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Abstract. In this paper we continue work from a previous pa-
per on the fragility and indestructibility of the tree property. We
present the following:
(1) A preservation lemma implicit in Mitchell’s PhD thesis, which

generalizes all previous versions of Hamkins’ Key lemma.
(2) A new proof of theorems the ‘superdestructibility’ theorems

of Hamkins and Shelah.
(3) An answer to a question from our previous paper on the ap-

parent consistency strength of the assertion “The tree prop-
erty at ℵ2 is indestructible under ℵ2-directed closed forcing”.

(4) Two models for successive failures of weak square on long
intervals of cardinals.

Techniques for preserving the tree property are central to a growing
literature of consistency results obtaining the tree property as suc-
cessive regular cardinals (see for example [11, 1, 3, 15, 20]). These
techniques can be viewed abstractly as indestructibility results, which
typically arise from either integration of preparation forcing or preser-
vation lemmas. In our original paper [18] we proved results using both
of these methods. In particular, using methods of Abraham and Cum-
mings and Foreman [3, 1] we showed that modulo the existence of a
supercompact cardinal it is consistent that the tree property holds at
ω2 and is indestructible under ω2-directed closed forcing. Further, by
proving a new preservation lemma we showed that the tree property at
ω2 in a model of Mitchell [11] is indestructible under the forcing to add
an arbitrary number of Cohen reals. It follows that the tree property
at ω2 is consistent with 2ω > ω2. The preservation lemma was

Lemma 0.1. Let τ, η be cardinals with η regular and 2τ ≥ η. Let P be
τ+-cc and R be τ+-closed. Let Ṫ be a P-name for an η-tree. Then in
V [P] forcing with R cannot add a branch through T .
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This lemma was applied in work of Neeman [15] and inspired a lemma
of Sinapova [16]. Indeed the idea that for some preservation properties
the forcing only needs to be formerly closed seems to be quite powerful.
This paper provides further applications of the above lemma, this time
to obtain successive failures of weak square.

The subject of fragility is more subtle. In the original paper we
proved that in Mitchell’s model there is a cardinal preserving forcing
which adds �ω1 . In some sense this is the easiest kind of fragility result.
The forcing is specifically designed to add a strong sufficient condition
for the existence of an Aronszajn tree. More interesting fragility results
consist in proving that the tree property fails in an extension where we
hoped that it might hold. In this paper we give a definition of an
Aronszajn tree which occurs as the tree of attempts to construct an
object in some generic extension. This gives a new proof of theorems of
Hamkins, and Hamkins and Shelah and an instance of fragility where
we do not force a strong sufficient condition.

The results of the current paper are as follows:

• In Section 1 we prove a strong generalization of Hamkins’ Key
lemma and provide a few applications. We also remark on a
few applications of a related lemma appearing in another of the
author’s papers.
• In Section 2 we provide new proofs of the main theorems of

Hamkins [5], and Hamkins and Shelah [7]. As a special case of
Theorem 2.8, we have that if κ is inaccessible, P has size less
than κ and it is forced by P that Q̇ is κ-closed and adds a subset
to κ, then in V [P ∗ Q̇] there is a κ-Aronszajn tree. The more
general statement gives the result of Hamkins and Shelah.
• In Section 3 we answer a question from our previous fragility

and indestructibility paper on the apparent consistency strength
of the statement “The tree property at ω2 is indestructible un-
der ω2-directed closed forcing”. In particular we show that any
reasonable forcing to obtain the consistency of this statement
requires a strongly compact cardinal.
• In Section 4 we prove some results which are generalizations of

a result claimed without proof by Mitchell [11]. In particular
we show that if there are infinitely many Mahlo cardinals, then
there is a forcing extension in which �∗ℵn fails for 1 ≤ n < ω.
In this model we achieve the most economical failure of GCH
possible. In particular 2ℵn = ℵn+2 for all n < ω. Going further
we show that we can obtain the failure of �∗κ for all κ in the
interval [ℵ1,ℵω2 ] from suitable large cardinals, but at the cost
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that none of the ℵω·m are strong limit. Both of these results
seem to require Lemma 0.1.

We make one notational remark before beginning the paper. We will
write V [P] for a typical generic extension by a poset P. Furthering this
notation when we write V [P] ⊆ V [Q] we mean that we can force over
a given generic extension by P to obtain a generic extension by Q.

1. Approximation lemmas

In this section we prove some preservation theorems. We start by
defining the κ-approximation property.

Definition 1.1 (Hamkins). Let V ⊆ W be models of set theory. The
pair (V,W ) has the κ-approximation property if and only if for every
ordinal µ and every b ⊆ µ with b ∈ W , if for every x ∈ Pκ(λ)V ,
b ∩ x ∈ V , then b ∈ V .

We say that a poset P has the κ-approximation property if and only
if for every P-generic G, (V, V [G]) has the κ-approximation property.

In [5] Hamkins proved:

Lemma 1.2. Let β be a regular cardinal suppose that |P| = β and


P Q̇ is β+-closed. If cf(λ) > β, then P ∗ Q̇ does not add subsets to λ
all of whose initial segments are in the ground model.

The lemma generalizes in a straightforward way to give the β+-
approximation property. The proof of Hamkins’ lemma resembles the
proof of a lemma in an early paper of Mitchell [11]. A close examination
of Mitchell’s paper reveals the following lemma.

