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Abstract. We analyze the modified extender based forcing from Assaf
Sharon’s PhD thesis. We show there is a bad scale in the extension and
therefore weak square fails. We also present two metatheorems which
give a rough characterization of when a diagonal Prikry-type forcing
forces the failure of weak square.

1. Introduction

In the 1980’s Woodin asked if the failure of the Singular Cardinals Hy-
pothesis (SCH) was compatible with the failure of weak square at a singular
cardinal µ. The case when µ = ℵω is of particular interest and remains
open. In [5] Gitik and Magidor developed a diagonal extender based forcing
construction to violate SCH. This forcing was in part motivated by search-
ing for a way to obtain failure of weak square at a large singular cardinal
together with not SCH. (Their forcing has since been refined by Gitik, see
for example Section 2 of [4].) However, in his PhD Thesis [8] Sharon showed
that this forcing actually adds a weak square sequence.

A positive answer to Woodin’s question for a large singular cardinal was
obtained by Gitik and Sharon [6]. In fact they obtained the stronger result
that the approachability property fails. Cummings and Foreman [1] were
able to show that there is a PCF theoretic object called a bad scale in Gitik
and Sharon’s model, which is responsible for the failure of the approacha-
bility property. Gitik and Sharon’s forcing admits the addition of collapses
in a natural way to make the singular cardinal into ℵω2 , which gives a pos-
itive answer to Woodin’s question for ℵω2 . Recently the authors [9] added
collapses to the Gitik and Sharon forcing to make κ into ℵω. The result was
a model where SCH fails at ℵω, but weak square holds. The argument that
weak square holds is a modification of Sharon’s argument that weak square
holds in Gitik and Magidor’s model mentioned above. In a second paper
[10], we were able to show that the forcing from our previous paper gives
the failure of the intermediate weak square principles �ℵω ,ℵn for n < ω.
This is currently the best known partial result towards a positive answer to
Woodin’s question.

This paper is motivated by a search for other posets which might give a
positive answer to Woodin’s question at ℵω. It is reasonable to ask whether
there is some way to modify Gitik and Magidor’s extender based forcing in
order to obtain the failure of weak square. Further if there is such a forcing,
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then is it possible to add collapses to obtain a positive answer to Woodin’s
question at ℵω. In this paper we show that the answer to the first question
is yes and the answer to the second question is no. In particular, we present
a version of extender based Prikry forcing from Sharon’s PhD thesis, which
we call modified extender based forcing and show that it forces the failure
of SCH and the existence of a bad scale, which implies the failure of weak
square. We give a strong answer to the second question by proving two
metatheorems which characterize when a diagonal Prikry forcing forces the
failure of weak square. As an application we show that a reasonable attempt
to add collapses to the modified extender based forcing to make κ into ℵω
will add weak square. This suggests that extender based forcing is unlikely
to provide a positive answer to Woodin’s question for ℵω.

The sections of the paper are organized as follows. In Section 2, we give
the definition of the modified extender based forcing and prove some of
its properties. The definitions and theorems of this section are all due to
Sharon. In Section 3, we show that assuming κ is supercompact, there is
a bad scale in the extension by the modified extender based forcing. In
Section 4, we prove our metatheorems and show that certain extender based
forcings with short extenders add weak square.

2. Modified extender based forcing

In order to motivate the definition of the modified extender based forcing,
we describe a natural failed attempt to modify the extender based forcing
with long extenders from Section 2 of Gitik’s chapter in the Handbook of
Set Theory [4]. This long extender forcing from [4] is a simplification of the
forcing construction of Gitik and Magidor mentioned above. The reader is
advised to have a good understanding of it before attempting to read this
section of the paper.

As a background assumption, we have an increasing sequence of cardinals
〈κn | n < ω〉 with supn<ω κn = κω such that each κn carries a (κn, κ

++
ω )-

extender En = 〈Enα | α < κ++
ω 〉. Recall that we say α ≤En β if and

only if there is a function f : κ → κ such that jn(f)(β) = α where jn
is the ultrapower map generated by En. For such α and β we fix a map
πβα : κ→ κ that witnesses α ≤En β. We also set µ = κ+ω .

