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Abstract. We show that from large cardinals it is consistent to have
the tree property simultaneously at ℵω2+1 and ℵω2+2 with ℵω2 strong
limit.

1. Introduction

The study of the tree property is motivated by the König infinity lemma
[7] which states that every infinite finitely branching tree has an infinite path.
It is an instance of compactness for countable objects. The tree property at
a cardinal κ states that every tree of height κ with levels of size less than
κ has a cofinal branch. In particular, the König infinity lemma is just the
tree property for ℵ0. A counterexample to the tree property at κ is called
a κ-Aronszajn tree after Aronszajn who constructed an ℵ1-Aronszajn tree
[8]. An Aronszajn tree is a canonical example of an incompact object. It
is natural to ask: “Is it possible to construct a κ-Aronszajn tree for some
regular κ > ℵ1 in ZFC?” This is an important special case of an the area
of modern set theory which studies the extent of incompactness in ZFC. In
this paper we make a step towards proving that the answer to the above
question is no.

Partial progress towards this answer is measured by producing models
where some regular cardinals have the tree property. An important con-
straint on such models comes from a theorem of Specker [15]. If κ<κ = κ,
then there is a κ+-Aronszajn tree. In particular if κ++ has the tree property,
then we must have 2κ > κ+.

There is a large body of research on this problem. We refer the reader to
the introductions of [18] and [14] for a review of previous results. Results
thus far can be broken into two categories. The first is a ground up approach
where one forces the tree property on longer and longer initial segments
of the regular cardinals. The second involves forcing the tree property at
the successors of a singular strong limit cardinal. Note that by Specker’s
theorem, if the tree property holds at κ++ for a singular strong limit cardinal,
then singular cardinals hypothesis (SCH) fails at κ. Models for the failure
of SCH by itself require the consistency of large cardinals and are typically
obtained by Prikry type forcing.
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The techniques from the first approach can only produce models where
the initial segment of regular cardinals with the tree property is bounded
by the first singular strong limit cardinal. Extending this initial segment
through the first singular strong limit will require some ideas from the second
approach and in particular Prikry type forcing.

In this paper we improve the best known result in the second approach.
In particular we prove:

Theorem 1.1. If there is an increasing ω-sequence of supercompact cardi-
nals with a measurable cardinal above, then there is a forcing extension in
which ℵω2 is strong limit and both ℵω2+1 and ℵω2+2 have the tree property.

We use a variation of a Prikry forcing due to Gitik and Sharon [6] where
we have prepared in advance that the cardinal which will become ℵω2+2

has the tree property. This preparation uses a variation of a forcing due to
Mitchell [10].

Recently, the first author [14] showed that it is consistent to have κ sin-
gular strong limit where κ+ and κ++ have the tree property by improving
a result of the second author [16]. In this paper, we show that it is possible
to make κ into ℵω2 . By necessity the construction is different from the one
in [16] and [14].

The reader should be advised that this paper uses the ideas of many pre-
vious papers in a new more technical setting. We make use of the following:

(1) the argument from the first author’s paper [13] on the tree property
at ℵω2+1,

(2) Mitchell’s poset [10] as presented in [1], and
(3) the proof of Lemma 1.3 in the second author’s paper [17].

The paper is outlined as follows. In Section 2, we fix some notation,
construct the main forcing and show that the extension has the desired
cardinal structure. In Section 3 we prove that ℵω2+1 has the tree property
in the extension by repeating an argument from [14] in a new context. In
Section 4, we show that ℵω2+2 has the tree property in the extension by
proving a new preservation lemma, which is of independent interest. In
Section 5, we make some concluding remarks and ask some open questions.

2. The main poset

We start in a model V of GCH. Let 〈κn | n < ω〉 be an increasing sequence
of supercompact cardinals and λ be the least measurable cardinal greater
than supn<ω κn. For ease of notation we set κ0 = κ, ν = supn<ω κn and
µ = ν+. Using a Laver function F we can find an embedding j : V → M
witnessing that κ is λ-supercompact such that j(F )(κ) = 〈λ, 〈κn | n < ω〉〉.
A standard reflection argument shows that there is a measure one set Z in
the normal measure derived from j such that for every α in Z, α is closed
under F and if F (α) = 〈λα, 〈αn | n < ω〉〉, then λα is measurable and each
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αn is < λα -supercompact. We retain the notation λα and αn for the output
F (α) and drop the use of F .

We define an iteration of Mitchell-like posets and Levy collapses which
form the preparation for our construction.

Definition 2.1. Let ρ < σ < τ be cardinals. Let P(ρ, τ) be Add(ρ, τ) and
define M(ρ, σ, τ) to be the collection of pairs (p, f) such that p ∈ P(ρ, τ)
and f is a partial function with dom(f) ⊂ τ \ σ a set of successor ordinals,
| dom(f)| < σ and for all γ ∈ dom(f), f(γ) is a P(ρ, τ) � γ-name for
an element of Add(σ, 1). We set (p1, f1) ≤ (p0, f0) if p1 ≤ p0 in P(ρ, τ),
dom(f1) ⊇ dom(f0) and for all γ ∈ dom(f0), p1 � γ 
 f1(γ) ≤ f0(γ).

Note that M(ω, ω1, τ) where τ is weakly compact is Mitchell’s original
poset as described in [1].

Definition 2.2. Let ρ < σ < τ be cardinals. Define

Q(ρ, σ, τ) := {f | (1P, f) ∈M(ρ, σ, τ)}.

For the order, we say that f ′ ≤Q f if (1P, f
′) ≤M (1P, f).