Lemma 1.3. Let κ be a regular cardinal. If P × P has the κ-cc and

P Q̇ is κ-closed, then P ∗ Q̇ has the κ-approximation property.

This lemma is closely related to another more recent lemma of Mitchell
[13]. One difference is that Mitchell’s lemma is stated for posets which
generalize a two step iteration. Further, Mitchell has only assumed
that Q is forced to be strategically closed. Our lemma generalizes to
give the analogous result using both the generalized two step iterations
and strategic closure.

The main difference between our lemma and Mitchell’s is that the
condition P × P is κ-cc is replaced with the requirement that P has
many strong master conditions for models of size less than κ. These
two assumptions are somewhat different. In one direction, Mitchell’s
poset [12] for adding a club in ω2 with finite conditions is strongly
proper, but does not have the countable chain condition. In the other
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direction, the usual poset to add a dominating real has very strong
countable chain condition, but does not add any Cohen reals and hence
it is not strongly proper.

To prove the lemma we need some preliminaries. We say that a
forcing P adds a new subset to a cardinal κ if there is a P-name ḃ for
a subset of κ such that 
P ḃ /∈ V .

Proposition 1.4. If P is nontrivial and κ-cc, then P adds a new subset
of κ.

Proof. Let λ be the least cardinal such that P adds a new subset to λ.
We will show that λ ≤ κ. Let ḃ be a name for a subset of λ such that
for all α < λ, 
P ḃ ∩ α ∈ V and 
P ḃ /∈ V .

Let T ∈ V be the tree of attempts to construct the characteristic
function of the interpretation of ḃ. Note that T is normal and P adds a
branch through T . By the κ-cc of P, the levels of T have size less than
κ.

If cf(λ) > κ, then it follows that there is a level γ < λ, such that for
all t ∈ T above level γ, any two extensions of t are comparable. So if we
choose a condition which decides the value of the branch passed level
γ, then that condition forces the branch to be in V , a contradiction.
So we must have cf(λ) ≤ κ.

We want to see that λ ≤ κ. If we let S be the restriction of T to
a cofinal set of levels, then S is a tree of height less than or equal to
κ with levels of size less than κ. Moreover, ḃ gives a name for a new
cofinal branch through S. So there is a name for a new subset of S and
S has size at most κ so we are done. �

We also prove another lemma whose ideas come from Mitchell and
which first appeared in its current form in another of the author’s
papers [19]. We repeat the proof because similar ideas will be used
below. We start with a standard remark.

Remark 1.5. Suppose that P is a poset and ḃ is a P-name for a subset
of some ordinal µ. Assume that for all z ∈ Pκ(µ), 
P ḃ ∩ z ∈ V , but


P ḃ /∈ V . Then for all p ∈ P and all y ∈ Pκ(µ), there are p1, p2 ≤ p

and z ⊇ y such that p1, p2 decide the value of ḃ ∩ z and they decide
different values.

Lemma 1.6. Let κ be a regular cardinal. If P × P has the κ-cc, then
P has the κ-approximation property.

Proof. Suppose that the lemma is false. Then we have a poset P and
a name ḃ, which fails to be approximated. We work by recursion to
construct an antichain of size κ in P × P. In particular, we construct
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〈(p0α, p1α) | α < κ〉, a function f : κ → Pκ(µ) and sets x0α, x
1
α for α < κ

such that

(1) piα 
 ḃ ∩ f(α) = xiα for i ∈ 2,
(2) f(α) ⊇

⋃
f“α and

(3) x0α 6= x1α, but x0α ∩
⋃
f“α = x1α ∩

⋃
f“α.

Assume that for some β < κ, we have constructed (p0α, p
1
α) for α < β,

f � β and x0α, x
1
α for α < β. Let y =

⋃
f“β which is in Pκ(µ). Choose

pβ ∈ P which decides the value of ḃ ∩ y to be xβ. Apply Remark 1.5
to pβ and y to obtain conditions p0β, p

1
β and f(β) ∈ Pκ(µ) such that

p0β, p
1
β decide different values for ḃ ∩ f(β). Record the values that each

condition decides as x0β, x
1
β. This completes the construction.

We claim that {(p0α, p1α) | α < κ} is an antichain of size κ. Suppose
that we had α < β such that (p0α, p

1
α), (p0β, p

1
β) are compatible. Then

xkβ∩f(α) = xkα for k = 0, 1. Note that x0β∩f(α) = x1β∩f(α) = xβ∩f(α)

by the choice of xβ. This implies that x0α = x1α a contradiction. �

We are now ready to prove Lemma 1.3.

Proof. Let µ be an ordinal and ḃ be a P∗ Q̇-name for a subset of µ such
that for all y ∈ Pκ(µ)V , 
P∗Q̇ ḃ ∩ y ∈ V .

Claim 1.7. There is a condition (p, q̇) ∈ P ∗ Q̇ such that for all x, y

and for all (p′, q̇′) ≤ (p, q̇) if (p′, q̇′) 
 ḃ∩y = x, then (p, q̇′) 
 ḃ∩y = x.

Proof of Claim. Suppose otherwise. We claim that the following state-
ment holds:

For all (p, q̇) there are x0, x1, y ∈ Pκ(µ), p0, p1 ≤ p and q̇′(?)

such that x0 6= x1, 
P q̇
′ ≤ q̇ and for i ∈ 2, (pi, q̇

′) 
 ḃ ∩ y = xi.

