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Abstract. The purpose of this talk is to give the non-set theorist
an introduction to large cardinals. Little set theory will be assumed
and some basic set theoretic concepts will be reviewed. The talk
has two main aims. The first is to present a few large cardinal
assumptions as direct generalizations of properties of the natural
numbers. The second is to try to gain some insight in to the
question ‘Why are large cardinals large?’

The aim of this talk is to give the non set theorist an introduction to
large cardinals. This is going to be a little bit tricky. Large cardinals
are inherently set theoretic things. The point of this talk is to show
that some basic large cardinal axioms can be obtained by generalizing
combinatorial properties of the natural numbers to uncountable sets.
Here is a rough outline of what I’m going to say.

(1) Review the axioms of set theory.
(2) An introduction to ordinals and cardinals.
(3) Sets, classes and inaccessible cardinals.
(4) Some properties of the natural numbers.
(5) Generalizations to uncoutable sets.
(6) Why are large cardinals large?

1. Axioms of Set Theory

This is sometimes a scary topic for people. However, many of the
axioms of set theory are just boneheaded statments about what should
be true about sets. Here are some boneheaded axioms with boneheaded
formulations.

(1) A set is determined by its elements.
(2) If A,B are sets, then {A,B} is a set.
(3) If I can define a function whose domain is a set, then the range

is also a set.
(4) Unions exist (Logicians are a little picky about how this is stated

so I’ll omit it.)
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(5) The collection of members of a set statisfying a property is a
set.

(6) The collection of all subsets of a set is a set.

So what are we missing. From here we get less boneheaded, but we
have more controversy in two cases and less intuition in another.

(1) There is an infinite set. (This one really opens up a large can
of worms. Emphasis on large.)

(2) There are no infinite decreasing ∈-chains (????)
(3) The axiom of choice.

Not too many people dispute the axiom of infinity. Regularity is
a little confusing, but if you think about it this seems like a natural
property to demand of the membership relation. And I’m not really
going to say anything about choice. The only thing I’ll say is that set
theory can be really weird without choice.

So this was worth mentioning I hope, because a very basic fact about
large cardinals is that they are extra assumptions. They provably go
beyond the axioms of ZFC. Maybe more on this later. We’ll end this
section with a fact.

Fact 1.1. The set of all sets is not a set.

2. Ordinals and Cardinals

A few definitions.

Definition 2.1. A set X is transitive if and only if for every x, y, if
x ∈ y ∈ X, then x ∈ X.

This is a definition that comes up all the time in set theory and
practically nowhere else that I’ve seen.

Definition 2.2. (W,<) is a well ordering if and only if it is a linear
ordering with no infinite decreasing chain.

Set theorists like things with ‘well’ in front of them. We’ll see why
in a second.

Definition 2.3. A set α is an ordinal if and only if α is transitive and
(α,∈) is a well order.

Some facts about ordinals.

Fact 2.4. Every well ordering is isomorphic to an ordinal.

Fact 2.5. If α is an ordinal, then α∪ {α} is an ordinal. The union of
a set of ordinals is an ordinal.
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Fact 2.6. The collection of all ordinals is not a set, but it is transitive
and well ordered by ∈.

We can define the collection of all ordinals. We’ll call it On. So
x ∈ On will be short hand for ‘x is an ordinal’. So if On were a set,
then it would be an ordinal. Ordinals are the spine of the set theoretic
universe.

Definition 2.7. An ordinal κ is a cardinal if and only if there is no
surjection from an ordinal β < κ on to κ.

(This is probably ok, since I’m assuming choice.)

Fact 2.8. (AC) Every set is in bijection with a unique cardinal.

Nice properties of cardinals

Definition 2.9. A cardinal κ is called singular if it is the union of
fewer than κ many cardinals less than κ

Definition 2.10. A cardinal κ is regular if it is not singular

So being a regular cardinal is a nice property. It says that the only
way to approach κ from below is via κ-many steps.

Let’s think about how we create larger and larger cardinals in set
theory.

Fact 2.11. For every ordinal there is a cardinal.

Proof. This is sort of abstract, but it follows from what I’ve said so far.
Suppose that κ is a cardinal. Then the cardinality of P(κ) is greater
than κ by a well known theorem of Cantor. Let κ+ be the least cardinal
greater than κ. We know there is one and the ordinals are wellfounded
so there is a least one.

Suppose that κα for α < β is an increasing sequence of cardinals.
Then µ =

⋃
α<β κα exists using replacement and the union axiom. It

is not hard to show that µ is a cardinal using the definition. �

Fact 2.12. The collection of all cardinals Card is not a set.