We list some standard claims about these posets assuming that ρ and σ
are regular. Proofs of these facts can be found in [1]. For ease of notation
we drop the cardinal parameters ρ, σ and τ .

(1) M is ρ-closed and τ -cc assuming τ is inaccessible.
(2) Q is σ-closed and τ -cc assuming τ is inaccessible.
(3) There is a projection map from P×Q to M given by (p, f) 7→ (p, f).
(4) The natural restriction map from M to M � α is a projection map.
(5) For all regular α < τ in the extension by M � α, there are posets

M′,P′ and Q′ such that M′ is isomorphic to a dense subset of M/M �
α and M′ is the projection of P′ × Q′ as in item (3). Moreover, in
the extension by M � α, Q′ has the properties of Q in item (2) and
P′ is isomorphic to the Cohen forcing P.

The final item is a combination of the discussion below Definition 2.7 and
Lemma 2.12 of [1].

We define an iteration Aκ with reverse Easton support where we do non-
trivial forcing at α ∈ Z. For α in Z we force with the full support iteration
L(α) of Levy Collapses to make αn into α+n and in the extension we force
with M(α)×Add(α, λ+

α \ λα) where M(α) = M(α, α+ω+1, λα).

Let G be Aκ-generic and let H = H0∗H1∗H2 be generic for L(κ)∗Ṁ(κ)×
Add(κ, λ+ \ λ). It is not difficult to see that in V [G ∗H], κn = κ+n for all
n < ω (hence ν = κ+ω), µ is preserved and λ = µ+ = κ+ω+2.

For ease of notation we drop the parameter κ from L and M. Recall that
j : V →M is an elementary embedding witnessing that κ is λ-supercompact.
We need a careful lifting of j to the model V [G ∗H].

Lemma 2.3. In V [G ∗H], there are generics G∗ ∗H∗ for j(Aκ ∗ (L ∗M×
Add(κ, λ+ \λ)) such that j extends to j : V [G∗H]→M [G∗ ∗H∗] witnessing



4 DIMA SINAPOVA AND SPENCER UNGER

that κ is λ-supercompact and for all γ < j(κ), there is a function f : κ→ κ
such that j(f)(κ) = γ.

Proof. By the closure of M , j(Aκ)/G∗H is λ+-closed in V [G∗H]. Moreover
since j(κ) is inaccessible and j(Aκ) is j(κ)-cc inM , the poset j(Aκ)/G∗H has
just |j(κ)| = λ+ antichains in M [G∗H]. So in V [G∗H] we can find a generic
I for j(Aκ)/G ∗H over M [G ∗H]. We let G∗ be the j(Aκ)-generic obtained
from G ∗H ∗ I. From the work so far we can lift to j : V [G]→M [G∗].

Next we consider j(L∗(Ṁ× ˙Add(κ, λ+\λ))) as computed in M [G∗]. First
we construct a master condition for j“H0, which is a member of M [G∗] by
the closure of M . Note that j“H0 is a directed set of cardinality µ in the
poset j(L) which is j(κ)-directed closed. So we can take a lower bound l∗

for j“H0. There are λ+-many antichains, and j(L) is λ+-closed, so we build
a generic H∗0 in V [G ∗H] for j(L) which contains l∗.

Next, we construct a master condition for j“H1, which again is in M [G∗]
by the closure of M . We let p∗ be the union of the first coordinates of j“H1

and Y be the union of the domains of the second coordinates of j“H1. Since
j(κ) > λ, p∗ is a potential first coordinate in j(M). Moreover since H1 is a
filter, we have that for all γ ∈ Y , p∗ � γ forces that {f(γ) | f is a second
coordinate of j“H1} is a directed set in j(Add(κ+ω+1, 1)). We let f∗(γ)
be a j(P) � γ-name for a condition forced by p∗ � γ to be a lower bound
for this set. As before, j(M) is λ+-closed and the number of antichains for
this poset in M [G∗][H∗0 ] is λ+. So we build a generic H∗1 in V [G ∗ H] for
j(M) containing (p∗, f∗). This allows us to lift the embedding further to
j : V [G ∗H0 ∗H1]→M [G∗ ∗H∗0 ∗H∗1 ].

Next, we find a generic object for Add(j(κ), j(λ+ \ λ)) following an ar-
gument from Gitik-Sharon [6]. In preparation let 〈ηα | α ∈ λ+\λ〉 be an enu-
meration of j(κ). Note that j is continuous at λ+ and hence Add(j(κ), j(λ+)\
j(λ)) =

⋃
α<λ+ Add(j(κ), j(α) \ j(λ)). Moreover if we have an increasing

sequence of generics for 〈Hα | α ∈ (λ+ \ λ) ∩ cof(λ)〉 such that for each α,
Hα is generic for Add(j(κ), j(α) \ j(λ)) over M [G∗ ∗H∗0 ∗H∗1 ], then

⋃
αH

α

is generic for Add(j(κ), j(λ+ \ λ)) over the same model.
Using the typical argument of counting antichains, we can find a generic

I for Add(j(κ), j(λ+ \ λ)) over M [G∗ ∗H∗0 ∗H∗1 ]. We then modify I to be
compatible with j. For each α ∈ (λ+ \λ)∩ cf(λ), let Iα be the restriction of
I to a generic for Add(j(κ), j(α)\j(λ)). Let Hα be the natural modification
of Iα to include the condition (

⋃
j“H2 � α)∪{((j(β), κ), ηβ) | β < α}. Since

we have only changed a small part of Iα, Hα remains generic. Moreover,
the sequence of Hα is increasing and hence H∗2 =

⋃
αH

α is a generic for
Add(j(κ), j(λ+ \ λ)) which allows us to lift the embedding to j : V [G ∗H0 ∗
H1 ∗H2]→M [G∗ ∗H∗0 ∗H∗1 ∗H∗2 ].