Let (p, q̇) ∈ P∗ Q̇ and apply the negation of the claim to obtain x0, y

and (p0, q̇0) such that (p0, q̇0) 
 ḃ ∩ y = x0 and (p, q̇0) 6
 ḃ ∩ y = x0.

Extend (p, q̇0) to (p1, q̇1) which forces ḃ ∩ y = x1 for some x1 6= x0. We
may assume that 
P q̇1 ≤ q̇0 ≤ q̇. So (?) follows.

Using (?) we construct a large antichain in P × P much like we did
in the proof of Lemma 1.6. In this case we also construct a sequence
of elements of Q̇ which are forced to be decreasing. More precisely we
construct p0α, p

1
α, pα, q̇α, x

0
α, x

1
α for α < κ and a function f : κ→ Pκ(µ)V .

Suppose that we have constructed all of the above for all α < β and
also f � β such that

(1) f � β is increasing and
(2) for all α < α′ < κ, 
P q̇α′ ≤ q̇α.
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Choose a condition q̇∗ such that 
P q̇
∗ ≤ q̇α for all α < β and there

is a condition pβ such that (pβ, q̇
∗) decides ḃ∩

⋃
f“β. Apply condition

(?) to the condition (pβ, q̇
∗) to obtain p0β, p

1
β, q̇β, x

0
β, x

1
β and f(β) such

that

(1) 
P q̇β ≤ q̇∗,

(2) for i ∈ 2, (piβ, q̇β) 
 ḃ ∩ f(β) = xiβ and

(3) x0β 6= x1β.

It is easy to see that we have maintained the induction hypotheses.
Using the closure of the term ordering on Q we can continue for κ-many
stages. Working as in the proof of Lemma 1.6, it is not hard to see that
{(p0α, p1α) | α < κ} is an antichain of size κ in P × P, a contradiction.
So we have proved the claim. �

Let (p, q̇) be as in Claim 1.7. Assume for a contradiction that 
P∗Q̇
ḃ /∈ V . An easy argument gives an analog of Remark 1.5 for our
situation.

For all (p′, q̇′) ≤ (p, q̇) and for all y ∈ Pκ(µ)V , there are(??)

y′ ∈ Pκ(µ) and q̇0, q̇1 such that y′ ⊇ y, 
P q̇0, q̇1 ≤ q̇′ and

(p′, q̇i) for i ∈ 2 decide different values for ḃ ∩ y′.

By Proposition 1.4, P adds a new subset to κ. Further by Lemma 1.6,
there is an η < κ such that the intersection of our subset with η is new.
Let ȧ be a P-name for a function from some η < κ to 2 such that for
all α < η, 
P ȧ � α ∈ V , but 
P ȧ /∈ V .

Using (??) build a binary tree of names for elements of Q, 〈q̇s | s ∈
2<η〉 such that for all s, q̇s_0 and q̇s_1 are obtained by applying (??) to
the condition (p, q̇s) and some yα where α is the length of s and the yα
are chosen inductively. We may assume that for all α < η, for all s of
length α, (p, q̇s) decides ḃ ∩ yα. Moreover we can assume that yα ⊆ yβ
for all α < β < η.

Now 〈q̇ȧ�α | α < η〉 is a P-name for a decreasing sequence. Let q̇∗ be
a name forced to be a lower bound for the sequence. Extending (p, q̇∗)

if necessary we may assume that it decides the value of ḃ ∩
⋃
α<η yα

to be x. We can now define the realization of ȧ in V which will be a
contradiction. Let α < η and define a � α to be the unique s of length
α such that (p, q̇s) 
 ḃ ∩ yα = x ∩ yα. �
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The lemma above greatly expands the class of posets which are
known to have the approximation property. We mention a few ap-
plications. First, we note that Lemma 1.3 generalizes all previous ver-
sions of Hamkins’ Key Lemma (see for example [6]) and so expands
the class of forcings to which we can apply his theorems about forcing
with the approximation and covering properties [6]. It also generalizes
Proposition 1.1 of [2].

We also remark that Lemma 1.6 provides an easy proof that typical
iterations have approximation properties. In particular, any iteration
which has the κ-Knaster property will have the κ-approximation prop-
erty. This easily gives Lemma 5.2 of Viale and Weiss [21]. Lemma 1.6
also improves Claim 3.4 of Neeman [14].

2. Results of Hamkins and Shelah

In this section we provide a new proof of the following theorems of
Hamkins [5] and Hamkins and Shelah [7].

Theorem 2.1 (Hamkins). If κ is weakly compact, |P| < κ and 
P Q̇
is κ-closed and adds a new subset to κ, then it is forced by P ∗ Q̇ that
κ is not weakly compact.

Theorem 2.2 (Hamkins-Shelah). If κ is strongly compact, |P| < κ

and 
P Q̇ is κ-closed and adds a new subset to some λ ≥ κ, then it is
forced by P ∗ Q̇ that κ is not λ-strongly compact.

We start with a definition which comes from work of Jech [8] and
was explored further by Weiss [22].

Definition 2.3. Let κ ≤ λ be regular cardinals and η be an ordinal. A
(κ, λ, η)-tree T is a collection of functions such that for all f ∈ T :

(1) dom(f) ∈ Pκ(λ),
(2) rng(f) ⊆ η and
(3) for all y ⊆ dom(f), f � y ∈ T ,

and for all x ∈ Pκ(λ), there is f ∈ T with dom(f) = x.

