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SPENCER UNGER

In this paper we extend the length of the longest interval of regular cardinals
which can consistently have the tree property. Neeman [5] has shown that starting
from ω supercompact cardinals one can force to obtain the tree property at every
regular cardinal in the interval [ℵ2,ℵω+1]. In this paper we prove the following
theorem.

Theorem 0.1. Assuming there is an ω + ω-sequence of supercompact cardinals,
then there is a generic extension in which every regular cardinal in the interval
[ℵ2,ℵω·2) has the tree property.

An important remark is that in the model for the main theorem ℵω is not strong
limit, in particular 2ω1 = ℵω+2. In doing so we avoid a difficult question of Woodin’s
which asks whether it is consistent to have the failure of both SCH and weak square
at ℵω. The main theorem of this paper should be compared with a theorem in [9]
where a similar result is obtained for successive failures of weak square. The result
makes use of the poset and a some of the main lemmas from Neeman’s paper [5].
The reader is advised to have a copy of it on hand. Throughout the paper we have
attempted to keep the notation very close to Neeman’s. One notable convention
is the use of τ -closed to mean every decreasing sequence of length τ has a lower
bound.

The paper is organized into sections based on these topics: preliminaries, defi-
nition of the main forcing, cardinal structure, the tree property below ℵω, the tree
property at ℵω+1, the tree property at ℵω+2, and the tree property above ℵω+2.

1. Preliminaries

We list some essential lemmas which will be used in the proof below. The first
two are preservation lemmas due to the author.

Lemma 1.1 ([8]). If P×P is κ-cc, then forcing with P cannot add a branch through
a tree of height κ.

Lemma 1.2 ([7]). If P is τ+-cc, Q is τ -closed and 2τ ≥ η, then forcing with Q
over V [P] cannot add a branch through an η-tree.

We will also make use of a lemma of Abraham [1], which allows us to preserve
the chain condition of certain posets. We take our statement of the lemma from
Cummings and Foreman [2].

Lemma 1.3. Let τ < κ and assume V � “τ is regular and κ is inaccessible.” Let
P = Add(τ, η)V . If W ⊇ V is a model of set theory where
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(1) τ and κ are cardinals in W and
(2) every set of ordinals in W of size less than κ is covered by a set of ordinals

in V of size less than κ,

then P has the κ-Knaster property in W in particular its square is κ-cc.

Remark 1.4. The above lemma is often stronger than what we need. We will often
need to see that the square of a Cohen poset retains some chain condition property
in an outer model. However a Cohen poset is isomorphic to its square. So for an
application of Lemma 1.1, it is enough to show that the chain condition of the poset
is preserved in an outer model (rather than Knasterness).

We also need Easton’s Lemma [3].

Lemma 1.5. If P is τ -cc and R is < τ -closed, then it is forced by P that R is
< τ -distributive.

2. The main forcing

In this section we give the definition of the main forcing. The basic idea is add
to Neeman’s construction a poset which will force the tree property at each ℵω+n
for n > 1. Neeman’s argument requires a specific choice of ω1 to obtain the tree
property and we will need to repeat this argument in the presence of this additional
poset.

Working in V fix 〈κn | n ≥ 2〉 an increasing sequence of supercompact cardinals
and 〈λn | n ≥ 2〉 another increasing sequence of supercompact cardinals greater
than ν =def supn≥2 κn. Let supn≥2 λn = ι.

• I is Neeman’s forcing without Coll(ω, µ).
• A+

1 = Add(κ1, λ2 \ κ3)V .
• For n ≥ 1 we define Aω+n = Add(λn, λn+2)V where for ease of notation we

set λ1 = ν+.
• U is a reverse Easton style preparation over initial segments of A1 × A+

1 ×∏
n≥1 Aω+n, that is f ∈ Uω are partial functions with reverse Easton sup-

port, which at nontrivial coordinates γ return A1×A+
1 ×

∏
0<k<n+1 Aω+k �

γ ∗U � γ-names for elements of a γ-directed closed poset. There is no harm
in calling this poset U since we can view it as extending Neeman’s poset
U. Note however that coordinates in U above ν are only generic over A1

from Neeman’s forcing. We also have a poset with the same underlying set
as U with a different ordering called B. We also think of B as extending
Neeman’s poset denoted by the same letter. In the cases where we need to
refer to the coordinates of B above ν we will write B+. The full definition
of this new poset is easily adapted from Definition 4.1 of [5].
• For n < ω we define Cω+n to be a Mitchell style collapse to bring down
λn+2. Conditions in Cω+n are partial functions of size less than λn+1 and
at nontrivial coordinates γ they return A1×A+

1 ×
∏

0<k<n+1 Aω+k � γ ∗U �
λn+1-names for conditions in Add(λn+1, 1) of the generic extension. We
define C to be a product of Neeman’s C with the full support product of
our posets Cω+n. In cases where we want to refer to only the coordinates
of C above ν we will write C+. The full definition of Cω+n is easily adapted
from Definition of 4.13 of [5].
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Each of our posets of terms has enrichments as in Definitions 4.3 and 4.14 of
Neeman’s paper. We will also make use of Neeman’s terminology for posets and
their generic objects.