Letting H∗ = H∗0 ∗ H∗1 ∗ H∗2 , it is easy to see that we have the desired
lifting of j to j : V [G ∗H]→M [G∗ ∗H∗]. �

Remark 2.4. The reason we forced with Add(λ+ \ λ, κ) after the Mitchell
poset is precisely to get functions from κ to κ to represent ordinals below
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j(κ). This is used in the argument below to get guiding generics for the
interleaved collapses in the Prikry forcing.

Working in V [G ∗H] for n < ω we define the following:

(1) Let Un be the supercompactness measure on Pκ(κ+n) derived from
j.

(2) Let jn : V [G ∗H]→ Ult(V [G ∗H], Un) 'Mn

(3) Let kn be the factor map fromMn toM [G∗∗H∗] defined by jn(F )(jn“κ+n) 7→
j(F )(j“κ+n). Then j = kn ◦ jn

The following sequence of claims are standard consequences of the previ-
ous lemma, and we only sketch the proofs. For a more detailed presentation
in a similar context, see [6].

Claim 2.5. The critical point of kn is greater than j(κ).

Proof. We arranged that for every γ < j(κ), there is f : κ → κ with
j(f)(κ) = γ. It follows that j(κ) + 1 ⊂ ran kn �

Claim 2.6. In V [G∗H], there is a generic K for Coll(κ+ω+3, < j(κ))M [G∗∗H∗]
over M [G∗ ∗H∗].

Proof. This is by a standard counting argument, using that there are κ+ω+3-
many antichains to meet and the poset is κ+ω+3-closed. �

We set Kn = {c ∈ Coll(κ+ω+3, < jn(κ))Mn | kn(c) ∈ K}.

Claim 2.7. Kn is Coll(κ+ω+3, < jn(κ))-generic over Mn.

Proof. Kn is clearly a filter. Now, if A ∈ Mn is a maximal antichain in
Coll(κ+ω+3, < jn(κ)), then by the chain condition, |A| < jn(κ), and so
kn(A) = kn“A is a maximal antichain in Coll(κ+ω+3, < j(κ))M [G∗∗H∗]. �

Using the generics Kn and ultrafilters Un we define a Prikry forcing with
interleaved collapses R as in the first author’s [13]. More precisely, for each
i, let Xi = {x ∈ Pκ(κ+i) | κx is inaccessible, o.t.(x) = κ+i

x }. Conditions are
of the form r = 〈d, x0, c0, ..., xn−1, cn−1, An, Cn, ...〉, where

• for i < n, xi ∈ Xi, and for i ≥ n, Ai ∈ Ui and Ai ⊂ Xi.
• for i < n− 1, xi ⊆ xi+1, |xi| < κxi+1 and ci ∈ Coll(κ+ω+3

xi , < κxi+1),

• cn−1 ∈ Coll(κ+ω+3
xn−1

, < κ),

• if n > 0, then d ∈ Coll(ω, κ+ω
x0 ), otherwise d ∈ Coll(ω, κ),

• for i ≥ n, dom(Ci) = Ai, [Ci]Ui ∈ Ki and for all x ∈ Ai, Ci(y) ∈
Coll(κ+ω+3

y , < κ).

For a condition as above, the stem of r is 〈d, x0, c0, ..., xn−1, cn−1〉 and
we denote it by s(r). The natural number n is the called the length of the
condition r. We sometimes refer to the length of a stem with the obvious
interpretation.

The order is typical for Prikry type forcings. Let r be as above and sup-
pose that r′ = 〈d′, x′0, c′0, . . . x′m−1, c

′
m−1, A

′
m, C

′
m, . . . 〉 is another condition.

Then r ≤ r′ if n ≥ m and
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(1) d ≤ d′,
(2) for i < m, xi = x′i and ci ≤ c′i,
(3) for i in [m,n), xi ∈ A′i and ci ≤ C ′i(xi),
(4) for i ≥ n, Ai ⊆ A′i and for all y ∈ Ai, Ci(y) ≤ C ′i(y).

We write r ≤∗ r′ if r ≤ r′ and n = m and say that r is a direct extension
of r′. Note that two conditions with the same stem are compatible. We
denote the weakest common extension (also with the same stem) of two
such conditions by r1 ∧ r2.

Standard arguments show the following (for more details, see [6]):

Proposition 2.8.

(1) After forcing with R, for each n ≥ 0, the cofinality of (κ+n)V [G∗H]

becomes ω.
(2) R has the κ+ω+1 chain condition.
(3) P has the Prikry property: if p is a condition with length at least 1

and φ is a formula, then there is a direct extension p′ ≤∗ p which
decides φ.

From this is it is straightforward to show that the extension by R has the
desired cardinal structure.

Claim 2.9. In the extension of V [G ∗H] by R, κ = ℵω2, (κ+ω+1)V [G∗H] =

ℵω2+1, λ = (κ+ω+2)V [G∗H] = ℵω2+2 and cardinals above λ are preserved.

Note that 2ℵω2 = ℵω2+3. It remains to show that that the tree property
holds at ℵω2+1 and ℵω2+2.

3. The tree property at ℵω2+1

In this section we show that the tree property holds at ℵω2+1 in the

extension of V [G ∗H] by R. We fix an R-name Ṫ ∈ V [G ∗H] forced to be a
ℵω2+1-tree and we show that it has a branch. We will work with the name

Ṫ throughout the section and apply arguments from [13] directly to it. We

can assume the αth level of Ṫ is {α} × κ. Hence we are forcing the relation
<T on the set ν+ × κ. Recall that ν = supn<ω κn and ν+ becomes ℵω2+1.