For x ∈ Pκ(λ) we set Tx = {f ∈ T | dom(f) = x}.

Definition 2.4. A (κ, λ, η)-tree is thin if for all x ∈ Pκ(λ), |Tx| < κ.

Definition 2.5. A function b : λ→ η is a cofinal branch through T if
for all x ∈ Pκ(λ), b � x ∈ T .

Note that if κ is inaccessible and η < κ, then every (κ, λ, η)-tree is
thin. The more usual notion of a (κ, λ)-tree is a (κ, λ, 2)-tree under
our notation. Note that if η < κ and we have a thin (κ, λ, η)-tree T ,
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then we can construct a thin (κ, λ, 2)-tree T ′ such that T has a cofinal
branch if and only if T ′ does. We define a principle which we call the
(κ, λ)-tree property or TP(κ, λ).

Definition 2.6. Let κ ≤ λ be regular cardinals. TP(κ, λ) holds if every
thin (κ, λ, 2)-tree has a cofinal branch.

By the discussion of the previous paragraph, TP(κ, λ) holds if and
only if for all η < κ, every (κ, λ, η)-tree has a cofinal branch. It is
worth noting that TP(κ, κ) is precisely the tree property at κ. To
obtain the theorems of Hamkins and Shelah from our theorem we need
the following theorem of Jech [8].

Theorem 2.7 (Jech). κ is strongly compact if and only if κ is inac-
cessible and for every λ ≥ κ, TP(κ, λ).

We present the following theorem.

Theorem 2.8. Let κ be an inaccessible cardinal. If |P| < κ, 
P Q̇ is
κ-closed and λ ≥ κ is the least cardinal such that Q adds a new subset
of λ over V [P], then TP(κ, λ) fails in V [P ∗Q].

Combining this result with Theorem 2.7 gives the results of Hamkins
and Shelah.

Proof. Assume the hypotheses. Let |P| = β < κ. We construct a

branchless (κ, λ, 22β)-tree. This is enough by remarks that we made
prior to the definition of TP(κ, λ). Let A be the P-term forcing for

elements of Q̇. By standard facts A is κ-closed. Moreover A adds a
P-name for a function from λ to 2 so that whenever g is P-generic,
then the interpretation of this name is the characteristic function of
the subset of λ added by the induced Q-generic object over V [g] where

Q is the interpretation of Q̇ by g. Such a name is coded by a function
b : λ→ 22β where for each α < λ, b(α) is a code for a function from a
maximal antichain of P to 2.

We consider the (κ, λ, 22β)-tree T defined in V , which is the tree of
less than κ sized approximations of b. That is for f ∈ T , dom(f) ∈
Pκ(λ) and f returns the same kind of values as b. Note that T is thin
since κ is inaccessible.

Let g ∗G be P ∗ Q̇-generic and Q be the interpretation of Q̇ by g. In
V [g∗G] we define a refinement of T . Let c : λ→ 2 be the characteristic
function of the new subset of λ added by Q over V [g]. Let f ∈ S if
and only if f ∈ T and for all α ∈ dom(f), there is a p ∈ g∩dom(f(α))
such that f(α)(p) = c(α). Recall that f(α) returns a function from a
maximal antichain in P to 2.
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We claim that S is a thin (κ, λ, 22β)-tree with no cofinal branch. Note
that Pκ(λ)V is cofinal in Pκ(λ)V [g∗G], so we have defined a thin tree if
we can show that for all x in Pκ(λ)V , there is f ∈ S with dom(f) = x.
To see this let x ∈ Pκ(λ)V , by the closure of Q, c � x ∈ V [g]. So in V
there is a P-name for c � x, but we have already said that every such
name is coded by an element of T .

Lastly we claim that S has no cofinal branch. Suppose that S has
a cofinal branch b in V [g ∗ G]. Since P ∗ Q̇ has the κ-approximation
property, it follows that b ∈ V . We arranged that b is a code for a
P-name and by the choice of S, the interpretation of b by g is c. This
is impossible as we assumed that c /∈ V [g]. �

Remark 2.9. In the case when κ = λ, the tree T is essentially a
κ-Aronszajn tree. We note that this tree is not special in the sense
of Todorcevic [17], since it obtains a branch in a cardinal preserving
extension V [P× A].

With the results of the section in mind we ask

Question 2.10. If Q̇ is an Add(ω, κ)-name for a κ-closed forcing
which adds a subset to κ, is there a κ-Aronszajn tree in V [Add(ω, κ) ∗
Q̇]? More generally can we reprove Theorem 2.8 if we relax the condi-
tion |P| < κ?

This question is designed to test whether the preparation forcing U
in [15] is necessary. A similar scenario arises in a more complex context
in [19].

3. The consistency strength of indestructibility

In this section we apply ideas of Viale and Weiss [21] to show that
the apparent consistency strength of the statement “The tree property
at ω2 is indestructible under ω2-directed closed forcing” is high. In
particular we prove the following theorem:

Theorem 3.1. Suppose that κ is inaccessible and there is a poset P
such that

(1) P× P is κ-cc,
(2) 
P κ = ω2 has the tree property and
(3) 
P the tree property at ω2 is indestructible under ω2-directed

closed forcing,

then κ is strongly compact.