The long extender based forcing is a gluing together of ω many cells. Each
cell Qn has two parts Qn0 and Qn1. Qn1 is a version of Cohen forcing and
Qn0 is a constrained version of Cohen forcing where some coordinates are
controlled by a measure one set from some measure in the extender En. The
order on a cell is the order on each of the pieces together with a method for
passing from Qn0 to Qn1 by selecting an element from the current measure
one set and using the constraint to add information to the Cohen part of
the condition.

For Gitik and Magidor the size of the Cohen parts is at most κω and
a careful read of Sharon’s thesis reveals that these large Cohen parts are



MODIFIED EXTENDER BASED FORCING 3

responsible for the addition of weak square. Unfortunately, the size of the
Cohen parts also allows for an easy proof of the Prikry lemma, since the
Cohen parts are closed enough to become universal.

A natural attempt to avoid adding weak square is to decrease the size of
the Cohen parts in each cell. To this end we define Qn1 = {f : κ++

ω → κn |
|f | ≤ κn} and Qn0 to be as in Definition 2.6 of [4], but with the modified
version of Qn1.

Definition 1. Conditions in Qn0 are triples 〈a,A, f〉 where

(1) f ∈ Qn1,
(2) a ⊆ κ++

ω such that |a| < κn and it has a maximal ordinal mc(a) in
the sense of ≤En which is also its largest element,

(3) A ∈ Enmc(a),
(4) if β < α with α, β ∈ a, then for all ν ∈ A, πmc(a)β(ν) < πmc(a)α(ν),

and
(5) if α, β, γ ∈ a with γ ≤En β ≤En α, then for all ν ∈ πmc(a)α“A,

παγ(ν) = πβγ(παβ(ν)).

We define (a,A, f) ≤ (b, B, g) if and only if f ⊇ g, a ⊇ b and πmc(a)mc(b)“A ⊆
B.

The combination of Qn1 and Qn0 to form Qn is the standard one.

Definition 2. Let Qn = Qn0 ∪Qn1 where we set p ≤ q if

(1) p, q ∈ Qni for i ∈ 2 and p ≤ q or
(2) p ∈ Qn1, q ∈ Qn0 and p ⊇ q _ ν (defined below) for some ν.

For 〈a,A, f〉 ∈ Qn0 and ν ∈ A, let 〈a,A, f〉_ν = f ∪ {〈β, πmc(a),β(ν)〉 | β ∈
a}.

We start with some easy propositions.

Proposition 3. (1) Qn is κ+n -closed.
(2) Qn has the κ++

n chain condition.
(3) Qn0 is κn-closed, preserves κ++

n , and collapses (κ+n )V to κn.

One can then define a poset P̂ as in Definitions 2.13 and 2.14 of [4]. The
naive expectation is that this poset will satisfy the Prikry property (and
hence preserve cardinals up to κω) and also force the failure of weak square.
Unfortunately, it does not satisfy the Prikry property, in fact it collapses κω
to be countable. The definition of modified extender based forcing can be
seen as a way to fix P̂ in order to recover the Prikry property.

Let us work for the moment with a condition p ∈ P̂ and a statement ϕ
in the forcing language for P̂. Possible extensions of p are determined by
finite sequences of points from the measure one sets in p. Let ~ν be such a
sequence, and let pa~ν denote the weakest possible extension with respect to
~ν (below we give a precise definition). If there is a condition q ≤∗ pa~ν which
decides ϕ, then we record this condition as q~ν . To prove the Prikry lemma
we would like a direct extension of p which captures each q~ν . Unfortunately



4 DIMA SINAPOVA AND SPENCER UNGER

the Cohen parts f are no longer closed enough to do this, since we have
reduced their size.

