
COMBINATORICS AT ℵω

DIMA SINAPOVA AND SPENCER UNGER

Abstract. We construct a model in which the singular cardinal
hypothesis fails at ℵω. We use characterizations of genericity to
show the existence of a projection between different Prikry type
forcings.

1. Introduction

The Singular Cardinal Problem is the project to describe a complete
set of rules for the behavior of the operation κ 7→ 2κ for singular car-
dinals κ. The standard way to blow up the power set of a singular
cardinal is to start with a large cardinal κ, add many Cohen subsets
to it, and then change its cofinality to ω via a Prikry type forcing. In
order to bring such results down to smaller cardinal, one has to also
interleave collapses.

Our construction uses two Prikry forcings with interleaved collapses
defined in different models, one over a ground model with (almost)
GCH, and the other one over a non GCH ground model. Throughout
the course of our proof we give the exact characterization of genericity
of both posets, and show that there is a projection between them. The
former poset uses guiding generics for the collapses constraint functions
in the Prikry conditions, but we do not have them for the latter poset.

We will start with a model V |= κ is indestructibly supercompact.
Let A be the Easton support iteration 〈Add(α, α+ω+2) | α ≤ κ〉. We
will define two Prikry type forcings. P̄ will be diagonal supercompact
Prikry forcing in V with interleaved collapses using guiding generics.
P will be diagonal supercompact Prikry forcing in V A with interleaved
collapses, but no guiding generics. We characterize the genericity for
both posets. Then we use that to show that there is a projection from
P to P̄. In the final generic extension κ = ℵω, and SCH fails at κ. We
also show that there is a weak square sequence at κ.

The final generic extension arose as a natural attempt to push the
construction of Gitik and Sharon [6] down to ℵω and therefore obtain
the failure of both SCH and weak square at ℵω. While we have shown
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that the main forcing adds a weak square sequence, we think it is likely
that intermediate square principles �ℵω ,ℵn fail in the extension.

The paper is organized as follows. In section 2 we define the Prikry
poset in the ground model V , where GCH holds. In section 3 we define
a Prikry poset in V A, where A is the forcing to add subsets of κ, while
preserving the supercompactness of κ. In section 4 we show that there
is a weak square sequence at ℵω in the final model.

2. Prikry in the ground model

Suppose that in V , κ is indestructibly supercompact and GCH holds
above κ. Let Ū be a normal measure on Pκ(κ+ω+1). For each n, let
Ūn be the projection of Ū to Pκ(κ+n). For each n > 0, in V we build
Kn to be Ult(V, Ūn) - generic for (Col(κ+n+2, κ+ω+1) × Col(κ+ω+2, <
jŪn

(κ)))Ult(V,Ūn) as follows. Using the closure of Ult(V, Ūn) and the
poset, we build a decreasing sequence 〈qni | i < κ+n+1〉 of conditions
meeting all the maximal antichains in the ultrapower. Define Kn = {q |
(∃i)(qni ≤ q)}. Define K0 similarly, but with respect to (Col(κ+ω+2, <
jŪ0

(κ)))Ult(V,Ū0).
We define a ground model version of our Prikry forcing. For use in

the definition we let κx =def x ∩ κ and x ≺ y will denote that x ⊂ y
and |x| < κy.

Definition 2.1. Conditions in P̄ are of the form p = 〈d, 〈pn | n < ω〉〉,
where setting l = lh(p), we have:

(1) For 0 ≤ n < l, pn = 〈xn, cn〉 such that:
• xn ∈ Pκ(κ+n), and for i < n, xi ≺ xn,
• c0 ∈ Col(κ+ω+2

x0
, < κx1) if 1 < l, and if l = 1, c0 ∈

Col(κ+ω+2
x0

, < κ).
• if 1 < l, for 0 < n < l − 1, cn ∈ Col(κ+n+2

xn , κ+ω+1
xn ) ×

Col(κ+ω+2
xn , < κxn+1), and cl−1 ∈ Col(κ+l+1

xl−1
, κ+ω+1

xl−1
)×Col(κ+ω+2

xl−1
, <

κ).
(2) For n ≥ l, pn = 〈An, Cn〉 such that:

• An ∈ Ūn, and xl−1 ≺ y for all y ∈ An,
• Cn is a function with domain An, for y ∈ An, Cn(y) ∈

Col(κ+n+2
y , κ+ω+1

y )×Col(κ+ω+2
y , < κ) if n > 0, and Cn(y) ∈

Col(κ+ω+2
y , < κ) if n = 0,

• [Cn]Ūn
∈ Kn

(3) if l > 0, then d ∈ Col(ω, κ+ω
x0

), otherwise d ∈ Col(ω, κ).

q = 〈dq, 〈qn | n < ω〉〉 ≤ p = 〈dp, 〈pn | n < ω〉〉 if lh(q) ≥ lh(p) and:

• dq ≤ dp, and for all n < lh(p), xpn = xqn, c
q
n ≤ cpn,

• for lh(p) ≤ n < lh(q), xqn ∈ Apn and cqn ≤ Cp
n(xqn),
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• for n ≥ lh(p), Aqn ⊂ Apn and for all y ∈ Aqn, Cq
n(y) ≤ Cp

n(y)

q ≤∗ p, i.e. q is a direct extension of p, if q ≤ p and lh(q) = lh(p).

We will use the notation p = 〈dp, xp0, c
p
0, ..., x

p
l−1, c

p
l−1, A

p
l , C

p
l , ...〉, and

s(p) = 〈dp, xp0, c
p
0, ..., x

p
l−1, c

p
l−1〉. We will also write s(p) ≺ x to denote

xplh(p)−1 ≺ x.

By adapting the arguments in [6] to our situation, we get:

Proposition 2.2.