Recall that H1 is generic for M(κ, κ+ω+1, λ) over the model V [G ∗ H0].
For simplicity we denote this forcing M. Recall from the discussion below
Definition 2.2 that M is the projection of a product, which we denote P×Q,
where P is the Cohen forcing Add(κ, λ) and Q is as in Definition 2.2.

Let S be the quotient forcing P × Q/H1 as defined in V [G ∗ H]. Let

HT = H0 ∗ (HP
1 ×H

Q
1 ) ×H2 be the generic for L ∗ (P × Q) × Add(κ, λ+ \

λ) obtained by forcing with S. It is not hard to see that S is < κ+ω+1-
distributive over V [G ∗ H]. It follows that each Un is still an ultrafilter in
V [G ∗ HT ] and Coll(κ+ω+3, < j(κ)) is the same when computed in either
Ult(V [G ∗H], Un) or Ult(V [G ∗HT ], Un). Moreover, a maximal antichain in
Coll(κ+ω+3, < j(κ)) is represented (in either ultrapower) by a function on
Pκ(κn), which at each x returns a maximal antichain in Coll(κ+ω+3

x , < κ).
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The distributivity of S ensures that there are no new such functions in
V [G ∗ HT ]. It follows that Kn remains generic for Coll(κ+ω+3, < j(κ)) as
computed in Ult(V [G ∗HT ], Un).

So in particular R is a reasonable diagonal Prikry forcing in V [G ∗HT ].
We will show that we have the prerequisites to run the argument from [13]
in order to first get a branch in V [G ∗ HT ]R. Then we will use a branch
preservation argument to pull the branch back to V [G ∗H]R.

Lemma 3.1. In V [G ∗ H] there is an unbounded set I ⊆ µ and a natural
number n∗ such that for all α < β from I there are a condition r of length
n∗ and ordinals ξ, ζ < κ such that r forces (α, ξ) <T (β, ζ).

This is exactly Lemma 13 of [13]. For the proof we only need an embed-
ding witnessing that κ is κ+ω+1 supercompact so that κ is a potential 0th

Prikry point in j(R). For this we use the embedding j from Lemma 2.3.
Since this is upwards absolute to V [G ∗ HT ], we have the same conclusion
in V [G ∗HT ].

Remark 3.2. We actually have the analog of Remark 14 of [13]. In particular
the set of conditions in R which force the above is dense.

Next we need lifted supercompact embeddings with critical point κn for
n < ω that are added by a reasonable forcing.

Lemma 3.3. For all n ≥ 1, there is a λ-supercompact embedding j∗n with
crit(j∗n) = κn with domain V [G ∗ HT ] added by the product of κn−1-closed
forcing and Add(κ, θ) for some θ.

This is standard. Note that Q is κ+ω+1-directed closed of size λ in
V [G][H0] and hence can be absorbed in the iteration of Levy collapses.
This lemma allows us to carry out the arguments from Lemmas 15 and 16
of [13] in V [G ∗HT ]. So we have the following consequence.

Lemma 3.4. In V [G ∗ HT ] every stem can be extended to a stem h such
that there are an unbounded set J ⊆ µ, ξ < κ, and conditions rα ∈ R for
α ∈ J , such that, setting uα = 〈α, ξ〉 for α ∈ J , we have:

(1) each rα has stem h,
(2) for all α < β from J , rα ∧ rβ 
 uα <Ṫ uβ.

A version of this lemma in a context without collapses was first obtained
by Neeman in [11].

Fix a stem h for which the above lemma holds. Note that the µ-cc of R
ensures that there are generics R which contain rα for unboundedly many
α. For such R, V [G ∗ HT ][R] contains a branch generated by the uα for

which the associated rα ∈ R. Let ḃ be a name for the branch generated in
this way. For a stem h′ extending h, we say that †h′ holds if there are J ,
ξ < κ and 〈rα | α ∈ J〉 as above with the additional property that rα forces

uα ∈ ḃ.
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Working in V [G ∗H] we can view ḃ as an S×R name for the branch. We
have the following coherence between stems. Suppose s forces that Lemma
3.4 holds with respect to h, as witnessed by J̇ , ξ, ṙα, α ∈ J̇ and r ∈ R has
stem h and forces that ḃ as above is a cofinal branch. Then for every stem
h′ which is the stem of some extension of r, s 
 †h′ .

We now want to pull back the existence of the branch from V [G ∗HT ]R

to V [G ∗H]R. To do so we follow [14]. Note that forcing with the poset S
takes us from the inner to the outer model above. Unfortunately S is not
particularly nice forcing in the extension by R. In fact it is not even count-
ably closed there. We make up for this by doing our splitting arguments for
a fixed stem h and using the fact that S is κ-closed in V [G ∗H].

We work in the model V [G ∗H] and give the following definition.

Definition 3.5. We say that there is an h-splitting at some γ < µ if there
are a condition r ∈ R with stem h, conditions s, s0, s1 in S, and nodes
u, u0, u1 such that

(1) (s, r) 
 u ∈ ḃ ∩ Tγ;
(2) s0, s1 ≤ s and the levels of u0, u1 are above γ;

(3) for k ∈ 2, (sk, r) 
 uk ∈ ḃ;
(4) r forces that u0 and u1 are incompatible in Ṫ .

The idea is to capture the fact that S can force different information about
the branch relative to a fixed stem h. If s̄ forces that †h holds for some stem
h, then we define α̇h to be an S-name for the supremum over γ for which
there is an h-splitting at γ with the witnessing s an element of the S generic.

