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As advertised, today we are going to talk about the preliminaries required
for understanding a result of Mitchell. Con(ZFC + there is a weakly compact
cardinal) implies Con(ZFC + ω2 has the tree property. I’m going to begin with
some of the most basic definitions, like what a tree is, and continue on to talk
about some further results on the subject of Aronszajn trees. These preliminar-
ies are going to be important for understanding the hurdles in Mitchell’s proof.
We begin with the definition of a tree and some general nonsense about trees.

Definition 1.1. (T,<T ) is a tree if and only if (T,<T ) is a partial order, i.e.
transitive and irreflexive, and for every x ∈ T , the set {t ∈ T : t <T x} is a
linear ordering.

In general, I will probably drop the sub T on the linear ordering, because it
should be clear from context that we are using the tree ordering. If it is ever
unclear, let me know.

Definition 1.2. The α-th level of T , denoted LevαT , is the {x ∈ T : o.t.({t ∈
T : t <T x}) = α}

Definition 1.3. The height of T is the sup
x∈T

o.t.{t ∈ T : t <T x}

Now we can say when a tree of height κ has a κ-branch.

Definition 1.4. A tree T has a κ–branch if and only if there is a B ⊆ T such
that B is linearly ordered by <T and |B| = κ

We are going to be interested in when certain kinds of trees have branches.
Let’s make that precise.

Definition 1.5. Let κ be a regular cardinal. A tree T is a κ–tree if and only if
T has height κ and for all α < κ |LevαT | < κ

Now we can define the notion of an Aronszajn Tree.

Definition 1.6. A κ–tree T is Aronszajn if and only if it has no κ–branch.

And now we define the concept that is central to our subsequent discussion.

Definition 1.7. Let κ be a regular cardinal. κ has the Tree Property if and
only if there are no κ -A-trees.
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Remark 1.8. κ has TP if and only if every κ tree has a branch.
This is is a positive charcterization that is easier to think about then the

definition and is obviously equivalent.
The immediate question is, Which cardinals have the tree property and

which don’t? Inorder for the tree property to fail we must construct an A–tree
and for it to hold we need to show that every potential A–tree actually has a
branch.

So let’s begin at the beginning. What about ω?

Theorem 1.9 (König Infinity Lemma). If T is a tree of height ω with |LevnT | <
ω for all n < ω, then T has an ω branch.

Proof. We are going to pick our branch inductively. First, note that an element
can’t have infinitely many incomparible immediate successors, becuase then we
would have an infinite level. So starting at the root, we only have finitely many
choices and we pick the next element of the branch to be an element with
infinitely elements above it. There must be such an element becuase otherwise
the tree would be finite and thus couldn’t have height ω. Clearly we can continue
to pick in this way and this gives us a branch.

Corollary 1.10. ω has the tree property

What about ω1?

Theorem 1.11 (Aronszajn). There is an ω1-A-tree.

Sketch. We use bounded increasing sequences of rational numbers, because this
proof lends itself to generalizations, which we will see later. Key in the proof is
the fact that the rationals are dense. So if x, y ∈ ωQ are bounded, then we let
x ≤ y if and only if x ⊆ y. T is going to be downwards closed so if y ∈ T and x
is an initial segment of y, then x ∈ T . By using Q and the ordering as defined
we are ruling out the possibility of a branch as there is no increasing sequence
of ω1 rationals. So T will be Aronszajn provided that we can give T height ω1

and have all of T ’s levels be countable.
To this end we arrange the following inductive assumption:

For every β < α, x ∈ LevβT , and q ∈ Q with q > supx, there exists a y ∈ LevαT
such that x ⊆ y and sup y ≤ q.

Note that we want to make sure that each new level is countable. So at the
successor step we add one element to the top of each sequence in the previous
level to get an element on the new level. This takes the sequence of order type
α to a sequence of order type α + 1. And we can do this while satisfying the
inductive hypothesis, because the rationals are dense. For a limit α, we fix an
x ∈ LevβT for β < α. We know that the cofinality of α is ω and we pick a
cofinal omega sequence of ordinals beginning at β. Then by repeated use of the
inductive assumption we grow a sequence of rationals of order type α along this
sequence of ordinals. So the element on the limit level will be a union of our
sequence of sequences. We have to be careful about the bound of our sequence,
but again this is going to work because the rationals are dense. And this does
it.

2



Next, we have a generalization of the previous result.

Theorem 1.12 (Specker). If κ<κ = κ then there is a κ+-A-tree.

Super sketch. We use the cardinal arithmetic assumption to construct a satu-
rated linear order and then the proof is almost word for word the same as the
proof for the rationals except that our confinal sequence of ordinals is going to
be longer.

Example 1.13. CH ⇒ ℵℵ0
1 = ℵ1 ⇒ ℵ<ℵ1

1 = ℵ1 ⇒ there is an ω2-A-tree.