• We let A0 = Add(ω, κ2) and An = Add(κn, κn+2) for n ≥ 2. Recall that
κ1 is µ+ where µ ∈ Index is selected to be ω1 by the poset. For n < ω we
have An which is An-generic over V . Further we have objects A[n,m) for
n < m ≤ ω with the obvious interpretation and similar notation for closed
intervals. We use similar notation for Aω+n.
• We let U0 = U � κ2 and Un = U � [κn+1, κn+2) for n ≥ 1. We also have

interval notation for U, U[0,n) = U � κn+2. Similar to our conventions for
A, we have Un is generic for Un and U[0,n) is generic for U[0,n). Note that
U is not a product of its coordinates. Also note that the U posets only
make sense in generic extensions of V . In particular U0 is a poset defined
in V [A0] and Un for n ≥ 1 is a poset defined in V [A[0,n] ∗ U[0,n)]. We use
similar notation for B, but note that B is a poset in V and hence so are its
restrictions. We use similar notation for coordinates of U above ν.

• Recall that C is defined to be a full support product of posets Cn and
Cω+n. We also make use of interval notation for C, so for example C[n,ω)

is C � [κn+1, ν). Again we note the presence of κ1, but this time in the
definition of C0.

For generics for the new forcing posets we have tried to retain conventions above.
We use the same letters but often add a superscript + to distinguish.

The final model is obtained by the following procedure:

(1) Force with I×A+
1 ×

∏
n≥1 Aω+n obtaining an extension V [A][U ][S][A+

1 ][A+].

(2) Over this model force with the enriched poset U � [ν+, ι)+A1×A+
1 ×A

+

to get
a generic U+.

(3) Over V [A][U ][S][A+
1 ][A+][U+] force with the enriched poset

(
∏
n<ω

Cω+n)+(A1×A+
1 ×A

+)∗U+

to obtain a generic S+.
(4) Finally force with Coll(ω, µ) to obtain a generic e.

For ease of notation we denote the final model by W throughout the paper.

3. Cardinal Structure

In this section we prove the following lemma.

Lemma 3.1. In W we have

(1) µ = ℵ1,
(2) for all n ≥ 2, κn = ℵn and λn = ℵω+n,
(3) 2ω = ω2,
(4) 2ω1 = ℵω+2 and
(5) for all n ≥ 1, 2ℵω+n = ℵω+n+2.

We start by proving that the forcing can be split, roughly speaking, into a part
above ν and a part below ν. To do so we need a slight strengthening some lemmas
from Neeman’s section 4. In addition to Claim 4.19, we have the following.
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Claim 3.2. Bn is κn+2-cc in V , in particular it is κn+2-cc in Vn+2 = V [A[n+2,ω)×
B � [κn+2, ν)× C � [κn+2, ν

+)

Proof. This is immediate from an easy ∆-system argument. �

Working through Neeman’s Claims 4.18 through 4.21 with this extra claim, we
have the following strengthening of Claim 4.26.

Claim 3.3. For every n < ω, the forcing I×Coll(ω, µ) is the projection of a product
κn+1-cc with < κn+1-closed forcing and moreover the generic for the κn+1-cc forcing
is determined by I× Coll(ω, µ).

Proof. This is immediate. We give the proof for n ≥ 1. First we see that the model
Vn+1[A[0,n]][U � κn+1][S � κn+1][e] generates a generic for I × Coll(ω, µ). Second
Vn+1 is a < κn+1-closed extension of V and the forcing to add A[0,n], U � κn+1, S �
κn+1 and e is κn+1-cc. Finally the forcing to add the κn+1-cc parts is determined
by a generic for I× Coll(ω, µ). �

Remark 3.4. None of the above claims rely on the fact that A1 adds only κ3 subsets
of κ1. In particular we can obtain the same conclusion in models which include A+

1 .
For n ≥ 1, A+

1 takes part in the κn+1-cc forcing and for n = 0 it takes part in the
κ1-closed forcing.

Remark 3.5. A similar argument to the above claim establishes a version of Claim
3.3 for the forcing A×

∏
n<ω Bn × C.

Corollary 3.6. For all n < ω, every set of size less than κn+1 in V [A][U ][S][e][A+
1 ]

is covered by a set of size less than κn+1 in V .

Claim 3.7. Every < ν+ sequence from W is in the model V [A][U ][S][A+
1 ][e].

Proof. It is enough to show that every sequence of length less than ν is in the
desired model. Note that the posets

∏
n<ω Bω+n and C+ are in V and are < ν+-

directed closed by standard arguments. So by forcing over W to refine U+ and S+

to generics B∗ and C+ for these two posets, we see that every < κn+1-sequence
from W is in a κn+1-cc extension of V which is a submodel of V [A][U ][S][e][A+

1 ].
The claim follows. �

It follows that each κn is preserved in W . Moreover since V [A][U ][S][e] is an
inner model with the same cardinals below ν, we have κn = ℵn for all n ≥ 1 in W .
Further by standard arguments we have that ν+ is preserved.

Corollary 3.8. Every set of size ν in W is covered by a set of size ν in V .

Proof. Suppose X is a set of size ν in the final model. Write X as an increasing
union of sets Xn of size κn. By the previous claim X belongs to V [A][U ][S][A+

1 ][e].
Using Claim 3.3 for each n there is a set Yn in V of size κn such that Yn ⊇ Xn. The
sequence 〈Yn | n < ω〉 need not be in V , but it is in V [A0][e] by another application
of Claim 3.3. Using the κ1-cc of A0 × Coll(ω, µ), we can find (in V ) a sequence of
sets Zn where for each n, |Zn| = κn and Zn ⊇ Yn. It follows that

⋃
n<ω Zn ⊇ X as

required. �

Next we show that each λn for n ≥ 2 is preserved.