What we are left with is for each n < ω a function from {~ν | ~ν is a
possible extension of p with lh(p_~ν) > n} to Qn1 given by ~ν 7→ q~ν(n). Since

we cannot capture such a function by a direct extension in P̂, we replace the
current f -parts with functions of this form under a suitable ordering. We
note that if n is larger than the length of p, then our nth function will not
depend on ~ν � n− lh(p).

Let [
∏
i≥lAi]

<ω denote the set of all sequences 〈νl, ..., νn〉, each νi ∈ Ai.

Definition 4. Conditions in P are of the form

p = 〈f0, ..., fl−1, 〈al, Al, fl〉, 〈al+1, Al+1, fl+1〉, ...〉
where:

(1) For n < l, fn : [
∏
i≥lAi]

<ω → Qn1.

(2) For n ≥ l, dom(fn) = [
∏
i>nAi]

<ω, and for each ~ν ∈ dom(fn),
〈an, An, fn(~ν)〉 ∈ Qn0.

(3) For l ≤ n < m, we have an ⊂ am.

For p as above and ν ∈ Al, p_ν is the condition 〈f ′0, ..., f ′l−1, f ′l , 〈a′l+1, A
′
l+1, f

′
l+1〉, ...〉,

where:

(1) for n < l = lh(p), for every h ∈ dom(f ′n), f ′n(h) = fn(ν_h),
(2) for every h ∈ dom(f ′l ), f

′
l (h) = 〈al, Al, fl(h)〉_ν,

(3) for n > l, 〈a′n, A′n, f ′n〉 = 〈an, An, fn〉.
Similarly, define p_~ν.

For p as above with lh(p) = l, we denote p := 〈pn | n < ω〉 or p =
〈fp0 , ..., f

p
l−1, 〈a

p
l , A

p
l , f

p
l 〉, 〈a

p
l+1, A

p
l+1, f

p
l+1〉, ...〉. Recall that for each n ≥ lh(p),

apn has a ≤En-maximal element which we call mc(apn).

Definition 5. q ≤∗ p if

(1) lh(q) = lh(p) = l,
(2) for all n ≥ l, aqn ⊇ apn and πmc(aqn)mc(apn)

“Aqn ⊆ Apn, and

(3) for all n < ω and all ~ν ∈ [
∏
i>nA

q
i ]
<ω, f qn(~ν) ≤ fpn(π(~ν)) where π is

the map that for each i applies πmc(aqi )mc(api )
to the ith coordinate of

~ν.

Definition 6. Then q ≤ p if for some ~ν, q ≤∗ p_~ν.

It is straightforward to show that the ordering is transitive.

Proposition 7. P has the following properties:

(1) The Prikry property: for every dense open set D and condition p,
there is q ≤∗ p and n < ω, such that all r ≤ q of length n are in D.

(2) 〈P,≤∗〉 is κ0- directed closed.
(3) 〈P � [n, ω),≤∗〉 is κn-closed.
(4) P does not add bounded subsets of κ0.
(5) Both P and 〈P,≤∗〉 preserve µ
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As discussed above, the definition of the forcing is designed to give us the
Prikry lemma. Items 2 through 4 are straightforward. The last item is one
of the key properties of this forcing which allows us to argue that there is
a bad scale in the extension, so we devote particular attention to its proof.
Below we prove that certain restrictions of P have chain condition. This
shows that 〈P,≤∗〉 preserves µ. The fact that P preserves µ is due to the
Prikry property.

For n > 0 and p ∈ P0 := {p ∈ P | lh(p) = 0}, let πn(p) = 〈p0, p1, ..., pn−1〉.
Set P0n := {πn(p) | p ∈ P0} with the natural induced ordering from ≤∗.

Proposition 8. For all n ≥ 0, P0n+1 has the κ++
n -c.c.

Proof. By induction on n. Suppose for contradiction that {πn+1(p
η) | η <

κ++
n } is an antichain in P0n+1. We may assume that the part above n of each
pη is the same, i.e. for some p ∈ P, for all m > n and η < κ++

n , pηm = pm.
For m > n, let αm = mc(apm). For m > n, set im := jEn+1,αn+1

◦ ...jEm,αm .