(1) (The Prikry property) If p has length at least 1 and D is a dense
open set, then there is a direct extension p′ ≤∗ p and n < ω,
such that every n-step extension of p′ is in D.

(2) P̄ has the µ = κ+ω+1 chain condition.
(3) After forcing with P̄, κ becomes ℵω and µ becomes ℵω+1.

If Ḡ is P̄ -generic, then Ḡ generates the sequence 〈x∗n | n < ω〉 with
each x∗n ∈ Pκ(κ+n), such that

⋃
n x
∗
n = (κ+ω)V . Setting λn := κx∗n , we

have that each λ+ω+1
n is collapsed to λ+n+2

n . As n increases we preserve
more and more cardinals in between λn and λ+ω+1

n , and eventually, over
κ, κ+ω+1 remains a cardinal. In addition, in V [Ḡ], weak square at ℵω
fails, but 2ℵω = ℵω+1.

Proposition 2.3. (Characterization of genericity of P̄) The following
are the necessary and sufficient conditions for a sequence 〈d∗, x∗n, c∗n |
n < ω〉 to be P̄ - generic over V :

(1) If 〈An | n < ω〉 ∈ V with An ∈ Ūn, then for all large n, x∗n ∈ An;
(2) For n > 0, c∗n is Col(κ+n+2

x∗n
, κ+ω+1

x∗n
) × Col(κ+ω+2

x∗n
, < κx∗n+1

)-

generic over V , and c∗0 is Col(κ+ω+2
x∗0

, < κx∗1)- generic over V ;

(3) d∗ is Col(ω, κ+ω
x∗0

)- generic over V ;

(4) If 〈[Cn]Ūn
| n < ω〉 ∈ V with [Cn]Ūn

∈ Kn, we have that for all
large n, Cn(x∗n) ∈ c∗n.

Proof. First we show that the conditions are necessary. Suppose that
〈d∗, x∗n, c∗n | n < ω〉 is generic for P̄. Conditions (1), (2) and (3) fol-
low from standard density arguments. For condition (4), given such
〈[Cn]Ūn

| n < ω〉, the set {p ∈ P̄ | (∀n ≥ lh(p))[Cp
n]Ūn

≤ [Cn]Ūn
} is

dense, and so (4) follows.
Next we show that the conditions are sufficient. The proof is a

generalization of Mathias’ arguments [8]. Suppose that (1-4) hold and
define Ḡ = {p ∈ P̄ | dp ∈ d∗, for all n < lh(p), xpn = x∗n, c

p
n ∈ c∗n, and for

all n ≥ lh(p), x∗n ∈ Apn and Cp
n(x∗n) ∈ c∗n}. Clearly Ḡ is a filter. Suppose

that D is a dense set of P̄. We want to find a condition p ∈ D ∩ Ḡ.
By the Prikry property, for all stems h, we can find a condition ph,

with lh(ph) = lh(h) and s(ph) ≤ h in the natural ordering of stems,
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and some n = nh < ω, such that every nh-step extension of ph is in D.
By standard diagonalization arguments we can find a condition p such
that for every stem h, n < ω, and x ∈ Apn, we have that if s(ph) ≺ x,

then x ∈ Aphn and Cp
n(x) ≤ Cph

n (x).
Applying (1) and (4), let k be such that for all n ≥ k, x∗n ∈ Apn and

Cn(x∗n) ∈ c∗n. Let h = 〈1, x∗0, 1, ..., x∗k−1, 1〉. Using (2) and (3) and that
we can choose the stems of ph densely often below h, we can arrange
ph to have a stem of the form h′ = 〈d, x∗0, c0, ..., x

∗
k−1, ck−1〉 where each

ci ∈ c∗i and d ∈ d∗. For every n ≥ k, {x ∈ Apn | h′ ≺ x} ⊂ Aphn , and
Cp
n(x) ≤ Cph

n (x). It follows that ph is in Ḡ. Let q be an nh - step
extension of ph which is in Ḡ. Then q ∈ D ∩ Ḡ.

�

In the next section we define a Prikry notion of forcing, P, in a ground
model after adding subsets of κ. We will use the characterization of
genericity to show that P projects to P̄.

3. Prikry after adding the subsets

Let A be the forcing to iterate in Easton fashion adding α+ω+2 many
subsets of α, for all inaccessible α ≤ κ. Let E be A-generic over V .
Then by standard arguments in V [E], there is a normal measure U
on Pκ(µ), such that Ū ⊂ U and j = jU extends jŪ (see for example
[7]). For each n, let Un be the projection of U to Pκ(κ+n) and set
jn = jUn , Mn = Ult(V [E], Un). Note that jn does not extend jŪn

. Let
kn : Mn → Ult(V [E], U) be given by kn([f ]Un) = j(f)(j”κ+n). As in
Gitik-Sharon [6] we can arrange that crit(kn) > jn(κ). In particular,
jn(κ) = kn(jn(κ)) = j(κ).

In V [E], we define a diagonal supercompact Prikry forcing with re-
spect to U with interleaved collapses taken from V to turn κ into ℵω.
We take collapses from V since if we took them from V [E] the resulting
forcing would collapse 2κ = κ+ω+2. In fact the forcing corresponding
to the ‘tail forcing’ D described below would be responsible for the col-
lapse. The proof is a relative of the one that adding a Cohen subset of
ω1 adds a surjection from ω1 on to 2ω.