3. Sets,Classes and Inaccessible Cardinals

So we’ve seen some examples of sets and classes. However, it turns
out that what is a set and what is a class depends on the model of Set
theory you are working in.

We proved in the last section that there are an essentially limitless
number of ordinals. The question that is going to lead us to inacces-
sibility is ‘What happens in the limit of this process of constructing



4 SPENCER UNGER

ordinals?’ We can just go on forever finding larger and larger cardi-
nals/ordinals until we construct things that are not sets.

This is a little unsatisfying. I can talk about the class of ordinals or
the class of cardinals, but I cannot use them as I would sets. So here
is an additional albeit informal hypothesis that I might make.

Informal Hypothesis 3.1. On is a set.

This is not really a great leap. We’ve talked about On (we defined
it) and we said that if it were a set it would be an ordinal.

Let’s explore what properties the set On would have. Notice that
On =

⋃
α∈On α =

⋃
α∈Card α. We said above that the union of a st of

cardinals is a cardinal, so On is a cardinal!
Moreover it is a regular cardinal. For any increasing sequence of

fewer than On many cardinals it’s supremum is still less than On, since
it’s supremum is one of the cardinals we constructed when we first
showed there was a class of cardinals.

Moreover for each cardinal κ < On, |P(κ)| < On, since P(κ) is
one of the cardinals from our original construction. This property of a
cardinal is called being strong limit.

Formal Hypothesis 3.2. There is an uncountable regular strong limit
cardinal.

Such cardinals are called inaccessible. We’ll state the most important
consequence of the existence of an inaccesible cardinal.

Let’s define everything.

V0 = ∅
Vα+1 = P(Vα)

Vβ =
⋃
α<β

Vα

V =
⋃
α∈On

Vα

V is a class and so the definition in the fourth line is a fake. We cannot
take the union over all ordinals. If V were a set, then it would be a
model of set theory. We’ve run in to this before in a slightly different
way with On.

Fact 3.3. If κ is an inaccessible cardinal then (Vκ,∈) is a set model of
ZFC

It is not hard to show that the statement ‘There is an inaccessible
cardinal κ’ is independent of ZFC. So ZFC plus ‘there is an inaccessible
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cardinal’ is really a stronger set of axioms than just ZFC. To end this
section let me justify a previous remark. Suppose that κ is an inac-
cesible cardinal. Then working in (Vκ,∈), κ is a proper class. While
in the real world, we know that κ is a set. So in the presence of large
cardinals the notion of class is relative to the model of set theory in
which we’re working.

4. Properties of ω

For this talk ω = N = {0, 1, 2, 3 . . . }. We take the elements n ∈ ω
to be the finite ordinals. By doing this we see that ω is a cardinal!
Moreover,

Fact 4.1. ω is a strong limit cardinal.

So ω is almost a large cardinal except that it is countable... Let’s
talk about some other properties of ω.

Fact 4.2. For every 2-coloring of unordered pairs from ω, there is an
infinite homogeneous set.

This is just infinite Ramsey theorem. Let’s prove it.

Proof. Suppose that f : [ω]2 → 2. Note that 2 is an ordinal, so 2 =
{0, 1}. For each n ∈ ω there is a function fn : (ω \ n) → 2 given
by fn(m) = f(n,m). (We’ll assume that writing f(n,m) means that
n < m.)

Define an infinite sequence of natural numbers, 〈kn | n ∈ ω〉 and
infinite sequence of subsets of the natural numbers 〈Hn | n < ω〉. Let
k0 = 0 and H0 = ω. Suppose we’ve defined kn and Hn. Consider fkn .
There is an infinite Hn+1 ⊆ Hn such that fkn is constant on Hn+1. Let
kn+1 be the least element of Hn+1 and record the color in.

Consider the map n 7→ in. It is constant on an infinite L ⊆ ω. It is
not hard to see that {kn | n ∈ L} is homogeneous. �

Fact 4.3. There is a nonprincipal ultrafilter on ω.

Definition 4.4. An ultrafilter U on X is principal if there is an a ∈ X
such that U = {A ⊆ X | a ∈ A}.

So principal ultrafilters are trivial in some sense. Nonprincipal ultra-
filters are not principal. Using Zorn’s lemma we can see that every filter
can be extended to a maximal filter. Maximal filters are ultrafilters.
So it is enough to start with a filter that will end us up with a non-
principal ultrafilter. It is straightforward to see that F = {A ⊆ ω | A
is cofinite } always extends to a nonprincipal ultrafilter.
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5. Large Cardinal Properties

We’ve already discussed inaccessible cardinals. The closest that I’ll
get to giving a definition of large cardinals is that a cardinal is large
if it is inaccessible. In this section we’ll define some large cardinal
properties using the facts we proved about ω.

