ω1, <κ), j(p) = p.. Recall in Silver’s theorem, the thing that saved us was
the fact that j”G ⊆ H. So we have j”G ⊆ H for rather trivial reasons, G ⊆ H
and j �G is the identity.

So there is j : V [G]→ N [H] with critical point ω2 and all of the same things
hold as be for. So N [H] |= ”there is a branch through T.” Essential in the
proof of measurable κ has the tree property was that N ⊆ V , but note that this
is no longer the case. N [H] * V [G]! In particular, in N [H] we have added a
surjection from ω1 onto κ. So κ is just some random ordinal between ω1 and
ω2 in N [H] and it is clear that this is what added the branch. The extended
collapse added a branch that was not in V [G].
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Furthermore, we can’t save the situation by adding reals after the fact with
cohen forcing, as ccc forcing couldn’t destroy the specialness of our ω2-A-tree.

So the moral of the story is that when we finally get to the end of mitchell’s
argument, we want to show that the extra bit forcing in j of the mitchell poset
did NOT add a branch through our tree. And furthermore we need to add reals
and collapse cardinals simulatenously.

2 The Structure of the Argument

Before defining Mitchell’s poset, I want to say something general about how the
argument is going to go. For the moment we are going to black box the forcing,
which we call M. We are going to end up with the same arrangement as above,
because the mitchell is susceptible to a similar sort of factor analysis as the Levy
collapse.

Let G be M-generic over V . Then we know by Silver’s theorem that we
need to arrange that the pointwise image of G is contained in H, which is j(M)-
generic over V . Now this is going to work out for the following two reasons.
First, j(M) ∼= M ∗ j(M) � κ. We are going to get this factor analysis from a
certain projection. Second, the conditions of M are small relative to the critical
point of j. In fact, we have for all (p, f) ∈M, j(p, f) = (p, f).

What this means is that as before we can choose. A generic for j(M) that
extends G and then for trivial reasons, we have j”G ⊆ H. So thus we get our
lifted embedding.

From our example of the Levy Collapse, we also know that we should be
very interested in the forcing that takes us from our original forcing up to j
of the forcing. In particular, we are going to be interested in this poset that I
have called j(M) � κ. We want to know that this forcing cannot add branches
through our ω2-tree.

Why should we be interested that this forcing doesn’t add branches? As
usual we find that in the image side, N [H], there is a branch through T . By
our factor analysis and a general fact about projections, we can think of N [H]
as N [G][H]. So we then show that forcing with j(M) � κ couldn’t have added
branches through our tree. This shows that the branch in N [G][H] is really in
N [G]. Lastly, we have N [G] ⊆ V [G], so our branch is in V [G] as required.

3 Mitchell’s Result

Recall Mitchell’s result.

Theorem 3.1 (Mitchell). If there exists a weakly compact cardinal κ, then there
is a generic extension V M with the following properties:

1. V M |= 2ω = κ = ω2

2. ω1 is preserved in V M.

3. ω2 has the tree property in V M.

2



4 Mitchell’s Poset

Definition 4.1. Let P = Add(ω, κ) and for all α < κ let P � α be Add(ω, α).
As I said before we will call mitchell’s poset, M. M is the collection of pairs,
(p, f), such that p is a finite partial function from κ to 2 and f is a function
with domain a countable subset of κ and for all α ∈ dom(f), f(α) is a P � α-
name for a condition in Add(ω1, 1)V P�α . For the ordering, let (p, f) ≤ (p′, f ′)
iff p′ ⊆ p, dom(f ′) ⊆ dom(f) and for all α ∈ dom(f ′), p �α VP�α f(α) ≤ f ′(α)
in Add(ω1, 1)V P�α .

Note that we are going to think of Add(ω, κ) as Fn(κ, 2), because they
are really the same thing. So the first coordinate of Mitchell is from P. Our
conditions are pairs and there is some sort of interaction between the first and
second coordinate. This is going to be key in the proof below. The best way
to start understanding this poset is to use it to prove some easy stuff. We will
warm up with parts one and two of Mitchell’s theorem.

5 Sketch Proof of Mitchell’s Theorem

5.1 Part 1

Let G be M-generic over V . We start with proving that

V [G] |= 2ω = κ = ω2

We will do this in two steps. First, we show that 2ω = κ.
Let π : M → P, be given by π(p, f) = p. From our examples last time it

should be obvious that π is a projection. Thus we have V P ⊆ V M. This shows
us that V [G] |= 2ω ≥ κ.

To see that 2ω = κ we use the following fact,

Lemma 5.1. M is κ-cc.

The proof of this is by a usual delta system argument. We do a bunch of
freezing out by fodor’s lemma and create a delta system of size κ.

Using the lemma we can count nice names for subsets of ω, to find that
V [G] |= 2ω = κ.

Next, we need to show that

V [G] |= κ = ω2

To do this we define the following projections. For each α < κ, define πα : M→
P�α ∗Add(ω1, 1)V P�α , by π(p, f) = (p�α, f(α)).

Lemma 5.2. πα is a projection for all α < κ.

Let Jα be the upwards closure of πα”G. From the first fact about projections,
we have for each α < κ, V [Jα] ⊆ V [G] Why does this show that cardinals are
collapsed? To see this we need another lemma.
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Lemma 5.3. Forcing with Add(ω1, 1) forces CH. In particular, if 2ω = η in
the ground model then in the extension there is a surjection from ω1 onto η.

By the lemma, we have for all α < κ, V [Jα] |= ”there is a surjection from
ω1 onto α. So V [G] |= ”for every α < κ there is a surjection from ω1 onto
α.” Then, as M is κ-cc, we know that V [G] |= ”κ is a regular cardinal.” So
V [G] |= κ = ω2.

5.2 Part 2

We want to to show that ω1 is preserved in our extension. To do this we are
going to develop a sort of product analysis that is going to be very important
to us when we argue that ω2 has the tree property in our extension. For this
set up recall that we have defined P = Add(ω, κ).

Definition 5.4. Let the poset R be the set of second coordinates from M together
with the the ordering, r1 ≤ r2 iff dom(r2) ⊆ dom(r1) and for all α ∈ dom(r2),
P�α r1(α) ≤ r2(α) in Add(ω1, 1)V P�α .

Technically speaking, R is the countable support product over α < κ of term
forcings for P�α ∗Add(ω1, 1)V P�α .

Let σ : P× R→M, be given by σ(p, r) = (p, r).

Lemma 5.5. σ is a projection.

Recall our projection from last time that was the identity? So we now have
the following string on inclusions.

V P ⊆ V M ⊆ V P×R

This is going to be tremendously useful to us, but we need to show that we
are in the situation of Easton’s Lemma. To this end, recall the following obvious
fact.

Proposition 5.6. Add(ω1, 1) is countably closed.

Then recall from last time that we had,

Proposition 5.7. If P Q̇ is countably closed, then A(P, Q̇) is countably closed.

By the previous two propositions, it is easy to see the following,

Lemma 5.8. R is countably closed.

So we can apply Easton’s lemma. Inparticular this shows us that in V P×R,
ω1 is preserved. Therefore it is also preserved in V M.

The other fact that is important in the proof of the main theorem is that
ω(V M) ⊆ V P, because R adds no ω sequences by easton’s lemma.
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