Definition 3.1. Conditions in P are of the form

p = 〈d, x0, c0, ..., xl−1, cl−1, Al, Cl, ...〉,

where

(1) for 0 ≤ n < l, xn ∈ PVκ (κ+n), and for i < n, xi ≺ xn;
(2) c0 ∈ Col(κ+ω+2

x0
, < κx1)V if 1 < l, and if l = 1, c0 ∈ Col(κ+ω+2

x0
, <

κ)V ;
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(3) For 0 < n < l − 1, cn ∈ Col(κ+n+2
xn , κ+ω+1

xn )V × Col(κ+ω+2
xn , <

κxn+1)V , and cl−1 ∈ Col(κ+l+1
xl−1

, κ+ω+1
xl−1

)V × Col(κ+ω+2
xl−1

, < κ)V ;

(4) For n ≥ l An ∈ Un, An ⊂ PVκ (κ+n) and Cn is a function
with domain An, for y ∈ An, Cn(y) ∈ Col(κ+n+2

y , κ+ω+1
y )V ×

Col(κ+ω+2
y , < κ)V if n > 0, and Cn(y) ∈ Col(κ+ω+2

y , < κ)V if
n = 0;

(5) If l > 0, then d ∈ Col(ω, κ+ω
x0

)V , otherwise d ∈ Col(ω, κ)V .

The ordering is as for P̄.

Note that P contains P̄. However, due to the absence of the Kn’s
P does not satisfy the µ-c.c. Next we prove that P has the Prikry
property. We fix some notation that will be used in the proof. Suppose
that p ∈ P, then we let

p =def 〈dp, xp0, c
p
0, . . . x

p
l−1, c

p
l−1, A

p
l , C

p
l , . . . 〉

where l = lh(p). Sometimes we will want to refer to the lower part of
p. We recall how we defined s(p).

s(p) =def 〈dp, xp0, c
p
0, . . . x

p
l−1, c

p
l−1〉

If s is a lower part, then lh(s) refers to lh(p) where p is a condition
with s(p) = s. Similarly if s is a lower part, then for n < lh(s) we refer
to xsn and csn with the obvious interpretation. We make a few remarks
and prove a few lemmas before the proof of the Prikry Lemma.

Remark 3.2. There is a natural ordering on stems with the same
length and same Prikry points. Suppose that s1, s2 are lower parts with
l = lh(s1) = lh(s2) and for all n < l, xs1n = xs2n , then we set s1 ≤ s2 if
for all n < l, cs1n ≤ cs2n .

For each n < ω, let C′n be the poset (Col(κ+n+2, κ+ω+1)×Col(κ+ω+2, <
j(κ)))Ult(V,Ū). If Cn is a typical constraint function in P, then the
equivalence class of Cn modulo Un is a member of Cn =def [x 7→
ColV (κ+n+2

x , κ+ω+1
x )× ColV (κ+ω+2

x , < κ)]Un .

Proposition 3.3. For all n < ω, C′n ' Cn

Proof. We observe that Cn ∈ Mn is Col(κ+n+2, κ+ω+1)× Col(κ+ω+2, <
jn(κ)) as computed in jn(V ) where jn(V ) is the transitive inner model
of Mn obtained by taking the ultrapower of V by Ūn and using functions
from V [E]. Since crit(kn) > jn(κ) and jn(κ) is inaccessible in Mn,
kn �Cn is the identity map and kn(Cn) = kn“Cn. By elementarity and
the fact that j = kn ◦ jn, we have that kn(Cn) = C′n. So we have that
kn � Cn is an isomorphism. �
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If we define

Ul =def

∏
n≥l

Cn and

U′l =def

∏
n≥l

C′n

as full support products in V [E], then Ul ' U′l. Note that if 〈Cn | n ≥
l〉 is a typical sequence of constraining functions, then the sequence
〈[Cn]Un | n ≥ l〉 is an element of Ul. In a slight abuse of notation if we

have a sequence ~C = 〈Cn | n ≥ l〉, then we will write [~C] in place of

〈[Cn]Un | n ≥ l〉. Further if p ∈ P, then we write ~Cp for the sequence
of constraining functions obtained from p.

Remark 3.4. Note that the ordering on Ul has some relation to the
ordering on the set {p � [l, ω) | p ∈ P, lh(p) = l} induced by the ordering
on P. We call this latter poset the poset of upper parts of conditions
of length l. In particular if [~C] ≤ [~C ′] in U′l, then there is a sequence

of measure one sets ~A such that ( ~A, ~C) ≤ ( ~A, ~C ′) in the poset of upper
parts.

Each C′n is a member of V and since A is countably closed, U′l is in
V . This allows us to prove the following lemma.

Lemma 3.5. For each l < ω, U′l is < κ+l+2 distributive in V [E].

Proof. We fix l < ω. For each n ≥ l, C′n is κ+n+2-closed in Ult(V, Ū).
Ult(V, Ū) is closed under κ+ω+1-sequences in V . It follows that for each
such n, C′n is κ+n+2-closed in V . So Ul is κ+l+2-closed in V . Since A is
κ+-cc, Ul is < κ+l+2-distributive in V [E] by Easton’s Lemma. �

It follows that Ul is < κ+l+2-distributive in V [E]. We will also need
the following.

Lemma 3.6. For every inaccessible α < κ and n < ω, Col(α+n+2, α+ω+1)V×
Col(α+ω+2, < κ)V is < α+n+2-distributive in V A.

The proof is a straightforward application of Easton’s Lemma and
the fact that A is isomorphic to a two step iteration where the first
iterate is α+-cc and the second iterate is β-closed for some β > α+ω.
We are now ready to prove the Prikry Lemma.

Lemma 3.7. For every p ∈ P with lh(p) ≥ 1 and every dense open set
D ⊆ P, there are a p∗≤∗ p and n < ω such that every n step extension
of p∗ is in D.

Let p ∈ P be a condition of length at least 1 and D ⊆ P be a dense
open set. We break the argument into three rounds.
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Lemma 3.8. There is p0≤∗ p such that s(p) = s(p0) and for all q ≤ p0,
if q ∈ D, then s(q) _ p0 � [lh(q), ω) ∈ D.

Proof. Let s be a typical lower part with l =def lh(s) ≥ lh(p). We
define a dense open subset Ds of Ul.