Claim 3.9. I× Coll(ω, µ) has size ν+ in V .
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This is immediate from GCH in V . To prove that each λn is preserved we look
at W without I, Coll(ω, µ) and A+

1 .

Claim 3.10. For all n < ω λn+2 is preserved in the model

V [A][U ][S][e][A+
1 ][A+][B∗][C+]

where B∗ is generic for
∏
n<ω Bω+n and C+ is generic for C+.

Proof. The proof is similar to the proof of Claim 3.3, but easier. The forcing
in question can be written as a product of λn-cc and < λn-closed with no extra
forcing required. By Claim 3.9 the generic for I × Coll(ω, µ) can be incorporated
into the forcing with chain condition with no difficulty. The only part which is not
immediate from similarities with Neeman’s argument is a relative of Claim 3.2 but
for the forcing B � [λn+1, λn+2), namely that this forcing is λn+2-cc. �

Corollary 3.11. For all n < ω, λn+2 is preserved in W .

This is immediate, since the model from the previous claim contains the final
model. Using the corollary and Claim 3.7, it follows that 2ω1 = λ2 in W . It remains
to show that λn+2 = ℵω+n+2 for all n < ω.

Claim 3.12. For all n < ω, λn+2 = ℵω+n+2 in W .

This is the main point of the design of the poset Cω+n for n < ω. It is not hard

to see that for n = 0 and many α < λ2, the poset C+A1×A+
1

ω induces a generic for
the the poset Add(ν+, 1)V [A1×A+

1 ] and hence collapses α. Similar arguments work

for n > 0. This finishes the proof of Lemma 3.1.

4. The tree property at ℵn with 2 ≤ n < ω

In this section we prove the following lemma.

Lemma 4.1. The tree property holds at ℵn with 2 ≤ n ≤ ω in W .

By Claim 3.7, it is enough to show the following.

Claim 4.2. The tree property holds at ℵn with 2 ≤ n < ω in the model

V [A][U ][S][e][A+
1 ].

We repeat Neeman’s proof with the additional forcing to add A+
1 . For this we

need lift the embeddings from Neeman’s Section 4 to the additional extension by
A+

1 and show that the forcing which adds the new embedding cannot add a branch
through the appropriate kind of tree. Lifting to the additional forcing A+

1 poses no
problem.

For embeddings with critical point κn for n ≥ 3, we can do the quotient forcing
π(A+

1 )/A+
1 last since its chain condition is bounded below the critical point. So

even though the height of the tree is collapsed, the κ2 = ℵ2-cc of the quotient and
its powers is preserved. Note that the quotient is isomorphic to Add(κ1, θ)V for
some θ.

Claim 4.3. The forcing to add an embedding with domain V [A][U ][S][e] and critical
point κn+2 for some n ≥ 1 preserves the κ2-cc of the posets Add(κ1, θ)V .
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For n = 1 the conclusion follows directly from the argument at the end of Lemma
4.29 with n = 1. For n > 1 we use Claim 4.33 to see that the forcing to add the
embedding retains the covering property for sets of size < κ1 over V (no sets of size
less than κ1 are added). The claim follows from Lemma 1.3.

This observation provides all that we need to get the tree property at each
ℵn+2 for n ≥ 1. For definiteness we fix an elementary embedding π with critical
point κn+2 witnessing a large amount of supercompactness and an ℵn+2-tree T in
V [A][U ][S][e][A+

1 ]. The argument requires us to repeat Neeman’s proof of Lemma
4.29 with the extra poset A+

1 . In particular we must see that the poset P1 × P2 ×
P3×Add(κn, π(κn+2))V ×Add(κn+1, π(κn+3))V ×π(A+

1 )/A+
1 does not add a branch

to T over V [A][U ][S][e][A+
1 ]. It is enough to see that the property of not adding

branches is preserved when passing from V [A][U ][S][e] to V [A][U ][S][e][A+
1 ]. We

prove a sequence of short claims.

Claim 4.4. The square of Add(κn+1, π(κn+3)) is κn+2-cc in V [A][U ][S][e][A+
1 ] and

does not add any < κn+1-sequences over this model.

Proof. The square is κn+2-cc by Lemma 1.3. The covering property we need follows

from Corollary 3.6. Further the addition of the generic Ân+1 for Add(κn+1, π(κn+3))
does not add any less than κn+1-sequences by Remark 3.4 and Lemma 1.5. �

Claim 4.5. P1 × P2 × P3 satisfies the hypotheses of Lemma 1.2 in the model

V [A][U ][S][e][A+
1 ][Ân+1]

This is straightforward using Claim 4.3 and the distributivity of Add(κn+1, π(κn+3))
from the previous claim.

Claim 4.6. The square of Add(κn, π(κn+2) is κn+1-cc in the model

V [A][U ][S][e][A+
1 ][Ân+1][G1 ×G2 ×G3]

where G1 ×G2 ×G3 is generic for P1 × P2 × P3.

This claim follows from Lemma 1.3. We have covering for sets of size less
than κn, because we have argued that all < κn-sequences are in fact elements
of V [A][U ][S][e][A+

1 ] and so we can apply Corollary 3.6.
Lastly we need the following claim.

Claim 4.7. The square of π(A+
1 )/A+

1 is κ2-cc in the model

V [A][U ][S][e][A+
1 ][Ân+1][G1 ×G2 ×G3][Ân].