Lemma 3.6 (Splitting). Suppose that s̄ forces †h and α̇h = µ. There are
sequences 〈si | i < ν〉, 〈ri | i < ν〉, and 〈vi | i < ν〉, such that

(1) for all i < ν, si ≤ s̄ and the stem of ri is h,

(2) for all i < ν, (si, ri) forces that vi is in ḃ and

(3) for i < j, ri ∧ rj forces that vj and vi are incompatible in Ṫ .

Proof. Assume the hypotheses. Suppose also that s̄ forces †h, as witnessed
by ξ, J̇ , ṙα. We pass to the generic extension of V [G ∗H] by S by a generic
S containing s̄. First we need a finer version of h-splitting.

Claim 3.7. Suppose γ ∈ J and denote u = 〈γ, ξ〉. Then there is r̄ ∈ R
with stem h, conditions s0, s1 in S below s̄ and nodes v0, v1, such that for
k ∈ {0, 1}, we have (sk, r̄) 
 vk ∈ ḃ, r̄ 
 u <Ṫ v

k and r̄ 
 v0 ⊥Ṫ v
1.

Proof. Since αh = µ, there is h-splitting at a level γ′ ≥ γ. So, let s′ ∈ S,
s′ ≤ s̄, r ∈ R with stem h, s0, s1 below s′, and nodes v, v0, v1 of levels higher
than γ be such that:

• (s′, r) 
 v ∈ ḃ ∩ Tγ′ ,
• the levels of v0, v1 are above γ′,
• for k ∈ 2, (sk, r) 
 vk ∈ ḃ, and

• r forces that v0 and v1 are incompatible in Ṫ .
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Let s′′ ≤ s′ in S be such that for some q with stem h, s′′ 
 q = ṙγ . Then

since (s′′, q) 
 u ∈ ḃ and (s′′, r) 
 v ∈ ḃ, it follows that q ∧ r 
 u <Ṫ v. Let

r̄ = r ∧ q. Then r̄, s0, s1, v0, v1 are as desired. �

Choose a club C ⊆ µ such that for all β ∈ C and all γ < β if there is a
splitting at γ as in the conclusion of the above claim, then the witnessing
splitting nodes v0, v1 can be chosen to have levels below β.

We select increasing sequences γi and βi for i < ν such that

(1) βi ∈ C,
(2) γi ∈ J ,
(3) γi < βi ≤ γi+1.

Denote ui = 〈γi, ξ〉 for i < ν and let s̄i ∈ S be such that s̄i 
 γi ∈ J̇ and
for some condition qi, s̄i 
 qi = ṙγi . Then each (s̄i, qi) forces that ui is in
the branch, and for i < j, qi ∧ qi 
 ui <Ṫ uj .

Now, for each γi, there is a splitting as in the above claim with splitting
nodes of levels below βi. We record the witnesses to this splitting as r̄i, s

k
i , v

k
i .

In particular, we have that (ski , r̄i) 
 vki ∈ ḃ and r̄i 
 ui <Ṫ v
k
i .

Let r be r̄i ∧ qi ∧ qi+1. Then r forces ui <Ṫ ui+1 and ui <Ṫ v
k
i for k ∈ 2.

We take a direct extension ri of r to decide the statements “vki <Ṫ ui+1” for
k ∈ 2. Since T is a tree it must decide one of the statements negatively. If
it does so for k, then we set vi = vki and si = ski .

By the distributivity of S, the sequence 〈si, ri, vi | i < ν〉 is in V [G ∗H].
It is straightforward to see that these sequences satisfy the lemma. �

Lemma 3.8. If s̄ forces †h, then s̄ forces α̇h < µ.

Proof. Suppose otherwise. Using the splitting lemma we build a tree of
conditions similar to Lemma 2.3 in Magidor and Shelah [9]. More precisely,
apply the previous lemma to construct conditions 〈(sσ, rσ) | σ ∈ ν<ω〉 in
S× R and nodes 〈vσ | σ ∈ ν<ω〉, such that:

(1) for all σ, rσ has stem h and if σ′ ⊃ σ, then (sσ′ , rσ′) ≤ (sσ, rσ),

(2) for all σ, sσ 
 level(vσ) ∈ J̇ , and (sσ, rσ) 
 vσ ∈ ḃ,
(3) for all σ and i 6= j in ν, rσ_i ∧ rσ_j forces that vσ_i and vσ_j are

incompatible in Ṫ .

Using the fact that S is countably closed and the fact that each rσ has
stem h, for each g ∈ νω we can find sg ≤ sg�n and rg ≤ rg�n for all n < ω.
Let γ∗ be the supremum of the ordinals γ appearing as levels of nodes in
the construction. Let s∗g ≤ sg and r∗g ≤ rg be such that (s∗g, r

∗
g) decides the

value of the branch at level γ∗ to be vg.
Since the number of possible stems is ν, let g, g′ ∈ νω be distinct, such

that r∗g and r∗g′ have the same stem. Then r∗g and r∗g′ are compatible and
by construction r∗g ∧ r∗g′ forces that vg is incompatible with vg′ . This is a
contradiction since we can take a generic for R containing r∗g ∧ r∗g′ . �

Since there are less than µ many stems, passing to an extension of V [G∗H]
by S, we get that suph αh < µ. Let s̄ be a condition forcing that α =
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suph α̇h < µ. Extending if necessary, suppose also that for some stem h̄, s̄

forces that †h̄ holds, and for some r̄ ∈ R with stem h̄, (s̄, r̄) forces that ḃ is a

cofinal branch. Note that this means (s̄, r̄) forces that ḃ is generated by †h̄.
Let γ > α and let s ≤ s̄ and r ≤ r̄ be such that for some node u of level

γ, (s, r) 
 u ∈ ḃ. Let R be R-generic containing r. In V [G∗H ∗R], we view

ḃ as its partial interpretation by the generic R. Clearly s forces that u is in
ḃ over V [G ∗H ∗ R].