Ds =def {[~C] ∈ Ul | (∃ ~A s _ ( ~A, ~C) ∈ D) or

(∀[~C ′] ≤ [~C]∀ ~A s _ ( ~A, ~C ′) /∈ D)}

The set Ds is well-defined, since if [~C] = [~C ′], then [~C] ∈ Ds if and only

if [~C ′] ∈ Ds. Clearly Ds is dense open in Ul. By the distributivity of
Ul and the fact that there are κ+l−1-many stems of length l,

Dl =def

⋂
{s|lh(s)=l}

Ds

is dense open. Let ~C be a sequence of constraining functions so that for
all l ≥ lh(p), [~C � [l, ω)] ∈ Dl and [~C] ≤ [~Cp]. Let ~A witness that [~C] ≤
[~Cp]. For each lower part s, let ~As be a sequence of measure one sets

witnessing the first condition for [~C � [lh(s), ω)] ∈ Ds if that condition

holds. Let ~A′ be the diagonal intersection of the ~As intersected with ~A.
Let ~C ′ be the natural restriction of ~C to ~A′. Let p0 be the condition
with s(p0) = s(p) and upper part given by ( ~A′, ~C ′).

We claim that p0 is as required for the lemma. Suppose that q ≤ p0

with q ∈ D. Let s = s(q) and l = lh(q). It follows from our construction

that [~Cp0 � [l, ω)] ∈ Ds. Moreover, [~Cq] ≤ [~Cp0 � [l, ω)] and q ∈ D. So

by the definition of Ds, ~A
s was chosen so that s _ ( ~As, ~Cp0) ∈ D. We

are done since s _ p0 � [l, ω) ≤ s _ ( ~As, ~Cp0). �

Before the next lemma we need another piece of notation. We define

s−(p) =def 〈dp, xp0, c
p
0, . . . x

p
l−1〉,

where l = lh(p). Note that s− is s(p) without its topmost collapse
condition.

We define a sequence of sets of lower parts 〈Yn | n < ω〉. Each Yn
is closed downward in the partial ordering on lower parts. We simul-
taneously define a decreasing sequence of conditions, which capture
membership in the Yn.

Lemma 3.9. There is a sequence of sets 〈Yn | n < ω〉 and a decreasing
sequence 〈pn | n < ω〉 of direct extensions of p0 such that

Y0 =def {s | s _ p0 � [lh(s), ω) ∈ D}
Yn+1 =def {s | ∃A ∈ Ulh(s) ∀x ∈ A s _ 〈x,Cpn

lh(s)(x)〉 ∈ Yn}
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and for all n ≥ 1 and all non-direct extensions q ≤ pn if s(q) ∈ Yn−1,
then s−(q) _ 〈Cpn

lh(q)(x)〉 ∈ Yn−1.

Proof. We work by recursion to define pn for n ≥ 1. Let s− be a typical
restricted lower part whose length l is at least lh(p0) and let x be the
topmost Prikry point of s−. Note that x ∈ Pκ(κ+(l−1)). We define Es−
a dense open subset of Col(κ+l+1

x , κ+ω+1
x )V × Col(κ+ω+2

x , < κ)V .

Es− =def {c | s− _ 〈c〉 ∈ Yn−1 or ∀c′ ≤ c s− _ 〈c′〉 /∈ Yn−1}

ClearlyEs− is dense open. By the distributivity of Col(κ+l+1
x , κ+ω+1

x )V×
Col(κ+ω+2

x , < κ)V and the fact that there are at most κ
+(l−1)
x many s−

for which x is the top Prikry point,

Ex =def

⋂
{s−|x is the top Prikry Point of s−}

Es−

is dense open. For each x ∈ A
pn−1

l−1 , we choose Cpn
l−1(x) ≤ C

pn−1

l−1 (x)

with Cpn
l−1(x) ∈ Ex. This completely defines ~Cpn . Let pn =def s(p) _

( ~Apn−1 , ~Cpn). Clearly pn ≤∗ pn−1.
We claim that pn is as required for the lemma. Suppose that q ≤ pn

is a nondirect extension with s(q) ∈ Yn−1. For ease of notation, let
l = lh(q), s− = s−(q) and x be the top Prikry point of s−. By the
choice of pn, Cpn

l−1(x) ∈ Es− . Moreover, since s(q) ∈ Yn−1, we chose
Cpn
l−1(x) such that s− _ Cpn

l−1(x) ∈ Yn−1 by the definition of Es− . �

With Lemma 3.9, we can complete the proof of the Prikry Lemma.

Proof of Prikry Lemma. Let pω be a direct extension of each of the pn.
This is possible since the forcing in the upper part is countably closed.
It is easy to see that pω retains the property of each of pn. To finish the
proof we need to restrict the measure one sets that form the domains
of our constraining functions.

For each s and each n < ω, we partition Apωlh(s) into two pieces. We

consider the collection of x for which s _ 〈x,Cpω
lh(s)(x)〉 ∈ Yn and its

complement. We call the set which is measure one An(s). If the above
property holds on a measure one set then we say that we are in the good
case. Let Anl be the diagonal intersection of the An(s) where lh(s) = l,
and

Al =def

⋂
n<ω

Anl .

Let pω+1 be the restriction of pω to the measure one sets Al for l ≥ lh(p).
Let q ≤ pω+1 with q ∈ D and set l = lh(q). We set n = l − lh(p). By
Lemma 3.8, s(q) _ p0 � [lh(q), ω) ∈ D.
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We prove by induction that for all k ≤ n, s(q) � l − k ∈ Yk. Suppose
that k = 0, then s(q) � l = s(q) and s(q) _ p0 � [lh(q), ω) ∈ D, so
s(q) ∈ Y0. Next suppose that we have that s(q) � l− k ∈ Yk for some k.
By Lemma 3.9,

〈dq, cq0, x
q
0, . . . x

q
l−k−1, C

pω+1

l−k−1(xql−k−1)〉 ∈ Yk

By definition of diagonal intersection, xql−k−1 ∈ Ak(s(q) � l − k − 1). It

follows that Ak(s(q)�l−k−1) was chosen in the good case. Now by the
definition of Yk+1, s(q) � l− k− 1 ∈ Yk+1. In particular we showed that
s(q) � l − n ∈ Yn. Recall that l − n = lh(p). Let p∗ = s(q) � lh(pω+1) _
pω+1 � [lh(pω+1, ω).