Note that π(A+
1 )/A+

1 is isomorphic to Add(κ1, π(λ2)). The above claim is im-
mediate from Claim 4.3 and facts about product forcing. This completes the proof
that the tree property holds at ℵn+2 for n ≥ 1. To complete the proof of Claim 4.2
and so Lemma 4.1 we prove the following claim.

Claim 4.8. The tree property holds at κ2 = ℵ2 in V [A][U ][S][e][A+
1 ].

Note that the argument in Lemma 4.29 to lift the embedding with critical point
κ2 does not depend on adding only κ3 subsets to κ1. Since the forcing to add
the embedding is a product we can reorganize so that Â1 includes the quotient
π(A+

1 )/A+
1 . Now the argument to that the forcing to add the embedding does not

add a branch is the Lemma 4.29 in the case n = 0. This finishes the proof of Lemma
4.1.
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5. The tree property at ℵω+1

In this section we prove the following lemma.

Lemma 5.1. There is a generic object for the main forcing which gives the tree
property at ℵω+1 in W .

Recall that the key issue in arguing that the tree property holds at ℵω+1 in any
of the known models [4, 6, 5] is the careful selection of the cardinal that will become
ω1. We need to make a similar selection, but before we do so we must reduce the
problem in much the same way that Neeman reduces the problem in Section 6 of
his paper. For this we will need a preservation lemma.

5.1. The preservation lemma. We prove a generalization of the main preser-
vation lemma in Magidor and Shelah’s original paper [4] on the tree property at
ℵω+1. The statement and proof of the lemma are very technical. To help clarify
matters we state and prove a lemma with slightly different hypotheses, which is a
natural strengthening of the Magidor and Shelah lemma. We will make use of some
of the same definitions and claims as Magidor and Shelah, which will be included
for completeness.

Definition 5.2. A condition (p, r) is λ-wide at level α if there are λ-many exten-
sions such that any two force distinct values for the branch on level α.

As in Magidor and Shelah’s paper we may assume that the level sets of T are in
V and this makes the definition meaningful.

Lemma 5.3. Let ν be a singular cardinal of cofinality ω. Suppose that P is χ-cc
with |P|<χ < ν and R is < χ-closed for some χ < ν. If G is P-generic, then forcing
with R over V [G] cannot add a branch through a ν+-tree T ∈ V [G].

Proof. Let G, P and R be as in the lemma. Let Ṫ be a P-name for T and ḃ be a
P× R-name for a cofinal branch which is forced to not be a member of V P.

Claim 5.4. Let λ be a cardinal with |P| < λ < ν.

(1) Any condition (p, r) is λ-wide at some level γ.
(2) If (p, r) is λ-wide at γ then it is λ-wide at γ′ for all γ′ > γ.

The proof is exactly the same as Lemma 5.4 of [4]. Using this claim we can

complete a construction which will require that there are ν+ possibilities for ḃ on
some level, a contradiction.

Let λn for n < ω be increasing and cofinal in ν with λ0 > χ+. Let (p, r) ∈ P×R
and n < ω. We describe a construction that produces a sequence 〈ri | i < λn〉 of
extensions of r, which will be used in a larger construction. For definiteness well
order the conditions of P that are below p.

For each i < λn we construct an maximal antichain Ai and an ordinal γi in
addition to the condition ri. Each ri will be a lower bound on a sequence of
conditions of length less than χ. We go by induction on ordinals less than χ and
rely on the closure of R to continue the construction and the chain condition of P
to ensure that the construction terminates.

Start by finding a level γ0 such that (p, r) is λn-wide at γ0. Then using width
find extensions (p0i , r

0
i ) deciding distinct values for the branch at level γ0. Let

A0
i = {p0i }.
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For the successor step, assume that Aβi and rβi have been defined for some β.
For each i < λn, let pi be the least condition in our well ordering incompatible

with everything in Aβi , if possible. If no such pi exists then we are done with this

coordinate of the construction. In this case we let Ai = Aβi and ri = rβi .

Consider the conditions (pi, r
β
i ), for relevant i. There is a level γβ+1 > γβ where

all of the conditions are λn-wide. Using width find conditions (pβ+1
i , rβ+1

i ) ≤ (pi, r
β
i )

such that each decides a distinct value. Let Aβ+1
i = Aβi ∪ {p

β+1
i }. This completes

the successor step.
For a limit stage ζ, for each i < λn we have constructed 〈rδi : δ < ζ〉 a decreasing

sequence and 〈Aδi : δ < ζ〉 an increasing sequence of antichains. We let rζi be a

lower bound and Aζi =
⋃
δ<ζ A

δ
i .

For each i < λn the construction must terminate at a successor step before
stage χ by the chain condition of P. Closure and chain condition together ensure
that we can take the relevant lower bounds. Each Ai is a maximal antichain by
construction. Let γ = sup γβ .