Now we define d = {v >T u | ∃s∗ ≤ s, s∗ 
 v ∈ ḃ}.

Claim 3.9. d generates a branch through T .

Proof. Clearly d meets every level above γ. Next we show that it meets
every level exactly once. Suppose that there are distinct v0 and v1 in d on
level γ̄ > γ. Let s0 and s1 force v0 and v1, respectively, to be in ḃ on level
γ̄. Let r0, r1 in R be such that for k ∈ 2, (sk, rk) 
 vk ∈ ḃ and there is a
stem h for which h = s(r0) = s(r1) extends h̄.

Let r′ = r0∧r1. Since r′ ∈ R and h extends h̄, it must be that s also forces
†h. But then s0, s1, r

′, v0, v1 witness an h-splitting at γ, a contradiction since
γ > α. �

Working in V [G ∗ H] it follows that r forces that d is a cofinal branch

through Ṫ .

4. The tree property at ℵω2+2

In this section we prove that the tree property holds at ℵω2+2 in the
extension of V [G ∗H] by R. Recall that λ is measurable in V and hence in

V [G ∗H0]. Working in V [G ∗H0] let Ṫ be an M×Add(κ, λ+ \ λ) ∗R-name
for a λ-tree where in this section we assume it has underlying set λ. Fix an
elementary embedding k : V [G ∗H0] → N∗ with critical point λ where N∗

is transitive and λN∗ ⊆ N∗.
For ease of notation we define A = Add(κ, λ+ \λ) and H̄ = H1×H2. Let

R be R-generic over V [G ∗H]. Since (M×A) ∗R has the λ-cc, we can lift k
to this extension by forcing over V [G ∗H][R] with k((M×A) ∗R)/(H̄ ∗R).

Note that the lifted embedding k fixes the Prikry sequence and the se-
quence of collapse generics between the Prikry points. Viewed as a generic
for k(R) the Prikry sequence must be generic over the extension by k(M×A).
In terms of the quotient forcing, k((M×A)∗R)/(H̄ ∗R) in V [G∗H][R] this
means that we already have the object which will be generic for k(R) and
the quotient must force a generic for k(M × A)/H̄ which gives the Prikry
sequence this extra genericity.

The lifted embedding determines a branch through the interpretation of
Ṫ . It is enough to show that the forcing to add the embedding cannot add
the branch. This will finish the proof of Theorem 1.1. Recall that a poset
has the µ-approximation property if it does not add a new set of ordinals
x, such that for all < µ-size subsets y in the ground model, x ∩ y is in the
ground model. Since the underlying set of T is λ, a new branch through
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a λ-tree satisfies the hypotheses of the µ-approximation property. So it is
enough to prove the following lemma.

Lemma 4.1. In V [G∗H][R], k((M×A)∗R)/(H̄∗R) has the µ-approximation
property.

To begin we give an abstract definition about Prikry forcing.

Definition 4.2. Suppose that s and s′ are stems where s′ extends s. If r is a
condition with stem s, then we say that points in s′ above s are constrained
by r if there is a condition r′ with stem s′ such that r′ ≤ r.

We have the following characterization of when a condition is forced out
of the quotient which comes from Cummings and Foreman [3].

Proposition 4.3. Work in V [G ∗H]. Let r̄ ∈ R, m ∈ k(M×A) and ṙ be a
k(M× A)/H̄-name for an element of k(R). We assume that m decides the

value of s(ṙ). r̄ forces (m, ṙ) /∈ k(M× A ∗ R)/(H̄ ∗ Ṙ) if and only if one of
the following holds.

(1) m /∈ k(M× A)/H̄.
(2) Neither one of s(r̄) or s(ṙ) extends the other.
(3) s(ṙ) extends s(r̄) and points in s(ṙ) above s(r̄) are not constrained by

r̄.
(4) s(r̄) extends s(ṙ) and m forces that points in s(r̄) above s(ṙ) are not

constrained by ṙ.

A key point in the proof is that Prikry conditions with the same stem are
compatible. From this proposition we have the following sufficient condition
for forcing conditions into the quotient.

Claim 4.4. Work in V [G ∗H]. If r̄ is in R, m ∈ k(M × A)/H̄ and ṙ is a
k(M× A)/H̄-name for a condition in k(R) such that

(1) m decides the value of s(ṙ),
(2) s(r̄) extends s(ṙ) and
(3) m forces that points in s(r̄) above s(ṙ) are constrained by ṙ,

then there is a direct extension of r̄ which forces that (m, ṙ) ∈ k((M× A) ∗
R)/(H̄ ∗ Ṙ).

Proof. Let r̄0 be a direct extension of r̄ which decides the statement (m, ṙ) ∈
k((M×A) ∗R)/(H̄ ∗ Ṙ). It is easy to see that we are not in any of the cases
in the previous proposition, so it is not true that r̄0 
 (m, ṙ) /∈ k((M×A) ∗
R)/(H̄ ∗ Ṙ). However this means it must force (m, ṙ) into the quotient. �

We will use the claim above to reproduce the argument of Lemma 1.3 in
[17] in the presence of the Prikry forcing. For ease of notation we let N be
the quotient k((M× A) ∗ R)/(H̄ ∗ R). We will write conditions in N in the
form (p, f, ṙ), where p ∈ k(P× A), f ∈ k(Q) and ṙ is a k(M× A)-name for
a condition in k(R). We will say “term ordering” to refer to ≤k(Q).
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To simplify the notation of the proof we will prove that there are no new
functions τ from µ to 2 added by N all of whose initial segments are in
the ground model, V [G ∗ H][R]. The argument giving µ-approximation is
essentially the same. In V [G∗H][R] let τ̇ be an N-name for a function from
µ to 2 such that for all α < µ, τ̇ � α is forced to be in V [G ∗H][R].