We claim that every n step extension of p∗ is in D. Let r ≤ p∗

be an n step extension. We prove by induction that for all k ≤ n,
s(r) � lh(p) + k ∈ Yn−k. If k = 0, then s(r) � lh(p∗) ≤ s(p∗) and by
the choice of p∗, s(p∗) ∈ Yn and hence s(r) � lh(p∗) ∈ Yn. Suppose that
for some k < n we have s(r) � lh(p) + k ∈ Yn−k. By the definition
of Yn−k, A

n−k(s(r) � lh(p) + k) was chosen in the good case. By the
definition of diagonal intersection xrlh(p)+k ∈ An−k(s(r) � lh(p) + k). It

follows that s(r) � lh(p) + k + 1 ∈ Yn−k−1, as required. So we have
proved that s(r) ∈ Y0, so s(r) _ p0 � [lh(r), ω) ∈ D. By the choice of
r, r ≤ s(r) _ p0 � [lh(r), ω). Therefore r ∈ D. �

Next we list some corollaries of the Prikry lemma.

Corollary 3.10. Let p ∈ P and φ be a formula. Then there is q ≤∗ p
that decides φ.

Proof. Apply the Prikry lemma to the set of all conditions deciding
φ. Then by further shrinking measure one sets, get q ≤∗ p, so that
every n-step extension decides φ the same way for some n < ω. Then
q decides φ. �

Corollary 3.11. Forcing with P in V [E] preserves µ.

Proof. Suppose otherwise. Then in V [E][G] the cofinality of µ is less

than κ. So fix a condition p, τ < κ, and a name ḟ , such that p 

“ḟ : τ → µ is unbounded”. For each γ < τ , let Dγ be the dense

open set of conditions deciding values for ḟ(γ). Let p′ ≤∗ p be such
that p′ satisfies the conclusion of Lemma 3.8 applied to each Dγ. More

precisely, for each γ < τ , if q ≤ p′ is such that q decides ḟ(γ), then

s(q)_p′ � [lh(q), ω) decides ḟ(γ). Here we use that the direct extension
relation is < τ+-distributive.
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For γ < τ , let αγ < µ be the supremum of all possible values for ḟ(γ)
forced by conditions below p′. Then αγ < µ. Let α = supγ<τ αγ < µ.

Then p′ 
 (∀γ)(ḟ(γ) < α). Contradiction.
�

Corollary 3.12. Suppose that Ẋ is a P-name for a bounded subset
of κ, then there is an n < ω such that the interpretation of Ẋ is in
V [d∗, c∗0, . . . c

∗
n−1] where d∗, c∗0, . . . c

∗
n−1 are generic for an initial segment

of the interleaved collapses.

Proof. Suppose that Ẋ is a P-name for a subset of γ < κ. Let p ∈ P.
Let p′ be a one step extension of p, where if x is the Prikry point chosen
then κx > γ. Set n + 1 = lh(p′) and so x = xp

′
n . For each α < γ, let

Dα be the dense open set of conditions deciding “α ∈ Ẋ”. By taking
a direct extension, we may assume that p′ satisfies the conclusion of
Lemma 3.8 applied to each Dα. Let Sx be the set of stems s of length
n, such that there is a condition q ≤ p′ with q �n = s. For every s ∈ Sx
and α < γ, let Ds,α =def {c ∈ Col(κ+n+2

x , κ+ω+1
x )V ×Col(κ+ω+2

x , < κ)V |
(∃r ≤∗ s_p′ � [n, ω))(r decides “α ∈ Ẋ”, crn = c and (∀i > n)([Cr

i ]Ui
=

[Cp′

i ]Ui
))}. Then each Ds,α is dense open because we can apply Lemma

3.10 to conditions of the form s_〈x, c〉_p′ � [n+ 1, ω).
We have that γ < κx and the size of Sx is at most o.t.(x) =

κx
+n, which is less than the distributivity of Col(κ+n+2

x , κ+ω+1
x )V ×

Col(κ+ω+2
x , < κ)V . So, let c ∈

⋂
s∈Sx,α<γ

Ds,α with c ≤ cp
′
n , and for each

s, α, let rs,α witness that c ∈ Ds,α. Let ps,α = s(p′) � n_rs,α � [n, ω).
Finally, set p′′ be a direct extension of all ps,α. Then p′′ decides which

ordinals are in Ẋ up to an extension of the collapse conditions in the
stem restricted to length n. So p′′ forces that Ẋ ∈ V [ḋ∗, ċ∗0 . . . ċ

∗
n−1]. �

It follows that after forcing with A∗ Ṗ, κ becomes ℵω and µ becomes
ℵω+1. We have to show that µ+ is preserved.

Proposition 3.13. (Characterization of genericity for P) The follow-
ing are the necessary and sufficient conditions for a sequence 〈d∗, x∗n, c∗n |
n < ω〉 to be P - generic over V [E]:

(1) If 〈An | n < ω〉 ∈ V [E] with An ∈ Un, then for all large n,
x∗n ∈ An;

(2) For all n > 0, c∗n is Col(κ+n+2
x∗n

, κ+ω+1
x∗n

)V ×Col(κ+ω+2
x∗n

, < κx∗n+1
)V -

generic over V [E], and c∗0 is Col(κ+ω+2
x∗0

, < κx∗1)V - generic over

V [E];
(3) d∗ is Col(ω, κ+ω

x∗0
)V - generic over V [E];



COMBINATORICS AT ℵω 11

(4) If D is a dense subset of
∏

n<ω Cn in V [E], then there is 〈[Cn]Un |
n < ω〉 ∈ D, such that for all large n, Cn(x∗n) ∈ c∗n (recall that
Cn = [x 7→ Col(κ+n+2

x , κ+ω+1
x )V × Col(κ+ω+2

x , < κ)V ]Un.)