The theorem makes use of TP(κ, λ) as defined in the previous section.
We also need the following theorem of Viale and Weiss.
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Theorem 3.2. Suppose that V ⊆ W and κ ∈ V is inaccessible.
If (V,W ) has the κ-approximation and the κ-covering property, and
TP(κ, λ) holds in W , then TP(κ, λ) holds in V .

Combining Lemma 1.6, Theorem 2.7 and Theorem 3.2 it is enough to
show that “The tree property at ω2 is indestructible under ω2-directed
closed forcing” implies TP(ω2, λ) for all λ ≥ ω2. To prove this we need
the notion of thin approximation.

Definition 3.3. A poset P has the thin κ-approximation property if
for every ordinal µ and every P-name ḋ for a subset of µ, if for all z ∈
Pκ(µ), 
P ḋ∩ z ∈ V and |{x ∈ V | there is p ∈ P, p 
 ḋ∩ z = x}| < κ,

then 
P ḋ ∈ V .

We also need a lemma about closed forcing and thin approximation.
The following is an appropriate generalization of a lemma of Silver to
the setting of Pκ(λ).

Lemma 3.4. Suppose that χ is a cardinal with χ < κ and 2χ ≥ κ. If
P is χ+-closed, then P has the thin κ-approximation property.

For a proof we refer the reader to Proposition 2.1.12 of [22].

Lemma 3.5. If κ is a successor cardinal with the tree property and the
tree property at κ is indestructible under κ-directed closed forcing, then
for every λ ≥ κ, TP(κ, λ) holds.

Proof. Assume the hypotheses and let λ ≥ κ. In V let T be a thin
(κ, λ, 2)-tree. Let G be Coll(κ, λ)-generic over V . Since G is generic
for κ-directed closed forcing, κ has the tree property in V [G]. Let
f ∈ V [G] be a bijection from κ to λ. We define a thin (κ, κ, 2)-tree
from T using f . Let h ∈ S if and only if there is g ∈ T such that
dom(h) = f−1[dom(g)] and for all α ∈ dom(h), h(α) = g(f(α)).

Clearly S is a thin (κ, κ, 2)-tree. It follows that S has a branch dS
in V [G]. Let d = dS ◦ f−1. Clearly d is a branch through T . It will be

enough to show that d ∈ V . Let ḋ be a Coll(κ, λ) name for d. We claim

that ḋ satisfies the hypotheses of the thin κ-approximation property.
We may assume that it is forced that ḋ is a branch through T . So it is
forced that ḋ∩x ∈ Tx ⊆ V . Further the set of possibilities for ḋ∩x has
size at most |Tx| < κ, since T is thin. To finish the proof we note that
Coll(κ, λ) has the thin κ-approximation property in V . This is clear
from Lemma 3.4 if we let χ be the predecessor of κ. �

This finishes the proof of Theorem 3.1.
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4. Successive failures of weak square

In this section we prove some theorems about successive failures of
weak square. In the first of our two theorems, we prove that one can
obtain for all n ≥ 1, the failure of �∗ℵn with a cardinal arithmetic
pattern similar to the one in the model of Cummings and Foreman for
the tree property at ℵn for n ≥ 2. In the second of our theorems we
prove that one can obtain further successive failures of weak square at
the cost that many singular cardinals are not strong limit.

In some cases we will show that weak square fails by arguing that
there are no special Aronszajn trees. This is equivalent by a theorem
of Jensen [9]. Recall that a µ+-tree T is special if there is a function f
from T to µ such that f(s) 6= f(t) whenever s <T t.

For our first theorem of this section, we prove:

Theorem 4.1. Assuming there are infinitely many Mahlo cardinals,
there is a forcing extension in which �∗ℵn fails for 1 ≤ n < ω.

The forcing for Theorem 4.1 is a full support product of posets like
Mitchell’s original forcing. We describe an abstract version of Mitchell’s
forcing M with three cardinal parameters.

Definition 4.2. Let κ < λ < µ be regular cardinals. We define P =
P(κ, µ) to be Add(κ, µ) and further let P � α = Add(κ, α) for all α < µ.
Next we define M = M(κ, λ, µ) to be the collection of pairs (p, f) such
that p ∈ P and f is a function such that |f | < λ, dom(f) is a subset of
the interval (λ, µ) and for all α ∈ dom(f), f(α) is a P � α-name for a
condition in Add(λ, 1)V [P�α].

We set (p1, f1) ≤ (p2, f2) if and only if p1 ≤ p2, dom(f1) ⊇ dom(f2)
and for all α ∈ dom(f2) p � α 
 f1(α) ≤ f2(α).

Mitchell’s original forcing for obtaining the tree property at ω2 is
M(ω, ω1, κ) where κ is weakly compact. The following sequence of
lemmas are straightforward modifications of lemmas of Abraham [1].

Lemma 4.3. M is κ-closed and µ-Knaster.

Lemma 4.4. There are projections from M to P and P�α∗Add(λ, 1)V [P�α]
for all α ∈ (λ, µ).

Lemma 4.5. There is a λ-closed, µ-Knaster forcing R such that M is
the projection of P× R.

For all α in the interval (λ, µ), let M � α be the natural restriction
of M to functions whose domains are a subset of α.
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Lemma 4.6. For all α ∈ (λ, µ), in V [M � α] the poset M/M � α is
the projection of P∗ × R∗ where P∗ = Add(κ, µ \ α) and R∗ is λ-closed
and µ-Knaster.