We will define functions fηm for n < m, η < κ++
n as follows.

• If m = n+ 1, for ν ∈ Apn+1, let fηn+1 := [ν 7→ fp
η

n (ν)]En+1,αn+1
. Since

|fp
η

n (ν)| ≤ κn, which is below the critical point of En+1,αn+1 , we have
that |fηn+1| ≤ κn
• If m = n+ 2, for ν ∈ Apn+1, let,

– fην := [δ 7→ fp
η

n (ν_δ)]En+2,αn+2
;

– fηn+2 := [ν 7→ fην ]En+1,αn+1
.

As before, |fηn+2| ≤ κn.
• ... continue in a similar fashion for all m > n.

Then each fηm is a partial function from im(µ+) to κn of size less than
or equal to κn. Now define a partial function F ηm : im(µ+) ⇀ {Y } ∪ κn by
setting

F ηm(α) :=

{
Y if α ∈ im(a

pη
n )

fηm(α) if α ∈ dom(fηm)
Let F η be the function given by F η(m,α) = F ηm(α). This is a func-

tion of size less than κ+n . So, by applying the ∆-system lemma, we get an
unbounded I ⊂ κ++

n , such that 〈F η | η ∈ I〉 forms a ∆ system, and the
functions have the same value on the kernel. Note that this implies that for
all η, δ in I and for all n < m, im(a

pη
n ) ∩ dom(f δm) = ∅.

By the inductive hypothesis, if n > 0, P0n has the κ++
n−1-c.c. So let η, δ be

distinct points in I, such that if n > 0, πn(pη) and πn(pδ) are compatible.
We will construct p ∈ P0, such that πn+1(p) is a common extension of of
πn+1(p

η) and πn+1(p
δ).

Let ξ < µ+ be above the supremum of the domains of f
pη
k (~δ) and fpδk (~δ),

for k ≤ n,~δ ∈ dom(f
pη
k ) ∩ dom(fpδk ). Also, let r be a common extension

of πn(pη) and πn(pδ), such that for all k < n, ark = ap
η

k ∪ a
pδ

k ∪ c, where
c ⊂ µ+ \ ξ.
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For i < n, set api = ari , A
p
i = Ari . Then let

apn = ap
η

n ∪ ap
δ

n ∪
⋃
i<n

api ∪ {ξ̂},

where ξ̂ > ξ. Then, set

Apn = π−1
ξ̂,mc(ap

η
n )

(Ap
η

n ) ∩ π−1
ξ̂,mc(ap

δ
n )

(Ap
δ

n ).

Finally, for all m > n, let

fm = fηm ∪ f δm.
This is a well-defined function because the values on the kernel of the ∆
system obtained above are the same.

Denote:

• fm = [ν 7→ fmn (ν)]En+1,αn+1
;

• fmn (ν) := [δ 7→ fmn (ν)(δ)]En+2,αn+2
;

• ... and so on until we reach m.

Then we have that:
∀∗En+1,αn+1

νn+1∀∗En+2,αn+2
νn+2...∀∗Em,αmνm

(†) : fmn (νn+1)...(νm) =
f
pη
n (〈νn+1, ..., νm〉) ∪ fpδn (〈νn+1, ..., νm〉)

and
dom(fmn (νn+1)...(νm)) ∩ apn = ∅.

Then by taking intersections we have measure one sets Amn+1, A
m
n+2, ..., A

m
m,

where each Ami ∈ Ei,αi , such that for all ~ν ∈ [
∏
n<i≤mA

m
i ]<ω, we have that

the above equality holds.
For i > n, let

Api =
⋂

i≤m<ω
Ami .

For i ≤ n, let fpi = f ri � dom(fpi ).
For ~ν in [

∏
i>nA

p
i ]
<ω, let

fpn(x)(νn+1, ..., νm) = fmn (x)(νn+1)...(νm).

Then p is as desired. �

Corollary 9. (P0,≤∗) preserves all cardinals in the interval [κ++
n , κn+1] for

each n, and so preserves κω and µ.