Proof. First we show that the conditions are necessary. Conditions (1),
(2) and (3) follow from standard density arguments. For condition (4),
given such a dense set D in

∏
Cn, we have that the set D∗ = {p ∈ P |

(∃〈[Cn]Un | n < ω〉 ∈ D)(∀n ≥ lh(p))([Cp
n]Un = [Cn]Un} is dense in P.

And so (4) follows.
Next we show that the conditions are sufficient. The proof follows

the arguments in the proof of the Prikry property. Suppose that (1),
(2), (3), and (4) hold and define G = {p ∈ P | dp ∈ d∗, for all n <
lh(p), xpn = x∗n, c

p
n ∈ c∗n, and for all n ≥ lh(p), x∗n ∈ Apn and Cp

n(x∗n) ∈
c∗n}. First we show that G is a filter. It is clearly closed upwards.
If two conditions p, q are in G, by (1), we get that for all large n,
{x ∈ Apn ∩ Aqn | Cp

n(x) is compatible with Cq
n(x)} ∈ Un, and so we can

find a common extension of p and q in G. Now suppose that D is a
dense set of P. We want to find a condition p ∈ D ∩G.

First we note that the arguments in Lemmas 3.8 and 3.9 used in
the proof of the Prikry lemma actually yield the following stronger
conclusions:

• For all p with length at least 1, there is a direct extension p′ ≤∗
p, such that for all stems h with lh(h) ≥ lh(p), if q ≤ h_p′ �
[lh(h), ω) is in D, then s(q)_p′ � [lh(q), ω) ∈ D.
• For all p with length at least 1, there is a sequence of sets
〈Yn | n < ω〉 and a decreasing sequence 〈pn | n < ω〉 of direct
extensions of p, such that the Yn’s are defined as in Lemma 3.9,
and for each n ≥ 1, for every stem h and non-direct extensions
q ≤ h_pn � [lh(h), ω), if s(q) ∈ Yn−1, then s−(q)_〈Cpn

lh(q)(x)〉 ∈
Yn−1.

Using these properties, we can define pω and pω+1 as in the proof of the
Prikry lemma. Now let h be a stem, and let q ≤ h_pω+1 � [lh(h), ω)
be in D. Set h′ =def s(q) � lh(h) and nh =def lh(q). Then, using
similar arguments as in the Prikry lemma, we get that every nh - step
extension of h′_pω+1 � [lh(h), ω) is in D.

We can choose such a condition pω+1 densely often, and so applying
(4) and (1), we can assume that for some k, we have that for all n ≥ k,
x∗n ∈ Apω+1

n and Cpω+1
n (x∗n) ∈ c∗n. Let h = 〈1, x∗0, 1, ..., x∗k−1, 1〉. Using

(2) and (3) and that we can choose h′ densely often below h, we can
arrange h′ to be of the form h′ = 〈d, x∗0, c0, ..., x

∗
k−1, ck−1〉 where each

ci ∈ c∗i and d ∈ d∗. Then h′_pω+1 � [k, ω) ∈ G. Let q be an nh - step
extension of h′_pω+1 � [k, ω) which is in G. Then q ∈ D ∩G.
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�

Set D =
∏

nCn/fin. By item (4) of the above proposition in V [E]
there is a projection from P to D. Let H be D generic over V [E].

Lemma 3.14. The quotient forcing P/H has the µ-chain condition.

Proof. Suppose otherwise. Then in V [E][H], there is an antichain 〈pi |
i < µ〉 in P/H. By passing to an unbounded subset of µ if necessary, we
may assume all of the conditions have the same length. By shrinking
measure one sets, we can arrange that for each pi, for all k ≥ lh(pi),
for all y ∈ Apik , there are xlh(p) ≺ xlh(p)+1 ≺ ...xk−1 ≺ y, such that for
each lh(pi) ≤ n < k, xn ∈ Apin . The meaning of this is that for every
y ∈ Apik , pi can be extended to a condition whose stem ends in y.

Let G be P/H-generic over V [E][H]. Say, G generates the sequence
〈d∗, x∗n, c∗n | n < ω〉.

Claim 3.15. For every p ∈ P/H, for all large n, x∗n ∈ Apn and Cp
n(x∗n) ∈

c∗n.

Proof. For p ∈ P/H the set D := {q | for all large n, [Cq
n]Un ≤Cn

[Cp
n]Un} is dense in P/H. Let q ∈ G∩D. Then for all large n, [Cq

n]Un ≤Cn

[Cp
n]Un and so for all large n, Cq

n(x∗n) ≤ Cp
n(x∗n). Then for all large n,

Cp
n(x∗n) ∈ c∗n

�

For each i < µ, let ki < ω be such that for all n ≥ ki, x
∗
n ∈ Apin and

Cpi
n (x∗n) ∈ c∗n. Since µ is still regular in V [E][G], there is an unbounded

subset I ⊂ µ and k < ω, such that for all i ∈ I, k = ki.
Now, for each i < µ, let qi ≤ pi in P/H be such that lh(qi) = k+1 and

whenever x∗k ∈ A
pi
k , we have that the stem of qi ends in 〈x∗k, C

pi
k (x∗k)〉.