Use this construction as the inductive step of a construction of a tree 〈rs |
s ∈

⋃
n<ω

∏
m<n λn〉 of conditions in R such that for all n and all s of length n,

〈rs_i | i < λn〉 are obtained from the above construction with (p, rs) as input.
We can assume that ordinals γ obtained in the construction increase with n. Let
γ∗ be the supremum of all γ’s appearing in the construction. It follows that for
s ∈

∏
n<ω λn we have a condition rs ≤ rs�m for all m < ω. Each such rs comes

with an associated ω-sequence of maximal antichains in P. Using the assumption
that |P|<χ < ν we can find a subset I of

∏
n<ω λn of size ν+ such that the order of

construction of the antichains is fixed for all s ∈ I.
Work in V [G] where G is P-generic. For each s ∈ I extend rs to r∗s deciding the

value of ḃ at level γ∗. We claim that for all s, t ∈ I, r∗s , r
∗
t force different values

for ḃ at level γ∗. Let n < ω be the greatest such that s � n = t � n. Since G is
generic and we can take p ∈ G, G intersects the antichains used in the construction
of rs�n+1 and rt�n+1. By the choice of I not only are these antichains the same,
but the order in which they were constructed is the same. So there is a condition
p∗ ∈ G such that (p∗, rs�n+1) and (p∗, rt�n+1) force different values for ḃ at some
level below γ∗. It follows that r∗s and r∗t force different values at level γ∗. This is a
contradiction, since level γ∗ has size ν. �

This lemma is not a precise fit for our situation. In particular we will not be
able to assume that the forcing in the P part of the lemma has the χ-cc. In order to
repeat the proof of the above lemma in the desired context we need to make more
specific assumptions about the posets in the P part. In what follows, P has been
replaced by a product P×Q× E.

Lemma 5.5. Let µ < ν be singular cardinals of cofinality ω, let κ be regular with
κ < ν and let 〈µn | n < ω〉 be an increasing and cofinal sequence of regular cardinals
less than µ. Fix posets as follows:

• P = Add(ω, κ)
• Q is a poset which is subsumed by a poset Q′ such that Q′ is countably closed

and for all n < ω Q′ ' Qn×Qn where Qn is µn-cc and Qn is < µn-closed.
• E = Coll(ω, µ) and
• R is µ-closed.
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Further assume that |P × Q × E|µ < ν. If A × G × e is P × Q × E-generic and
T ∈ V [A×G× e] is a ν+-tree, then forcing with R over V [A×G× e] cannot add
a branch through T .

Proof. Let Ṫ be a P×Q×E-name for a ν+-tree and let ḃ be a P×Q×E×R-name
for a cofinal branch through Ṫ which is not a member of the extension by P×Q×E.
We also fix an enumeration 〈eα | α < µ〉 of E.

One remark is due on the use of Q and Q′ in this argument. For the bulk of
the argument we will work with Q′, because of it’s nice properties. Conditions in
Q′ deciding information about the extension by Q can always be projected into Q
while deciding information about Ṫ and ḃ in the same way.

As in the proof of the previous lemma we complete a construction which forms
the inductive step of a further construction. Let λ < ν be a regular cardinal and
r0 ∈ R. We construct the following:

(1) 〈qβi | β < µ〉 a decreasing sequence in Q′.
(2) 〈rβi | β < µ〉 a decreasing sequence in R and
(3) 〈γβ | β < µ〉 an increasing sequence of ordinals less than ν+.

We work by induction on β. We let r0i = r0, q0i be the trivial condition in Q′ and
γ0 = 0. For the successor step assume that we have constructed everything for all
β′ ≤ β for some β < µ. Let k be greatest such that µk ≤ β. For ease of notation
we let e = eβ .

We run another inductive construction on ordinals η < µk+2 to construct:

(1) q̄βi (η) ∈ Qk+2,

(2) q̂βi (η) ∈ Qk+2,

(3) pβi (η) ∈ P,

(4) eβi (η) ∈ E and
(5) γβ(η) < ν+.

We do not mention the sequence lengths, because we do not know them in

advance of the construction. The collection of (pβi (η), q̄βi (η)) for relevant η will

form a maximal antichain in P × Qk+2 below (∅, q̄βi ). The sequences of q̂βi (η) and

rβi (η) be decreasing in Qk+2 and R respectively. The sequence of γβ(η) will be an
increasing sequence of ordinals.

Suppose that we have constructed everything relevant for all η′ ≤ η. For i < λ

we let (pi, q̄i) ∈ P × Qk+2 be incompatible with (pβi (η′), q̄βi (η′)) for all η′ ≤ η
if such a condition exists. If no condition exists, then we halt the construction
on coordinate i. As in the proof of the previous lemma we can find an ordinal

γβ(η + 1) > γβ(η) such that all conditions of the form (pi, q̄i, q̂
β
i (η), e, rβi (η)) are

λ-wide at γβ(η+1). Still working as in the previous lemma we recursively construct

extensions (pβi (η + 1), q̄βi (η + 1), q̂βi (η + 1), eβi (η + 1), rβi (η + 1)) of these conditions

which decide the value of ḃ at level γβ(η+ 1) with the property that the ith value is
different from the jth value for all j < i. This completes the successor step of the
induction on η.

For the limit step we take lowerbounds for the decreasing sequences, leave the
sequences from P and Qk+2 undefined and take the supremum of the γβ(η). This
completes the induction on η. It is clear that each coordinate i < λ halts at some

stage less than µk+2. We let rβ+1
i be a lowerbound for the sequence of rβi (η), qβ+1

i
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be the condition q̄βi joined with a lowerbound for q̂βi (η) and γβ+1 be the supremum
of the γβ(η). This completes the successor step of the induction on β < µ.

The limit step of the induction on β is simple we just take a lowerbound on the
sequences in Q′ and R. In the case of the lowerbound for the sequence in Q′ we

note that the sequence 〈qβi | µk ≤ β < µk+1〉 is decreasing in Qk+2 × Qk+2, but
without changing the Qk+2 coordinate. This completes the construction. In the

end we let r∗i be a lowerbound for the rβi and q∗i be a lowerbound for the qβi . This
is possible because Q′ is countably closed and 〈qµk

i | k < ω〉 is cofinal in the whole
sequence.