Lemma 4.7. In V [M] 2κ = µ, λ is preserved and µ = λ+.

We define S in V [M] to be (P × R)/M. Implicit in the proof of the
above lemma is the following.

Lemma 4.8. In V [M] forcing with S preserves cardinals.

We are now ready to define the main forcing used in the proof of
Theorem 4.1. We work in a model of GCH with an increasing sequence
of Mahlo cardinals 〈λn | n < ω〉. For ease of notation we define λ−2 = ω
and λ−1 = ω1. For all n < ω we define Mn to be M(λn−2, λn−1, λn).
The main forcing is Q the full support product of the Mn. We transfer
all of the notation from the abstract version of M to each Mn. For
example we write Mn as the projection of Pn × Rn.

Theorem 4.9. In V [Q], �∗ℵk fails for all k ≥ 1.

We start by proving a lemma about the cardinal structure of V [Q].

Lemma 4.10. In V [Q], for all n ≥ −1, λn is preserved and for all
n ≥ −2, 2λn = λn+2 = ℵn+4.

Proof. Let n ≥ −1. Mn+1 is the projection of a product of λn-cc forcing
and λn-closed forcing.

∏
i≤nMi is λn-cc and

∏
i>n+1Mi is λn closed. It

follows that λn is preserved in V [Q]. Furthermore every < λn-sequence
from V [Q] is in V [

∏
i≤nMi × Pn+1]. Since this forcing is λn-cc of size

λn+1 which is inaccessible in V , we have 2λn−1 ≤ λn+1. Since Q projects
to Pn+1, we have 2λn−1 ≥ λn+1. It remains to show that for all n ≥ −2,
λn+2 = ℵn+4. It will be enough to show that for all n ≥ −2, λn+1 is
the successor of λn. This is immediate from Lemma 4.7 and the fact
that forcing with Q preserves each λn. �

We are now ready to prove Theorem 4.1.

Proof. Let n < ω. It is enough to show that there are no special
λn-trees in V [Q]. In the proof of Lemma 4.10 we showed that every
λn-sequence from V [Q] is a member of V [

∏
i≤n+1Mi × Pn+2]. So it

is enough to show that there are no special λn-trees in this model.
It is not hard to see that Sn+1 preserves cardinals over V [

∏
i≤nMi ×

Pn+2]. So it is enough to show that there are no special λn-trees in
V [
∏

i≤nMi × Pn+1 × Rn+1 × Pn+2].
We reorganize the forcing to do the λn-closed forcing first. Note

that λn is still Mahlo in V [Rn+1 × Pn+2], since both forcings are λn-
closed. We also note that all chain conditions and closure properties of
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forcings Mi for i ≤ n and Pn+1 are preserved in this extension. Further
even chain condition and closure properties of Pi and Ri for i ≤ n are
preserved. For ease of notation we let W = V [Rn+1 × Pn+2].

Suppose for a contradiction that Ṫ , ḣ are
∏

i≤nMi× Pn+1-names for
a λn-tree and specializing function. We may assume that it is forced
that the underlying set of Ṫ is λn and ḣ is a function from λn to λn−1.
The forcing

∏
i≤nMi × Pn+1 is λn-cc and hence there is an X ⊆ λn+1

with |X| = λn such that T, h ∈ W [
∏

i≤nMi×Pn+1 �X]. By rearranging
the forcing we may assume that X = λn.

We need to locate each initial segment of T and h more precisely.
Working in W [

∏
i≤nMi×Pn+1 �λn] we see that for each α < λn there is

a να < λn such that T �α, h�α ∈ W [
∏

i≤nMi �να×Pn+1 �να]. So in the
extension there is a club of closure points of the map α 7→ να. Since
the forcing to add T and h over W is λn-cc (hence preserves stationary
subsets of λn), there is a V -inaccessible closure point γ.

Note that we have T � γ, h � γ ∈ W [
∏

i≤nMi � γ × Pn+1 � γ] and this
extension is by γ-cc forcing. It follows that T � γ is a special γ-tree as
witnessed by h � γ. It will be enough to show that the forcing to get
from W [

∏
i≤nMi � γ × Pn+1 � γ] up to W [

∏
i≤nMi × Pn+1] cannot add

a branch through T � γ. This is a contradiction since T � γ would be a
branchless initial segment of T .

By Lemma 4.6 it is enough to show that forcing with Pn+1 � [γ, λn)×
R∗n×P∗n could not have added a branch through T � γ over W [

∏
i≤nMi�

γ × Pn+1 � γ]. It is clear that Pn+1 � [γ, λn) cannot add a branch, since
it is γ-cc and T � γ is special. Next we need to show that R∗n satisfies
the hypotheses of Lemma 0.1 in the current model.

By Lemma 4.6, R∗n is λn−1-closed and 2λn−2 = γ in W [Mn � γ].
Moreover

∏
i<nMi × Pn+1 � λn+1 is the product of λn−1-Knaster and

λn−1-closed forcing in W . The hypotheses of Lemma 0.1 follow. So we
have proved that T � γ is still branchless in W [

∏
i≤nMi×Pn+1�λn×R∗n].