Note that the set I∗ := {i < µ | x∗k ∈ A
pi
k } ∈ V [E][H], so we can carry

out the construction. Here we have I∗ ⊃ I ∈ V [E][G].
Let hi = s(qi). Then 〈hi | i ∈ I〉 is a sequence of stems of length

k + 1, in V [E][G]. But there are less than µ many possible stems. So
there are i < j, forced to be in I, such that hi = hj. Let h = hi = hj.

Claim 3.16. pi and pj are compatible in P/H .

Proof. Let k′ be such that for all n ≥ k′, [Cpi
n ]Un is compatible with

[C
pj
n ]Un . For n ≥ k′, let Cn be such that An := dom(Cn) ⊂ Apin ∩ A

pj
n

and Cn(x) = Cpi
n (x) ∪ Cpi

n (x). Also, for every n with k < n < k′, let
cn = Cpi

n (x∗n) ∪ Cpj
n (x∗n). Set p = h_〈x∗n, cn | k < n < k′〉_〈An, Cn |

k′ ≤ n < ω〉 (here we fix a condition deciding the generic sequence up
to k′). Then p ∈ P/H and p is stronger than pi and pj.

�
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�

Denote Cn = Cn0 × Cn1, where Cn0 = [x 7→ ColV (κ+n+2
x , κ+ω+1

x )]Un

and Cn1 = [x 7→ ColV (κ+ω+2
x , < κ)]Un , and set D0 =

∏
nCn0/fin and

D1 =
∏

nCn1/fin. Then D = D0 × D1. Note that by the isomorphism
between Cn and C′n, D is a poset in V .

Proposition 3.17. In V ,

(1) D0 has the µ+ chain condition;
(2) D1 is < µ+-strategically closed;
(3) D is (κ+ω + 1)-strategically closed.

Proof. The proof for (1) is standard. We will just give the proof for (3).
The argument for (2) is similar and actually simpler. We just note that
(2) holds since Cn1 is isomorphic to (Col(κ+ω+2, < j(κ)))Ult(V,Ū), which
is just (Col(κ+ω+2, < j(κ)))V . This is since Ult(V, Ū) is closed under
µ-sequences of ordinals in V as an ultrapower by a µ-supercompact
ultrafilter Ū , and the last forcing is µ+-closed over V .

We describe a winning strategy for player II which will produce a
decreasing sequence 〈qi | i ≤ κ+ω〉 of conditions in D, such that there
are representatives ai ∈

∏
nCn for i < κ+ω, such that:

(1) each [ai]/fin = qi, and
(2) for all i < j, if j < κ+n+2, then aj(n) ≤Cn a

i(n).

Suppose that at some even stage j, we have the sequences 〈qi, ai |
i < α〉 as desired. If j = i+ 1, let qj ≤ qi and by making finitely many
changes, pick a representative for aj for qj, such that aj(n) ≤ ai(n) for
all n.

Suppose now that j is limit and j < κ+ω. Let k be the least such
that j < κ+k+2. Define aj by setting aj(n) to be a lower bound of ai(n)
for all i < j if n ≥ k. Otherwise set aj(n) = 1. Player II plays qj = [aj].

Finally, suppose that j = κ+ω. Let a(n) be a lower bound of ai(n)
for all i < κ+n+1, and set qκ+ω = [a]. Then for each i, a(n) ≤ ai(n) for
all large n, and so qκ+ω ≤ qi.

�

It follows that D preserves cardinals. So, by the chain condition
lemma, in V [E][G], µ+ is preserved and becomes ℵω+2. So we have
2ℵω = ℵω+2 and the singular cardinal hypothesis fails at ℵω.

Finally we will show that we can choose a generic object for P, that
projects to P̄. Recall that for each n we defined a decreasing sequence
of conditions 〈qni | i < κ+n+1〉 in (Col(κ+n+2, κ+ω+1) × Col(κ+ω+2, <
jŪn

(κ)))Ult(V,Ūn) and used them to build the guiding generic Kn in V .
Note that each qni ∈ Cn =def [x 7→ Col(κ+n+2

x , κ+ω+1
x )V × Col(κ+ω+2

x , <
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κ)V ]Un . We also showed that

kn”Cn = kn(Cn) = C′n =def (Col(κ+n+2, κ+ω+1)×Col(κ+ω+2, < j(κ)))Ult(V,Ū).

Ult(V, Ū) is closed under sequences of length κ+ω+1, so there is a
condition q∗n ∈ C′n which is stronger than all kn(qni ) for i < κ+n+1. Here
we use that, setting qni = [fni ]Ūn

, we have that 〈kn(qni ) | i < κ+n+1〉 =
〈[y 7→ fni (y ∩ κ+n)]Ū | i < κ+n+1〉 ∈ V . And since C′n = kn”Cn, we
have that for some qn ∈ Cn, q∗n = kn(qn). Then by elementarity, qn is
stronger than each qni for i < κ+n+1.

So for each n, we have a master condition qn ∈ Cn for the guiding
generic Kn that was used to define P̄. Let pm ∈ P be such that for
each n ≥ lh(pm), [Cpm

n ]Un = qn, and let G be P-generic over V [E] with
pm ∈ G. Let 〈x∗n | n < ω〉 and 〈d∗, c∗n | n < ω〉 be the generic sequences
added by G.

Lemma 3.18. 〈d∗, x∗n, c∗n | n < ω〉 is P̄ - generic over V .

Proof. (1), (2) and (3) of the conditions for genericity of P̄ in Proposi-
tion 2.3 are straightforward. For (4), suppose that 〈[Cn]Ūn

| n < ω〉 ∈ V
with each [Cn]Ūn

∈ Kn. The set D = {p ∈ P | for all large n, [Cp
n]Un ≤

[Cn]Un ; or for unboundedly many n, [Cp
n]Un ⊥ [Cn]Un} is dense in P.