Claim 5.6. For all i < λ let Ai be the set of all (pβi (η), q̄βi (η) _ q̂∗i , e
β
i (η)) such

that β < µ and η < µk+2 where k is greatest such that µk ≤ β and q̂∗i is the part of
q∗i in the poset Qk+2. Ai is predense in P×Q× E below the condition (∅, q∗i , ∅).

Proof. Let (p, q, e) ≤ (∅, q∗i , ∅). Let β be such that e = eβ . Then there is an

η < µk+2 such that (p, q̄) is compatible with (pβi (η), q̄βi (η)) where q̄ is the part
of q in Qk+2. Let (p∗, q̄∗) be a lowerbound for both conditions. It follows that

(p∗, q̄∗ _ q̂∗i , e
β
i (η)) is below both (p, q, e) and (pβi (η), q̄βi (η) _ q̂∗i , e

β
i (η)). �

As in the previous lemma we construct a tree with branches corresponding to
elements of

∏
n<ω λn where 〈λn | n < ω〉 is an increasing and cofinal sequence of

regular cardinals less than ν. We let γ∗ be the supremum of the levels appearing
in the construction. For each s ∈

∏
n<ω λn we have a condition (qs, rs) in Q × R

which is a lowerbound for an appropriate decreasing sequence. We can find a set I
of size ν+ such that there is q∗ ∈ Q such that for all s ∈ I, qs = q.

Each s ∈
∏
n<ω λn has a corresponding ω-sequence of predense sets given by the

previous claim. Using the cardinal arithmetic assumption and making I smaller
(still of size ν+) we can assume that not only the sequences of predense sets, but
their order of construction is fixed for all s ∈ I. Let An for n < ω be the common
sequence of predense sets. For each An we choose a maximal antichain Bn ⊆ An.

Let A×G× e be P×Q×E-generic. Working in V [A×G× e] we extend each rs
to r∗s deciding the value of ḃ at level γ∗. To complete the proof we argue that for

s, t ∈ I, r∗s and r∗t decide different values for ḃ at level γ∗.
Let n be greatest such that s � n = t � n. Let (p, q, e) be below the unique

element (p′, q′, e′) of Bn ∩ (A×G× e) and force that r∗s and r∗t decide the value of

ḃ at level γ∗. It follows from our inductive construction and the fact that we fixed
the order of construction of An (and hence Bn) that there are conditions r1 ≥ r∗s
and r2 ≥ r∗t such that (p′, q′, e′) forces that r1 and r2 decide different values for ḃ
at some level below γ∗. So in V [A × G × e] we must have that r∗s and r∗t decide

different values for ḃ at level γ∗. �

Remark 5.7. The proof of the previous lemma can be strengthened in the following
sense. We may assume that the poset P × Q is in fact a two step iteration P ∗ Q̇
and there is a projection from P × Q′ to P ∗ Q̇ where Q′ is a poset in V with the
same properties as Q′ above.

5.2. Reduction of the problem. In this section we reduce the problem of getting
the tree property at ℵω+1 in W to the problem of getting it in some outer model
which is easier to analyze. The analogous claim from Neeman’s paper is Claim
6.5. We identify two posets. First we have a poset which is exactly the same as
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in [5], namely the forcing to refine both U and S to generics B[1,ω) and C[1,ω)

for B+A0∗U0 � [κ2, ν) and C+A0∗U0∗B[1,ω) � [κ2, ν) respectively. This poset is µ-
closed in V [A][U ][S] and by the proofs of Claims 3.7 and 3.3 it is still µ-closed in
V [A][U ][S][A+

1 ][A+][U+][S+]. The second poset is analogous to the previous one,
but for the forcing above ν. In particular it is the forcing to refine U+ and S+

to generics B+
[ω,ω·2) and C+

[ω,ω·2) for B � [λ1, ι) and C+B+
[ω,ω·2) � [λ1, ι) respectively.

It is clear that this forcing is µ-closed in the model V [A1 × A+
1 × A+][U+][S+].

We reduce the problem to showing that the tree property holds in the outer model
obtained by the product of these two forcings. For each µ ∈ Index, we define L(µ)

to be the poset A1 × A+
1 × C+A0∗U0

0 (µ+)× Coll(ω, µ).

Lemma 5.8. To prove Lemma 5.1, it is enough to show that there is a µ such that
the tree property holds at ν+ in the extension of

V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)][A
+][B+

[ω,ω·2)][C
+
[ω,ω·2)]

by L(µ).

We note that the generic extension in the above lemma is the extension of W by
the product of the two posets mentioned above. We prove the lemma in two steps.

Claim 5.9. If the tree property holds at ν+ in

V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)][A1 ×A+
1 ][A+][U+][S+][S0][e],

then it holds in W .

Proof. We apply Lemma 5.3 or even the original lemma of Magidor and Shelah
in the model V [A][U ][S][A+

1 ][A+][U+][S+] with P = Coll(ω, µ) and R as the poset
which refines U and S to B[1,ω) and C[1,ω). The poset R is closed in the relevant
model by remarks above. �

Claim 5.10. If the tree property holds at ν+ in the model

V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)][A
+][B+

[ω,ω·2)][C
+
[ω,ω·2)][A1 ×A+

1 ][S0][e],

then it holds at ν+ in the model

V [A[2,ω)][A0 ∗ U0][B[1,ω)][C[1,ω)][A1 ×A+
1 ][A+][U+][S+][S0][e].