Moreover in this model γ is collapsed to have cofinality λn−1 = ℵn+1.
Straightforward applications of Easton’s Lemma show that (P∗n)2 is
λn−1-cc in this model and hence by Lemma 1.6 applied to T � γ we
have our desired contradiction. �

In our second theorem of the section, we show that we can obtain
further successive failures of weak square. Recall that if 2µ = µ+, then
there is a µ++-Aronszajn tree. So to have the failure of weak square at
µ+, we must have 2µ > µ+. This issue is particularly important when
µ is singular, since we have to deal with the singular cardinals problem.
A problem of interest in this area is an open question of Woodin’s from
the 1980’s whether is it consistent to have ℵω strong limit, 2ℵω > ℵω+1
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and the failure of �∗ℵω . A positive answer to this question is required
for us to extend our first theorem from this section in the case where
ℵω is strong limit.

In the following theorem, we avoid the difficulties of Woodin’s ques-
tion by forcing ℵω not to be a strong limit cardinal.

Theorem 4.11. Suppose there is a supercompact cardinal with an in-
creasing sequence of Mahlo cardinals of order type ω2 above it. There
is a generic extension in which �∗ fails for all cardinals in the interval
[ℵ1,ℵω2 ].

For this theorem, we will use Neeman’s [15] formulation of Mitchell’s
posets. We first present an abstract version of a poset of Mitchell-like
collapses.

Definition 4.12. Let τ < χ < χ′ ≤ η be regular cardinals and let
P = Add(τ, η). Let C(P, χ, χ′) be the collection of partial functions
f of size < χ whose domain is a subset of (χ, χ′) such that for all
α ∈ dom(f), f(α) is a P � α-name for an element of Add(χ, 1)V [P�α].
We order the poset by f1 ≤ f2 if and only if dom(f1) ⊇ dom(f2) and
for all α ∈ dom(f2), 
P�α f1(α) ≤ f2(α).

Note that such posets are easily ‘enriched’ in the sense of Neeman to
give Mitchell like collapses. The enrichment of C(P, χ, χ′) by P is the
poset defined in the generic extension by P with the same underlying
set as C(P, χ, χ′), but with the order f1 ≤ f2 if and only if dom(f1) ⊇
dom(f2) and there is p in the generic for P such that for all α ∈ dom(f2),
p � α 
 f1(α) ≤ f2(α). If P is P-generic we will write C+P for the
enrichment of C by P . Note that the poset C(P, χ, χ′) is χ-closed,
χ′-cc if χ′ is inaccessible and collapses every regular cardinal in the
interval (χ, χ′) to have size χ. Hence it makes χ′ into χ+.

We are now ready to prove Theorem 4.11. Let 〈λm,n | n < ω,m < ω〉
be a sequence of cardinals such that λ0,0 = ω and for all m < ω,
λm+1,0 = supn<ω λm,n and λm,1 = λ+m,0, and for all n < ω λm,n+2 is
the least Mahlo cardinal greater than λm,n+1. The sole exception to
this scheme is λ0,2 which we assume is indestructibly supercompact.
Our intention is to force λm,n = ℵω·m+n. To do so we define a helpful
function k : ω × ω → ω by

k(m,n) =


0 if (m,n) = (0, 2)

m+ 1 if n > 2

m if n = 2 and m > 0

which will form the association between posets that collapse cardinals
and posets that add subsets.
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Next we define the necessary posets:

• A0 = Add(ω, λ0,2).
• For m ≥ 1, Am = Add(λm−1,1, λm,2).
• For m < ω and 2 ≤ n < ω, Cm,n = C(Ak(m,n), λm,n−1, λm,n).

The model for the theorem is obtained by first forcing with the full
support product

∏
m<ω Am to get generics Am for m < ω, then forcing

with the full support product
∏

m<ω,2≤n<ω C
+Ak(m,n)�λm,n
m,n . We call this

final model W and note that there is an outer model W ′ obtained by
forcing with the full support product

∏
m<ω Am ×

∏
m<ω,2≤n<ω Cm,n.

We have the following straightforward lemmas:

Lemma 4.13. For all m,n < ω, λm,n is preserved in W ′.

Proof. It is not hard to see that for every m < ω and n ≥ 2 the
forcing to obtain W ′ can be written as a product of λm,n-cc forcing and
λm,n-closed forcing and also as a product of λ0,1 = ℵ1-cc and ℵ1-closed
forcing. It follows that λm,n is preserved for all m < ω and n ≥ 2.
Together with the argument above, standard arguments allow us to
show that in W ′ λm,0 and λm,1 are preserved for all m < ω. �

Lemma 4.14. For every m < ω, 2 ≤ n < ω and cardinal α in the
interval (λm,n−1, λm,n), α is collapsed to have cardinality λm,n−1 in W .

This follows easily from the definition of the collapse posets Cm,n.
As a corollary we have the expected cardinal structure.

Corollary 4.15. In W (and also W ′) we have that for all m,n < ω,
λm,n = ℵω·m+n.

Straightforward modifications of the arguments from the proof of
Theorem 4.1 give a proof of the following:

Lemma 4.16. For all m < ω and n ≥ 1, �∗ℵω·m+n
fails in W .

For the proof of Theorem 4.11 it remains to show:

Lemma 4.17. For all 1 ≤ l ≤ ω, �∗ℵω·l fails in W .