This is going to be a very important example for us. The above A-trees,
with a slight modification in the construction, are special in the following sense.

Definition 1.14. A κ+-A-tree is special if and only if there is a function f :
T → κ such that if x, y ∈ T and x < y, then f(x) 6= f(y).

We are going to switch topics a little, moving from constructing Aronszajn
trees to arranging the tree property, ie that there are no Aronszajn trees.

Here is where large cardinals come in to the picture. Many large cardinals
have the tree property. In fact, the tree property ’starts’ at weakly compact
cardinals. Let’s make that more precise.

Definition 1.15. An innacessible cardinal κ is Weakly Compact if and only if
for every transitive set M |= ZFC−P with |M | = κ, H(κ) ⊆M and <κM ⊆M ,
there is a nontrivial elementary embedding k : M → N for some transitive set
N with crit(j)= κ.

Theorem 1.16. A cardinal κ is weakly compact if and only if κ is strongly
inaccessible and has the tree property.

Recall: κ is strongly inaccessible if and only if it is a regular strong limit
cardinal.

I think that most people here have seen this theorem. It could go many
different ways depending on the definition of weakly compact that you choose.
The relevant result for us is the following:

Theorem 1.17. If κ is a measurable cardinal then κ has the tree property.

Recall

Definition 1.18. A cardinal κ is measurable if and only if there is a nontrivial
elementary embedding j : V → N with crit(j)= κ and κN ⊆ N for some
transitive class N .

Proof. Let j witness κ measurable. By elementarity, N thinks that j(T ) is a
j(κ)-tree. By elementarity and because crit(j)= κ, for all α < κ LevαT =
Levαj(T ). So j(T ) � κ = T . As N thinks j(T ) is a j(κ)-tree, then N thinks
Levκj(T ) 6= ∅. So N can read of a branch through T , it is just the set of
predecessors of some point on level κ of j(T ). This branch is definable in N
and it really is a branch through T in V , because the ordering on T is absolute
between V and N .
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This more or less ends the ’easy’ results about the tree property. From here
on I am going to survey some of the major consistency results that continue this
line of research. I will begin by stating Mitchell and a dual result to Mitchell’s
due to Silver.

Theorem 1.19 (Silver). If ω2 has the tree property then ω2 is weakly compact
in L.

Theorem 1.20 (Mitchell). If there exists a weakly compact cardinal κ, then
there is a generic extension V M with the following properties:

1. V M |= 2ω = κ = ω2

2. ω2 has the tree property in V M.

Together these give us that the tree property at ω2 and a weakly compact
cardinal are equiconsistent. Over the next two talks, I will present a sketch
proof of Mitchell’s argument where we assume the existence of a measurable
cardinal. This added assumption will ease the discussion somewhat.

Let’s survey some of the more difficult results in this line of research.

Theorem 1.21. (Magidor) If ω2 and ω3 have the tree property then 0] exists.

Magidor’s result tells us that if we want to have the tree property at two
succesive cardinals then we are going to need more than just two weakly compact
cardinals.

In fact, much more is true in this line of thinking.

Theorem 1.22 (Foreman, Magidor, Schindler). If ωn has the tree property for
all n with 2 ≤ n < ω, then for all X ∈ H(ℵω), M ]

n(X) exists.

We begin with a definition.

Definition 1.23. A cardinal κ is λ-supercompact if and only if there is an
elementary embedding j : V → N with crit(j)= κ, λ < j(κ) and λN ⊆ N . And
κ is supercompact if and only if it is λ-supercompact for all λ

Theorem 1.24 (Foreman and Cummings). If there is an ω-sequence of su-
percompact cardinals then there is a forcing extension in which ℵn has the tree
property for all 2 ≤ n ≤ ω.

Theorem 1.25 (Magidor and Shelah). If λ is the singular limit of λ+-supercompact
cardinals then λ+ has the tree property.

Which is used in the proof of the following:

Theorem 1.26 (Magidor and Shelah). From very large cardinal assumptions,
it is consistent that ℵω+1 has the tree property.

Interestingly, in the Magidor, Shelah construction 2ℵω = ℵω+1. And by
Specker, this gives a special ℵω+2-A-tree. This is a problem if we want to
arrange the tree property at both ℵω+1 and ℵω+2. Itay Neeman’s result is a
good first step in this direction.
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Theorem 1.27 (Neeman). Assuming that there are ω many supercompact car-
dinals, then it is consistent that there is a cardinal κ with the following proper-
ties:

1. κ is a strong limit cardinal of cofinality ω.

2. 2κ = κ++.

3. κ+ has the tree property.

The first two conditions imply that the Singular Cardinal Hypothesis fails
at κ.

That is all that I have for this first talk. Next week I will talk about the
general forcing facts needed for the Mitchell construction with κ measurable
and hopefully end with the motivation for and the definition of Mitchell’s poset.
The last talk will be devoted to a sketch of why the construction works. I of
course reserve the right to change the plan as needed.
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