Proof. (Sketch) Otherwise , suppose for some n we have that some regular
V -cardinal τ ∈ [κ++

n , κn+1] is collapsed. Let p ∈ P0, and λ < τ be such

that p P0 ḣ : λ → τ is onto. Using that P0n+1 has the κ++
n c.c. and

(P0 � [n + 1, ω),≤∗) is κn+1-closed, we build conditions 〈qα | α < λ〉, such
that:

(1) each qα � n+ 1 = p � n+ 1,
(2) 〈qα � [n+ 1, ω) | α < κ〉 is ≤∗-decreasing,
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(3) each qα  ḣ(α) ∈ Xα for some Xα ⊂ τ in V with |Xα| < κ++
n .

Let X =
⋃
α<λXα, and let q ≤∗ p be such that for all α < λ, q ≤∗ qα. Then

q P0 ran(ḣ) ⊂ X, but |X| < τ . Contradiction. �

Theorem 10. (Assaf Sharon) In V P, 2ω < κω, κωω = κ++
ω , and there are

no very good scales at κω.

In the generic extension, κω is no longer strong limit, because (P,≤∗)
is only κ0-closed. So there are no bounded subsets added to κ0 and 2κ0

becomes µ+.

3. The bad scale

In this section we prove the following theorem.

Theorem 11. If κ0 is indestructibly supercompact in V then in V P there is
a bad scale of length µ in

∏
n<ω κ

++
n and so weak square at κω fails.

We assume that V is prepared so that the supercompactness of κ0 is
preserved by forcing with P0. Fix a scale 〈gα | γ < µ〉 ∈ V in

∏
n κ

++
n of

length µ. Set S := {γ < µ | ω < cf(γ) < κ0, γ is a bad point for 〈gγ | γ <
µ〉}. By standard reflection arguments S is stationary in V . Also, since P0

preserves µ and is κ0-directed closed, 〈gγ | γ < µ〉 remains a bad scale after
forcing with P0. More precisely, if G0 is P0-generic, a point of cofinality less
than κ0 is bad in V iff it is bad in V [G0], and the set S is stationary in
V [G0] (since κ0 remains supercompact in V [G0]).

Definition 12. For p ∈ P, set t(p) = p � [lh(p), ω). Let D := {t(p) | p ∈ P},
and t(p) ≤D t(q) if for some large enough n, 1_p � [n, ω) ≤P 1_q � [n, ω).

Note that both P and P0 project to D

Lemma 13. P/D has the µ-chain condition.

Proof. Let H∗ be P0-generic and let H be the induced D-generic object. It
is enough to show that P/H has the µ-cc in V [H∗]. First note that for any
p ∈ P with p � [n, ω) ∈ H for some n, there are an n∗ and p′ ∈ H∗ such that
p′ ≤P0 1_p � [n∗, ω).

Let 〈pα | α < µ〉 be a sequence of elements of P/H in V [H∗]. By the above
note, for all α, there is an nα, such that 1_pα � [nα, ω) ∈ H∗. By refining
our list of conditions, we can assume that there is n∗ such that nα = n∗ for
all α. By extending each condition we can assume it has length n∗. Now
if we take the first κ++

n∗−1 conditions, then by Proposition 8 there are two
which are compatible. �

So if H is D-generic, since P0 projects to D, we have that S is stationary
in V [H]. Then by the µ-chain condition of P/H, S is stationary after forcing
with P.

Let G be P-generic.
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Lemma 14. Let τ < κ0 be a regular uncountable cardinal in V (and so in
V [G]), and suppose V [G] |= A ⊂ ON, o.t.(A) = τ . Then there is a B ∈ V
such that B is an unbounded subset of A.

Lemma 15. Suppose that in V [G], h ∈
∏
n κ

++
n . Then there is a function

h̄ ∈
∏
n κ

++
n in V , such that for all large n, h(n) ≤ h̄(n).