Definition 5.1. A cardinal κ is weakly compact if it is uncountable
and for every 2-coloring of unordered pairs from κ, there is a κ sized
homogeneous set.

This is exactly the property that we had before but we’ve required
that our cardinal be uncountable. For the next one I’ve been slightly
dishonest.

Definition 5.2. An ultrafilter U is κ-complete if it is closed under
intersections of fewer than κ many sets.

Definition 5.3. A cardinal κ is measurable if it is uncountable and
there is a nonprincipal, κ-complete ultrafilter on κ.

So if we removed uncountability ω would be measurable, since ω-
complete just means closed under finite intersections (which is true of
all filters).

6. Why are large cardinals large?

So we’ve seen that inaccessible cardinals are large in the sense that
they are the limit of some process applied to cardinals below. We’ll end
with showing that weakly compact are inaccessible and that measur-
able cardinals are weakly compact. This will justify calling in weakly
compact and measurable cardinals large.

Recall that κ is inaccessible if it is an uncountable regular strong
limit cardinal. For the first proof we’ll need a fact which I won’t prove.

Fact 6.1. Let µ be a cardinal. There is a coloring of pairs from 2µ

with no homogeneous set of size µ+.

It essentially comes down to the fact that if we order 2µ lexicograph-
ically, then there is no chain of length µ+.

Fact 6.2. If κ is weakly compact, then it is inaccessible.

Proof. It is enough to show that κ is regular and strong limit. Suppose
for a contradiction that κ is singular. In particular assume that κ =⋃
α<β κα for some β < κ and κα’s for α < β.
We’d like to define a coloring to get a contradiction. For δ < γ < κ,

define f(δ, γ) = 0 if there is an α < β such that δ < κα < γ and
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let f(δ, γ) = 1 otherwise. We get a set H ⊆ κ of size κ which is
homogeneous for f .

Suppose that H is 1-homogeneous. Let δ be the least member of H.
Let α be least such that δ ∈ κα. It follows that for all γ ∈ H, γ ∈ κα by
homogeneity. This is impossible, since then we’d have κ-many distinct
members of κα which is less than κ.

Suppose that H is 0-homogeneous. For each γ ∈ H, let αγ be the
least ordinal such that γ ∈ καγ . By homogeneity it follows that γ 7→ αγ
is a one-to-one map from a set of size κ in to β, which is less than κ.
This contradicts that κ is a cardinal.

The fact that I didn’t prove will allow us to show that κ is strong
limit. Assuming that there is a µ such that 2µ = |P(µ)| ≥ κ. We can
find a coloring of [κ]2 with no homogeneous set of size µ+. �

For the second fact I need an extra property and another fact that I
won’t prove.

Definition 6.3. An ultrafilter U on κ is normal if for every sequence
of sets Aα for α < κ with Aα ∈ U for all α < κ, the set {β | β ∈⋂
α<β Aα} ∈ U .

Fact 6.4. If there is a nonprincipal κ-complete ultrafilter on κ, then
there is normal nonprincipal κ-complete ultrafilter on κ.

We’ll try to repeat the proof that we gave for ω with the use of our
nice ultrafilter. Note if U winesses that κ is measurable, then κ\α ∈ U
for all α < κ.

Fact 6.5. If κ is measurable, then κ is weakly compact

Proof. Let U be a normal, nonprinicipal, κ-complete ultrafilter on κ.
Let f : [κ]2 → 2. For each α < κ, define fα by fα(β) = f(α, β).

For each α < κ, there is a measure one set Aα and iα ∈ 2, such that
fα is constant on Aα with value iα. We can do this since fα partitions
the measure one set κ \ α into 2 pieces. One of these pieces must be
measure one, since U is an ultrafilter.

Let D = {β | β ∈
⋂
α<β Aα} ∈ U . D is the disjoint union of

{β ∈ D | iβ = 0} and {β ∈ D | iβ = 1}. One of these is U -measure
one. Name the set H and let i ∈ 2 be such that i = iβ for all β ∈ H.

Suppose that α < β are both in H. Since α, β ∈ D, β ∈ Aα. It
follows that f(α, β) = iα = i. It is easy to show that all measure one
sets have size κ using κ-completeness. So we’re done. �

We could have given a proof without normality that even more closely
resembles the proof of infinite Ramsey theorem, but notice we proved
the stronger claim that there is a homogeneous measure one set.
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That’s it, thanks!