Claim 4.5. In V [G ∗ H][R], there is a condition (p, f, ṙ) ∈ N such that
for all p′ ≤ p, x, α < µ, f ′ ≤k(Q) f and all k(M × A)/H̄-names ṙ′ for a
condition in k(R) if (p′, f ′, ṙ′) ∈ N is below (p, f, ṙ) and forces τ̇ � α = x,
then (p, f ′, ṙ) forces τ̇ � α = x.

Proof. Suppose not. Then working in V [G ∗ H0 ∗ H1] there is a condition
(a, r̄) ∈ A∗R forcing the failure of the claim. The following set is dense below
(a, r̄) for every name (p, f, ṙ) for an element in the quotient. We set (a′, r̄′) in
D if and only if there are p0, p1 ∈ k(P×A), f∗ ≤k(Q) f , k(M×A)/H̄-names
r0, r1 for elements of k(R), α < µ and A ∗R-names x0, x1 for functions from
α to 2 which are forced to be distinct, such that (a′, r̄′) forces that:

• each (pi, f
∗, ṙi) is in N below (p, f, ṙ), and

• each (pi, f
∗, ṙi) forces that τ̇ � α = xi.

If (p0, f0, ṙ0) below (p, f, ṙ) forces a value x0 for τ � α, but (p, f0, ṙ) does
not, then we can find (p1, f

∗, ṙ1) below (p, f0, ṙ) which forces a value x1 6=
x0. Furthermore, we can arrange that f∗ is below f0 in the term ordering.
We can now select a condition (a′, r̄′) ≤ (a, r̄) forcing this situation. In
particular, for i ∈ 2 it forces (pi, f

∗, ri) ∈ N. Clearly, (a′, r̄′) ∈ D, and this
argument works below any condition stronger than (a, r̄). Hence D is dense.

We work in V [G∗H0∗H1], where we can view the f -parts of our conditions
as coming from the poset Q′ from item (5) in our discussion properties of
Mitchell’s forcing applied with k(M) in place of M, λ in place of α and H1

as the generic for k(M) � λ = M. Recall that Q′ is µ-closed.
By recursion for α < µ, we construct piα, x

i
α, xα, fα, ṙ

i
α, aα, r̄α and γα for

i ∈ 2 as follows.
Suppose that we have all of the above for all β below some α. Let γ∗ =

supβ<α γβ. We choose an A ∗ R-name for a condition (p∗, f∗, ṙ∗) in the
quotient which is forced to decide the value of τ̇ � γ∗ to be xα and where f∗

is forced to be below fβ in the term ordering for β < α. Using the dense set
described above with (p∗, f∗, ṙ∗), we can find (aα, r̄α) in the dense set and
record witnesses piα, ṙ

i
α, x

i
α, γα and fα. This completes the construction.

We can assume that (aα, r̄α) forces that each (piα, fα) decides the value
of s(ṙiα) and that s(r̄α) extends this value. By passing to an unbounded
subset of µ we can assume that for all α, α′ < µ, s(r̄α) = s(r̄α′) = h and
s(ṙiα) = s(ṙiα′) = hi for i ∈ 2. Using the µ-cc of (k(P × A))2, we can find
α < α′ such that aα is compatible with aα′ and piα is compatible with piα′
for i ∈ 2. For i ∈ 2 we let pi be a greatest lower bound for piα and piα′ and ṙi

be a name for the weakest common extension of ṙiα and ṙiα′ with the same
stem.
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We force with A below aα ∪ aα′ to obtain H ′2. By construction, in V [G ∗
H0 ∗ (H1 ∗ H ′2)], for each i, (piα, fα) forces that points in h above hi are
constrained by ṙiα, and similarly for piα′ , fα′ and ṙiα′ . It follows that for each
i, (pi, fα′) forces that points in h above h′ are constrained by both ṙiα and
ṙiα′ . Consequently, since ṙi is forced to be the weakest common extension,
(pi, fα′) forces these points are constrained by ṙi as well.

Then applying Claim 4.4 in V [G ∗H0 ∗ (H1 ∗H ′2)], we can find a direct
extension r of r̄α and r̄α′ such that r forces that each (pi, fα′ , ṙ

i) is in N.
Let R′ be R-generic with r ∈ R′. Then in V [G ∗ H0 ∗ (H1 ∗ H ′2)][R′], the
fact that (pi, fα′ , ṙ

i) is in N implies that for i ∈ 2, xiα′ � γα = xiα. However,
since r̄α′ ∈ R′, we also have that (pi, fα′ , ṙ

i) ∈ N, which decides the value of
τ̇ � γ∗ to be xα′ , where γ∗ = supβ<α′ γβ. But then for i ∈ 2, xiα′ � γ

∗ = xα′

and this implies that x0
α = x1

α, a contradiction. �

Towards the proof of Lemma 4.1, we assume for a sake of contradiction
that it is forced that τ̇ is not in V [G ∗ H][R]. By our assumption for a
contradiction, the set of pairs (n, n′) such that n and n′ decide different
values for some initial segment of τ̇ is dense in N2. Working below a condition
in N satisfying the previous claim we can get a pair into this dense set by only
extending the f -parts of the conditions. Again we fall back to V [G∗H0∗H1]
where the term ordering on the f -parts is µ-closed and A ∗R is µ-cc. Using
this we obtain the following splitting assertion.