Proof. Let p force that ḣ is as in the statement of the lemma. For simplicity
assume that the length of p is 0. For all n by the Prikry property there
is some pn ≤∗ p and kn, such that every r ≤ pn of length kn decides the
value of ḣ(n). Since there are only κ++

n such possibilities, by shrinking the
measure one sets of pn � [n+1, ω), we may assume that kn = n+1. In other

words, every n+ 1-step extension of pn decides ḣ(n).
Doing this inductively, we arrange that 〈pn | n < ω〉 are ≤∗- decreasing.

Let q be a lower bound, of length 0. For every n+ 1-step extension q_~ν, let
γ~ν be the value of ḣ(n) decided by q_~ν. Define h̄(n) = sup~ν:|~ν|=n+1 γ~ν < κ++

n

Then q forces ḣ(n) ≤ h̄(n).
�

Corollary 16. 〈gβ | β < µ〉 is a bad scale in V [G]

4. Two metatheorems

In this section we prove two metatheorems which roughly characterize
when a diagonal Prikry forcing forces weak square to hold. We start with
an abstract definition of what it means for a poset to be a diagonal Prikry
forcing.

Definition 17. A poset (P,≤,≤∗) is a diagonal Prikry forcing if there is
an increasing sequence of regular cardinals 〈κn | n < ω〉 where we define
µ = (supn<ω κn)+ such that:

(1) Every p ∈ P is of the form p = 〈pn | n < ω〉.
(2) There is a function ` : P → ω such that p ≤∗ q if and only if

`(p) = `(q) and p ≤ q.
(3) If we define Pn = {p � [n, ω) | p ∈ P, `(p) = 0} with the induced

ordering from ≤ and D =
⋃
n<ω Pn where we let p � [n, ω) ≤ q �

[m,ω) if there is k ≥ max(m,n) such that p � [k, ω) ≤ q � [k, ω) in
Pk, then we have the following:
(a) Pn is countably closed and < κn-distributive.
(b) For n < m, the map taking p � [n, ω) to p � [m,ω) is a good

projection from Pn to Pm.
(c) P induces a generic for D.

(4) Working in V [P0], for all cardinals δ < κ0 which are successors of
singular cardinals of cofinality ω, there is a condition p ∈ P/D such
that p forces that “δ is preserved and for all ordinals γ with cf(γ) = δ
and all A ⊆ γ unbounded, there is B ⊆ A unbounded with B in V .”
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(5) It is forced by P that “µ is preserved and its predecessor µ− has the
property that for all α < µ−, αω < µ−.

We note that most posets which we think of as Diagonal Prikry forcing
fit this definition. Examples include Diagonal Prikry forcing (see [4]), Gitik
and Sharon’s forcing [6], Gitik and Magidor’s extender based forcing [5], the
main forcing from this paper and any variation of these posets with collapses
added.

We are now ready to prove two metatheorems about diagonal Prikry
forcing and weak square.

Theorem 18. Suppose that P is a diagonal Prikry forcing and that there is
a model V0 with the same cardinals as V where µ− is strong limit, P0 ∈ V0,
V = V0[A] for some generic A and P0 is mutually generic with the forcing
to add A. If for all n < ω forcing with Pn over V0 collapses µ, then forcing
with P over V adds a �∗µ−-sequence.

Proof. By clause (3)(c) and the conditions of the theorem, it is enough to
show that forcing with D over V0 adds a weak square sequence. We can
assume that for all large n, 〈Pn,≤∗〉 collapses µ to have cofinality κn. This
is enough to repeat the argument at the end of [9] and show that weak square
is added by D. We remark that the proof is a essentially a reconstruction of
the proof of the following fact.

Fact 19. Suppose that κ is a singular strong limit, and 〈τn | n < ω〉 is an in-
creasing sequence of regular cardinals with limit κ. Then

∏
nCol(τn, κ

+)/finite
adds weak square at κ.

�

An application of the above theorem is that the standard way of replacing
long extenders with short extenders in the modified EBF will add weak
square. In this application we take A to be trivial. We remark that forcing
with short extenders is the usual method of interleaving collapses in extender
based forcing.