Proof. Assume for a contradiction that for some l ≥ 1, �∗ω·l holds in W .
For all pairs (m,n) such that k(m,n) = 1 we force over W to refine the

generic for C+Ak(m,n)
m,n to a generic for Cm,n and obtain a model W ∗ with

W ⊆ W ∗ ⊆ W ′. It follows that W and W ∗ have the same cardinals
and hence �∗ℵω·l holds in W ∗.

By passing to W ∗ we have ensured that the forcing above λ0,2, which
is ( ∏

m≥2

Am ∗
∏

{(m,n)|k(m,n)>1}

C+Ak(m,n)
m,n

)
×

∏
{(m,n)|k(m,n)=1}

Cm,n,
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is λ0,2-directed closed in V . We collect this forcing and call it X. It is

now clear that W ∗ is the extension of V by the product X×(A0∗C+A0
0,2 )×

A1. Recall that we chose λ0,2 to be indestructibly supercompact in V
and hence there is an embedding j : V [X]→M witnessing that λ0,2 is
θ-supercompact for some θ > supm<ω λm,0.

By standard arguments, the posets

• Â0 = j(A0) � [λ0,2, j(λ0,2)),

• Â1 = j(A1) � (j(λ1,2)− j“λ1,2) and

• Ĉ = j(C0,2)
+A0 � [λ0,2, j(λ0,2))

are enough to extend the embedding j to W ∗. Moreover, ℵω·l+1 has

been collapsed to have cofinality ω1 in W ∗[Â0 × Â1 × Ĉ].
Let 〈Cα | α < ℵω·l+1〉 be a weak square sequence in W ∗. We can

assume that for all α there is a club C ∈ Cα with ot(C) = cf(α) and for
all α and all C ∈ Cα, ot(C) < ℵω·l. Using our extended j, we let E be

a club of order type ω1 in j(~C)sup j“ℵω·l+1
. Working in W ∗[Â0× Â1× Ĉ],

we can define D∗ = {α | j(α) ∈ E}. Since j“ℵω·l+1 is ω-closed, we have
that D∗ is club in ℵω·l+1 of order type ω1.

It is not hard to see that Â0 is isomorphic to the forcing to add
j(λ0,2) Cohen reals and hence is ccc in W ∗[Â1 × Ĉ]. Since Â0 is ccc,

there is a club D ∈ W ∗[Â1× Ĉ] with D ⊆ D∗. Variants of the following
two claims appear in the literature on successive cardinals with the tree
property. For example the first is an application of Lemma 2.13 of [3]
and the second is essentially Claim 4.15 from [15].

Claim 4.18. Â1 is λ0,2 = ℵ2-cc and < ω1-distributive in W ∗.

It follows that Â1 preserves cardinals over W ∗ and hence ~C remains
a weak square sequence in W ∗[Â1].

Claim 4.19. Ĉ is countably closed in W ∗ and hence in W ∗[Â1].

Corollary 4.20. W ∗ and W ∗[Â1 × Ĉ] have the same ω-sequences.

It follows that for all α < ℵω·l+1, D ∩ α is in W ∗ and hence in the
domain of j. So for all α ∈ lim(D), we have j(D ∩ α) = j“D ∩ α ⊆
E ∩ j(α) ∈ j(~C)j(α) and so by elementarity there is a C ∈ Cα such that
D ∩ α ⊆ C.

We arrive at a contradiction by showing that the countably closed
forcing Ĉ cannot add such a club D. This follows from a small mod-
ification of the first claim in Section 5 of Foreman and Magidor’s [4],
which is an adaptation of a special case of Theorem 2.1 in a paper of
Magidor and Shelah [10]. For completeness we give a sketch of the
argument.
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Claim 4.21. For all q ∈ Ĉ and all α < ℵω·l+1, there is β > α such
that the set {s | ∃q′ ≤ q, q′ � s = D ∩ β} has size ℵω·l.

Otherwise we have a condition q and a bound δ < ℵω·l such that for
all β < ℵω·l+1, the size of the set of possible values for D ∩ β decided
by conditions below q is at most δ. An argument similar to the one in
Lemma 1.4 shows that q forces D to be in W ∗[Â1], which is impossible
since D has order type ω1.

Now that we have many levels on which the set of possible values for
D∩β is large, we can build a tree of possible values for initial segments
of D indexed by elements of ℵ<ωω·l . Using the above claim we can ensure
that different branches through the tree force different values for initial
segments of D. So we obtain an ordinal β such that the set of possible
values for D ∩ β is ℵω·l+1. We will show that this is impossible. Any
value for D ∩ β must be contained in some club C ∈ Cβ, but each
C ∈ Cα was assumed to have order type less than ℵω·l. So the number
of possible values for D ∩ β is at most ℵω·l, since µω < ℵω·l for all
µ < ℵω·l in W ∗[Â1]. This finishes the proof of Lemma 4.17 and with it
the proof of Theorem 4.11. �

We end this section with a few remarks on the proof of Theorem
4.11. There is significant freedom in the choice of the A posets and
hence we can create other GCH patterns in the final model. We can
obtain more successive failures of weak square provided that we avoid
singular strong limit cardinals with the exception of the end of the
interval. So in particular we can obtain the failure of weak square
at every cardinal less than or equal to iω. We chose this particular
presentation, because it is close to the GCH pattern that might occur
if we successfully answer the following question.

Question 4.22. Is it consistent that �∗ fails for all cardinals in the
interval [ℵ1,ℵω2 ], ℵω2 is strong limit and 2ℵω2 > ℵω2+1?
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