For a given (p, f ′, ṙ) in N satisfying the conclusion of previous claim, we
can find a maximal antichain A in A ∗R and conditions (p, fi, ṙ) ≤ (p, f ′, ṙ)
for i ∈ 2 such that for all (a, r̄) ∈ A, (a, r̄) forces that (p, f0, ṙ) and (p, f1, ṙ)
are in N and decide different values for τ̇ � α for some α.

Continuing to work in V [G ∗H0 ∗H1], we repeatedly apply this splitting
assertion starting with (p, f, ṙ) from Claim 4.5 to build a binary tree of
conditions 〈fs | s ∈ 2<κ〉 and maximal antichains As in A ∗ R. We can
ensure that every element (a, r̄) ∈ As forces that (p, fs_0, r) and (p, fs_1, r)
decide different values for τ � γ for some γ. This gives rise to A ∗ R-names
ẋs_i for i ∈ 2 and ordinals αa,r̄s . Let α∗ < µ be the supremum of the ordinals
αa,r̄s used in the construction.

Let ḃ be a k(M × A)/H̄-name for the characteristic function of the first
subset of κ added by k(P)/HP

1 . By a standard construction on names, there
is a lower bound below the sequence 〈fḃ�η | η < κ〉 in the term ordering.

In particular, the interpretation b of ḃ is in the extension by P×Add(κ, 1).
Since for each relevant γ, 〈fb�η(γ) | η < κ〉 is forced to be decreasing in V [G∗
H0 ∗HP

1 ], we can partially interpret each name in V [G ∗H0][P×Add(κ, 1)]
to obtain k(P)/(P × Add(κ, 1))-names which are forced to be decreasing.
For each such sequence we can find a name for a lower bound. The only
issue is that

⋃
η<κ dom(fb�η) may not be in V [G ∗ H0][HP

1 ]. However it is

covered by a set Y in V [G ∗ H0][HP
1 ]. We construct a lower bound f∗ by

taking dom(f∗) = Y and for each γ ∈ Y we let f∗(γ) be a k(P) � γ-name
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such that if p ∈ Add(κ, 1) forces γ ∈ dom(fḃ�η), then p forces f∗(γ) to be

a lower bound for 〈fḃ�η(γ) | η < κ〉. A very similar construction appears in

Mitchell’s original paper as Lemma 3.7.
It is straightforward to check that we can force (p, f∗, ṙ) into the quotient.

Passing to the extension V [G∗H][R], we extend (p, f∗, ṙ) to decide the value

of τ̇ � α∗ to be x. We can now define the interpretation of ḃ in V [G ∗H][R],
a contradiction. We define b � η + 1 to be the unique s of length η + 1
such that for the unique element (a, r̄) of As�η in the generic, (p, fs, ṙ) forces

xs = x � αa,r̄s .
To finish the proof we need to remark on how to modify the proof to

give the full statement of µ-approximation. Suppose that instead that τ̇
is a name for a function from some ordinal δ to 2 and for every z ⊆ δ in
V [G ∗H][R] of size less than µ, it is forced that τ � z is in V [G ∗H][R]. We
aim to show that the interpretation of τ is in V [G ∗H][R]. In the proof we
often decide some partial information about τ . Previously we decided an
initial segment of τ , but in the new context this amounts to deciding τ � z
for some z of size less than µ. So the sets z of size less than µ take the role
of the lengths of initial segments. With this change of perspective in mind
the only necessary modifications are formal.

This concludes the proof of Lemma 4.1 and so we have the tree property
at ℵω2+2 in the final model.

Remark 4.6. The assumption that λ is measurable can most likely be re-
duced to weakly compact. The measurability of λ is used to simplify the
argument above.

5. Concluding remarks

We remark that the setting of Section 4 is quite general and so Lemma
4.1 has many other applications.

First, it can be used to give an alternative proof of a theorem of Cox and
Krueger [2] that the principle ISP (ω2) is consistent with large continuum. In
particular if κ is supercompact and λ ≥ κ, then forcing with M(ω, ω1, κ) ×
Add(ω, λ) produces a model in which ISP (ω2) holds and 2ω ≥ λ. As is
typical in these arguments, the difficult step is a preservation lemma for
which we can use Lemma 4.1 with the trivial forcing in place of the Prikry
type forcing.

Second, we can produce models for the tree property at κ++ where κ
is singular strong limit and 2κ > κ++. Friedman and Halilovic [4] asked
whether there is such a model. Recent work of Friedman, Honzik and Ste-
jskalová [5] gives a positive result. Their work was done independently at
about the same time as ours. We note our approach appears to be more
flexible as our Lemma 4.1 can incorporate the addition of Prikry forcing
with interleaved collapses and so might be useful in producing a model as
above with κ = ℵω.

There are a few natural directions for future research. First, we ask
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Question 1. Is it consistent that ℵω2 is strong limit and for all n ≥ 1 ℵω2+n

has the tree property?

Here there is a natural strategy. Mitchell’s poset M should be replaced
with the iteration of Cummings and Foreman [3] or Neeman’s revision of it
[12].

Second, we ask whether the ground up approach mentioned in the intro-
duction can be joined with the forcing from our main theorem. In particular
we ask:

Question 2. Is it consistent that every regular cardinal up to ℵω2+2 has the
tree property and ℵω2 is strong limit?

Finally, it is open whether the main result of our paper can be obtained
at ℵω. This would require first answering a question of Woodin.

Question 3. Is it consistent that SCH fails at ℵω and the tree property holds
at ℵω+1?
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