The natural way of combining short extenders with modified EBF is to
replace the a ⊆ κ++

ω in the definition of Qn0 with an order preserving func-
tion a : κ++

ω → κ+n+2
n with extra properties. Without further modification

this poset will not have the κ++
ω -cc. To recover the κ++

ω chain condition, we
have to define an equivalence relation and take a quotient of the poset. We
refer the reader to [3] or [7] for details of this method. We let Ps be this
modified short extender based forcing and we will show that it adds weak
square by applying Theorem 18.

We isolate a relevant part of Ps given by the following definition.

Definition 20. Let Q∗n0 be the poset whose conditions are of the form
〈a,A, f〉 where a is a function as in the definition of the short extender
forcing (see [2] Definition 2.1 and the modification Definition 2.11), A ∈



10 DIMA SINAPOVA AND SPENCER UNGER

Enmax(ran(a)) and f is as in clause (2) of Definition 4 and the ordering is
the natural one combining ≤∗ from the short extender forcing and the mod-
ified EBF.

It is easy to see that Q∗n0 adds an order preserving map from κ++
ω to κ+n+2

n .
Unfortunately, it is not true in this case that D is

∏
n<ω Q∗n0/fin. The issue

is that the final order we use on Ps involves the equivalence relation required
to regain the κ++

ω -cc. To this end we will show that even if we quotient Q∗n0
by the restriction of the equivalence relation on Ps, then it still collapses µ.
This will be enough to apply Theorem 18, since we can take D to be the
mod finite product of the restricted Q∗n0. For definiteness we denote this
restricted poset (Q∗n0,→) and for those familiar with this type of forcing
we note that we are using the equivalence relation ↔n,3 (See for example
Definition 22 of [7]).

Before we prove that this poset collapses µ we prove an easy claim that
seems to be required in the proof.

Claim 21. Let f be a part of some condition in Q∗n0. For all m > n, the

set {α < κ++
ω | ∃An+1...×Am∀~ν ∈ ~A, α ∈ dom(f(~ν))} has size at most κn.

Proof. If the set had size greater than κn, then using the completeness of
the associated measures we would have a single sequence of measure one sets
witnessing membership for more than κn different α’s. This is impossible,
since then there will be a ~ν such that |dom(f(~ν))| > κn. �

Claim 22. (Q∗n0,→) collapses µ

Proof. Let R ⊆ µ+ ∩ cf(ω) be such that |R| = κ+n and for every γ ∈ R,
there is an unbounded set Rγ ⊆ γ of order type κω. For every c ∈ γω let
the equivalence class of c be the set of {d ∈ γω | c, d coincide on a tail end
}. The number of these equivalence classes is µ, so we enumerate them as
〈cγη | η < µ〉.

Let H be generic for (Q∗n0,→). In V [H] define φ : R → µ by setting
φ(γ) = η if there are p ∈ H and c ∈ γω such that c ∈ cγη , c ⊆ dom(ap) and
ap(c) coincides on a tail end with the least ω sequence of 2-good ordinals in
its supremum. Here we take the least in some canonical well-ordering fixed
in advance.

First we show that φ is well-defined. Suppose that for some γ we have
conditions p, q ∈ H and c, c′ in γω such that

• c ⊆ dom(ap), c′ ⊆ dom(aq)
• ap(c) and aq(c′) both coincide on a tail end with the least ω sequence

in their respective supremum.