Proof. We apply Lemma 5.5. Let T be a ν-tree in the inner model. It is enough to
show that T obtains a branch in

V [A[2,ω)][A0 ∗ (U0 � µ)][B0 � [µ, κ2)][B̂[1,ω)][Ĉ[1,ω)][A1 ×A+
1 ][A+][U+][S+][Ŝ0][e].

where

• B̂[1,ω) refines B[1,ω) to a generic for B � [κ2, ν),

• Ĉ[1,ω) refines C[1,ω) to a generic for C+B̂[1,ω) � [κ2, ν)

• Ŝ0 refines S0 to a generic for C0 and
• B0 � [µ, κ2) refines a restriction of U0 to a generic for B0 � [µ, κ2).

If T has a cofinal branch in this model, then it will have a cofinal branch in two
mutually generic extensions the desired model. This is enough to finish the proof.

In the model where we have refined B[1,ω), C[1,ω) and S0 to their -̂versions we

show that ν and ν+ are preserved. By Remark 3.5 we have that ν and ν+ are
preserved in the model

V [A[2,ω)][A0 ∗ (U0 � µ)][B0 � [µ, κ2)][B̂[1,ω)][Ĉ[1,ω)][A1][Ŝ0]
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since it is an inner model of the forcing extension mentioned in the remark. Ex-
tending this idea further using the proof of Claim 3.10 we see that ν and ν+ must
be preserved when we add the further generics A+

1 , A+, U+ and S+.
We can now apply Lemma 5.5 and Remark 5.7 in the model

V [A[2,ω)][B0 � [µ, κ2)][B̂[1,ω)][Ĉ[1,ω)][A1 ×A+
1 ][A+][U+][S+][Ŝ0]

with P ∗ Q̇ = A0 ∗ (U � µ), E = Coll(ω, µ) and R as the poset to refines U+ and S+

to B+
[ω,ω·2) and C+

[ω,ω·2). For µ ∈ Index there is a largest point λ in the domain of φ

below µ. We can assume that φ(λ) returns an A0 � λ ∗U0 � λ-name for a reflection
of the forcing

B+A0∗U0 � [κ2, ν) ∗ C+A0∗U0∗B[1,ω) � [κ2, ν).

Along the lines of the proofs Lemma 3.3 and Remark 3.5, it is not hard to see
that A0 ∗ (U � µ) is the projection of A0 × B � µ and B � µ has the properties
needed to play the role of Q′ in Lemma 5.5. We note that the desired sequence
〈µk | k < ω〉 is a reflection of the sequence 〈κk | k ≥ 2〉 in the ultrapower by some
supercompactness measure on κ2.

Further we have |P ∗Q× E|µ < ν, since this poset has size κ2 and in the model
where we apply the preservation all µ-sequences come from V . It is also clear that
R is µ-closed in this model since it is µ-closed where it is defined and the further
forcing to get to the current model does not add any µ-sequences. This completes
the proof. �

5.3. The selection of ω1. In this section we complete the proof of Lemma 5.8.
The proof is essentially the same as in [5]. We note that the arguments given in
Lemmas 5.6 and 5.7 of [5] can be repeated with the extra generics B+

[ω,ω·2) and

C+
[ω,ω·2) which are both < ν+-directed closed in V . Each proof begins with an

application of Laver indestructibility and so we can incorporate the extra generic
objects at this stage. We also note that the change in definition of L does not
change the proof of Lemma 5.8 of [5]. With the analogs of Lemmas 5.6, 5,7 and
5.8, we have the requirements of Lemma 3.10 of [5]. This is exactly what we need
to finish the proof of Lemma 5.8.

6. The tree property at ℵω+2

In this section we prove the following lemma.

Lemma 6.1. The tree property holds at ℵω+2 in the W .

The proof for ℵω+2 is slightly different than the one for ℵω+n for n ≥ 3 and so
it must be handled separately.

Proof. To start the proof we identify two posets needed to lift the relevant elemen-
tary embedding. We refine U+ and S+ to obtain generics B[ω+1,ω·2) and C[ω+1,ω·2)
for the posets B+F � [λ2, ι) and C+F � [λ2, ι) where F = A1 × A+

1 ∗ U � [λ1, λ2).
Call these posets P1 and P2 respectively.

Claim 6.2. P1 and P2 are < ν+ closed in V [A1 ×A+
1 ][A+][U+][S+].

Proof. The proof is similar to Claim 4.30 of [5]. By easy modifications of Claims
4.9 and 4.16 of [5], we see that any decreasing sequence of length < λ2 in either
P1 or P2 which belongs to V [F ] has a lowerbound. It remains to show that every
< ν+-sequence from V [A1 × A+

1 ][A+][U+][S+] is a member of V [F ]. This is clear
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from the proof of Claim 3.10. The addition of A+, U+ and S+ does not add any
< ν+-sequences to V [A1 ×A+

1 ]. �

Following Neeman, we let π be an elementary embedding with critical point λ2
witnessing the γ-supercompactness of λ2 with the following properties:

• π : V [A[ω+2,ω·2))] → V ∗[A∗[ω+2,ω·2)] (Note that V ∗ is not definable in V ,

since we applied the indestructibility of λ2 in V to obtain this embedding.)
• π(φ)(λ2) returns an A1 × A+

1 ∗ U � [λ1, λ2)-name for B+F � [λ2, ι)× C+F �
[λ2, ι)
• If G1 ×G2 is generic for the interpretation of π(φ)(λ2), then π extends to

π : V [A1×A+
1 ][A[ω+1,ω·2)][U � [λ1, λ2)][G1][G2]→ V ∗[A1×(A+

1 )∗][A∗[ω+1,ω·2)][G
∗
1][G∗2]

using a variation on Lemma 4.12 of [5].
• Moreover the forcing to add this embedding is

Add(κ1, π(λ2))V ×Add(λ1, π(λ3))V .