Let q ∈ D ∩ G. By our choice of pm, it follows that for all large n,
[Cq

n]Un ≤ [Cn]Un . I.e. for all large n, {x ∈ Aqn | Cq
n(x) ≤ Cn(x)} ∈ Un.

Then by genericity of the x∗n’s for P, we have that for all large n,
Cq
n(x∗n) ≤ Cn(x∗n). And so, since q ∈ G, for all large n, Cn(x∗n) ∈ c∗n. �

So, we have that V [Ḡ] ⊂ V [E][G], i.e. A ∗ Ṗ projects to P̄. In
particular we have shown that:

Theorem 3.19. We can choose a P-generic filter G over V [E], such
that G induces a P̄-generic filter G over V .

4. Weak Square

In this section we show that forcing with D0 adds a weak square
sequence at κ+ω. The argument is motivated by a similar result in
Assaf Sharon’s thesis [11]. For every n < ω, fix a Cn0 name Ċn for a
club in µ of order type κ+n+2. For γ < µ, we say that [cn]/fin ∈ D0

is a γ-condition if for all large n, cn decides Ċn ∩ γ. Then the set
D = {d ∈ D0 | d is a γ − condition} is dense. Now let H0 be D0-
generic, and let γ be good if there is [cn]/fin ∈ H0 such that for all
large n, cn 
Cn0 γ ∈ limĊn. Note that since D is dense we can always
assume that the witness [cn]/fin is a γ-condition. In V [H0], define
X := {γ < µ | γ is good}.
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Proposition 4.1. X is > ω -club

Proof. First we show closure. Let 〈γα | α < δ〉 be an increasing con-
tinuous sequence in X for some regular, uncountable δ < µ. For each
α < δ let [cαn]/fin and nα < ω be such that for all n ≥ nα, cαn decides
Ċn ∩ γα and forces that γα is a limit point of Ċn. Since D0 is κ+ω + 1
-stategically closed, there is [cn]/fin ∈ H0 stronger that each [cαn]/fin.
By increasing the nα’s if necessary, we may assume that for all n ≥ nα,
cn ≤Cn0 c

α
n. Since δ has uncountable cofinality, there is some n∗ and

unbounded I ⊂ δ, such that for all α ∈ I, n∗ = nα. Then [cn]/fin and
n∗ witness that γ := supα<δ γα is good.

To show that X is unbounded, fix γ < µ and a condition [cn]/fin.
For all n, let γ1

n > γ and c1
n ≤ cn be such that c1

n 
 γ1
n ∈ Ċn. Let

γ1 = supn γ
1
n. Similarly, build increasing 〈γk | k < ω〉 and decreasing

〈ckn | k < ω〉 in Cn0, such that for every n, k ckn 
 (γk−1, γk) ∩ Ċn 6= ∅.
Let c∗n ∈ Cn0 be stronger than each ckn for k < ω and set γ∗ = supk γ

k.
Then each c∗n 
 γ∗ ∈ limĊn. So, by density, we have that there is a
point in X above γ.

�

Now for every γ ∈ X, let ~cγ and nγ witness that γ ∈ X. I.e. for all

n ≥ nγ, ~cγ(n) 
Cn0 γ ∈ limĊn. We may also assume that each ~cγ(n)

decides Ċn ∩ γ, and let Zγ,n be that value. Define

Cγ := {Y ⊂ γ | Y is a club in γ, (∃k ≥ nγ)(Y ⊂
⋂
n≥k

Zγ,n)}.

Note that for every γ ∈ X, Cγ is nonempty. And for every γ ∈ cof(ω) \
X, set Cγ = {Y }, where Y is any cofinal ω sequence in γ.

Proposition 4.2. 〈Cγ | γ ∈ X ∪ cof(ω)〉 is a �∗κ+ω sequence.

Proof. First note that if Y ∈ Cγ for γ ∈ X, then for some n, Y ⊂ Zγ,n,
which has order type less than κ+n+2. So |Cγ| ≤ |

⋃
nP(κ+n+2)| = κ+ω.

Now suppose that γ ∈ X, Y ∈ Cγ and β ∈ lim(Y ). We have to show
that Y ∩ β ∈ Cβ.

Claim 4.3. β ∈ X.

Proof. Let k ≥ nγ be such that Y ⊂
⋂
n≥k Zγ,n. For n ≥ k, ~cγ(n)

decides Ċn ∩ γ, and so it also decides Ċn ∩ β. Since Y is unbounded in
β, it follows that for n ≥ k, Zγ,n is unbounded in β. I.e. ~cγ(n) decides

that β is a limit point of Ċn. So, β ∈ X.
�
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Let n∗ ≥ max(k, nβ) be such that for all n ≥ n∗, ~cβ(n) and ~cγ(n)
are compatible. Then for all n ≥ n∗, Zγ,n ∩ β = Zβ,n. So Y ∩ β ⊂⋂
n≥n∗ Zγ,n ∩ β =

⋂
n≥n∗ Zβ,n. So, Y ∩ β ∈ Cβ.

�

Corollary 4.4. In V [E][G], there is a weak square sequence at ℵω.

We conclude with some remarks and questions.

Remark 4.5. Although forcing with D0, adds a weak square sequence,
in V D, we have Refl(ω, µ), and so ¬�κ+ω ,λ for all λ < κ+ω.

Remark 4.6. Suppose that the ground model V is obtained by doing
Laver preparation over V0. Then in V [E][G], we can define a scale in∏

n λ
+n+1, such that S := {γ < µ | γ is a bad point in V0} is stationary

in V [E][G]. However, points in S are not necessarily bad in V .

Remark 4.7. Arguing as in [6], in V [E][G] we can define a very good
scale of length µ+ in

∏
n λ

+n+3. Using this scale standard arguments
(see for example [2]) show that Refl(ω, µ) fails in V [E][G].

Question 1. How much failure of square can we get in the final generic
extension?
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