Let r ∈ H be a common extension of p and q. Since ar is order preserving,
we define γ̄ = sup(ar(c)) = sup(ar(c′)). Using the definition of↔n,3, we have
that ran(ar) contains a tail end of the least ω sequence of 2-good ordinals
in γ̄ and each of c and c′ must map to this ω-sequence. So c and c′ coincide
on a tail.
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Next we show that the range of φ is unbounded in µ. For every δ < µ,
we claim that the set D = {p | (∃γ ∈ R)(∃η > δ)(∃c ∈ cγη) such that p
and c witness φ(γ) = η} is dense. Given an condition q = 〈a,A, f〉, let

d = dom(a)∪{α < κ++
ω | ∃An+1...×Am∀~ν ∈ ~A, α ∈ dom(f(~ν))}. By Claim

21 this has size at most κn. Now let γ ∈ R be such that |Rγ \β| = κω, where
β := sup(d ∩ R). Denote R′γ := Rγ \ β. (R′γ)ω has size µ, and so there is

some η, δ < η < µ, such that cγη ⊂ R′γ . Construct an extension 〈a′, A′, f ′〉,
such that cγη ⊂ dom(a′), and a′(cγη) = b, where min(b) > sup(ran(a)), and
b coincides on a tail end with is the least ω-sequence of 2-good ordinals
cofinal in sup(b). We also shrink the measure one sets Aqi to ensure that for
all relevant ~ν, dom(f ′(~ν)) ∩ dom(a′) = ∅.

It follows that φ collapses µ �

So by Theorem 18 we get:

Corollary 23. Ps adds a weak square sequence.

It follows that the natural attempt to bring the construction form the
previous two sections to ℵω will add weak square, since such a forcing will
induce a generic for Ps.

The inclusion of A in Theorem 18 allows us to apply the theorem to
situations like the one in the authors’ previous paper [9] where µ− is first
forced not to be strong limit and then diagonal Prikry forcing is defined
afterward.

We now prove the second of our two metatheorems.

Theorem 24. Let P be a diagonal Prikry forcing. If for some n, Pn “µ
is preserved, P/D is µ-cc and there is a µ-supercompactness embedding with
critical point κ0.”, then it is forced by P that �∗µ− fails.

Proof. Let H∗ be Pn-generic over V and let H be the induced D-generic.
By hypothesis P/H is µ-cc and there is j : V [H∗] → M witnessing that κ0
is µ-supercompact.

We assume it is forced by P/H over V [H] that there is a weak square

sequence 〈Cα | α < µ〉. We may assume that for all α < µ there is Ḋα ∈ Cα
such that ot(Ḋα) = cf(α) and for all C ∈ Cα, ot(C) < µ−.

Work in M with the forcing j(P/H). Let γ = sup j“µ. By clause (4) there
is a p∗ ∈ j(P/H) such that p∗ forces µ is preserved and for all unbounded
subsets A ⊆ γ there is a B ⊆ A unbounded with B ∈ M . So p∗ forces that

there is Ėγ ∈ j(~C)γ of ordertype µ and extending p∗ if necessary we can
assume that there is a club E ⊆ γ in M which p∗ forces to be a subset of
Eγ .

Let D = {α < µ | j(α) ∈ E}. By standard arguments D is < κ0-club.
Let ζ be such that D ∩ ζ has ordertype µ−.

Claim 25. For all x ⊆ D ∩ ζ with ot(x) = ω, there is px ∈ P/H such that
px forces x ⊆ C for some C ∈ Cζ .
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The claim is easy by noticing that j(x) = j“x ⊆ E ∩ j(ζ) which p∗ forces

is a subset of Eγ ∩ j(ζ) ∈ j(~C)j(ζ). Using the fact that P/H is µ-cc, we
can find a generic G for P/H which contains px for µ many x. This is a
contradiction as there are only µ− many possibilities for the C of the claim
and each has ordertype less than µ− so by clause (5) there can be at most
µ− such subsets. �

We note that the assumption Pn P/D is µ-cc is typical for diagonal
Prikry forcings. The modified extender based forcing from this paper will
satisfy it by the proof of Lemma 13.

Theorems 18 and 24 provide a dichotomy for approaching solutions to
Woodin’s question, “Is it consistent that both SCH and weak square fail
at ℵω?”. Suppose that one constructs a diagonal Prikry forcing as above,
which forces the failure of SCH at ℵω. The above two theorems taken
together say roughly that weak square holds in the extension if and only if
each Pn collapses µ.
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