We let Â+
1 × Âω+1 be the generic objects.

• π restricts to an elementary embedding

π : V [A1 ×A+
1 ][A[ω+1,ω·2)][U[ω,ω·2)][S[ω+1,ω·2)]→

V ∗[A1 × (A+
1 )∗][A∗[ω+1,ω·2)][U

∗
[ω,ω·2)][S

∗
[ω+1,ω·2)]

Next by standard arguments we can lift this last embedding further to include

S � [λ1, λ2) by forcing with the poset P3 = π(Cω)+A1×A+
1 � [λ2, π(λ2)). Let G3 be

the generic object. Finally we can lift the embedding to the further extension by
A,U, S and e, since this forcing is all small relative the critical point of π.

The issue now is to repeat Neeman’s proof in this slightly different context. The
main problem is to deal with the extra forcing of size ν+ which adds A,U, S and e.
Over the final model, the generic objects needed to add the embedding are Âω+1,

G1, G2, G3 and Â+
1 . We add the generics in the order that they are listed. If T is

a λ2-tree in W , then by standard arguments it obtains a branch in the extension
by the 5 generic objects above. It remains to see that these generics could not have
added the branch. We work through the posets in order.

Claim 6.3. The forcing to add Âω+1 over the final model is < ν+ distributive and
its square is λ2-cc.

Proof. The proof for distributivity is similar to Claim 3.7. The proof of chain
condition follows from Lemma 1.3 and Corollary 3.8. �

By Lemma 1.1 it follows that Âω+1 cannot add a branch through T and that λ2
is preserved in the extension. Next we wish to apply Lemma 1.2 simultaneously to
the forcing to add G1 ×G2 ×G3. For this we need a few more preparations.

Claim 6.4. P3 is < ν+-closed in V [A1][A+][U+][S+ � [λ2, ι)].

Proof. An analog of Claim 4.15 of Neeman together with the resemblence between
V and V ∗ imply that P3 is < ν+-closed in V [A1×A+

1 ]. The claim follows since the
remaining forcing does not add any ν-sequences by Claim 3.7. �

At this point we recall that in the final model 2ω1 = ℵω+2, so to apply Lemma
1.2 it is enough to set τ = ω1. However it is not clear that in the current model
there is an inner model given by τ+-cc forcing in which P1×P2×P3 is defined. We
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solve this problem by applying the lemma in a mutually generic extension which
does have such an inner model. It follows that P1 × P2 × P3 could not have added
a branch through T since any such branch would exist in two mutually generic
extensions of W [Âω+1].

In W [Âω+1] we force to remove the dependence of U and S on A0 ∗U0 by adding
generics B̄ and C̄ for B � [κ2, ν) and C � [κ2, ν). It is not hard to see that this
extension preserves cardinals. By rearranging the forcing we see that in the model

V [A[2,ω)][B̄][C̄][A1 ×A+
1 ][A+][U+][S+][Âω+1]

the forcing to add A0 ∗ U0 ∗ S0 is κ2-cc, the forcing P1 × P2 × P3 is < κ2-closed
by Claims 6.2 and 6.4, and 2κ1 = λω+2. So by an application of Lemma 1.2 and
mutual genericity, we have that forcing with P1 × P2 × P3 cannot add a branch
through T over the model W [Âω+1].

It remains to show that the forcing π(A+
1 )/A+

1 to add Â+
1 cannot add a branch

through T over W [Âω+1][G1 × G2 × G3]. By standard arguments the height of T
has been a collapsed to cofinality ν+ in this model.

We note that the quotient forcing isomorphic to Add(κ1, π(λ2)). Since V has the

κ2 covering property in W and the forcing to obtain W [Âω+1][G1×G2×G3] does not
add any κ2-sequences, V still has the κ2 covering property in this further extension.
It follows that the square of Add(κ1, π(λ2))V has the κ2-cc in W [Âω+1][G1 ×G2 ×
G3]. So we are finished by an application of Lemma 1.1. �

7. The tree property at ℵω+n with 3 ≤ n < ω

In this section we sketch the proof of the following lemma.

Lemma 7.1. The tree property holds at ℵω+n for all n ≥ 3 in W .

The proof is an easy adaptation of arguments of Neeman. A direct application
of arguments of Neeman yields:

Lemma 7.2. The tree property holds at λn for n ≥ 3 in V [A1×A+
1 ][A+][U+][S+].

However we note that Neeman’s argument yields the slightly stronger statement
that the tree property at each λn is indestructible under forcing of size less than
λn−1 from the ground model. It is worth noting that the proof of this fact is easier
than the proof of Claim 4.2. We apply this indestructibility under small forcing to
add A,U, S and e which has size ν+ = λ1 in V while preserving the tree property
at each λn for n ≥ 3. This completes the proof of Lemma 7.1 and with it the proof
of the main theorem.
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