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Abstract. We prove various theorems about the preservation and destruction

of the tree property at ω2. Working in a model of Mitchell [9] where the tree
property holds at ω2, we prove that ω2 still has the tree property after ccc

forcing of size ℵ1 or adding an arbitrary number of Cohen reals. We show

that there is a relatively mild forcing in this same model which destroys the
tree property. Finally we prove from a supercompact cardinal that the tree

property at ω2 can be indestructible under ω2-directed closed forcing.

1. Introduction

In this paper we prove some facts about destruction and preservation of the tree
property at ω2. For completeness we recall some definitions.

Definition 1. Let κ and λ be cardinals with κ regular.

(1) A κ-tree is a tree of height κ with levels of size less than κ.
(2) A tree T has a κ-branch if and only if there is a b ⊆ T such that b is linearly

ordered by <T and o.t.(〈b,<T 〉) = κ
(3) A κ-Aronszajn tree is a κ-tree with no κ-branch.
(4) A λ+-tree T is special if and only if there is a function f : T → λ such

that for all x, y ∈ T , if x <T y then f(x) 6= f(y).

Remark 1. A special λ+-tree is Aronszajn

Definition 2. A regular cardinal κ has the tree property if and only if every κ-tree
has a κ-branch or equivalently there are no κ-Aronszajn trees.

The tree property is a well studied combinatorial principle. Aronszajn proved
that there is a special ω1-Aronszajn tree [6] and a generalization due to Specker [12]
shows that if κ<κ = κ, then there is a special κ+-Aronszajn tree. In particular CH
implies that there is a special ω2-Aronszajn tree. Mitchell [9] showed that the tree
property at ω2 is equiconsistent with the existence of a weakly compact cardinal.
The forcing used in this result can easily be modified to give the Tree property at
the double successor of any regular cardinal from a weakly compact cardinal. Many
questions about the successors of singulars have been answered, but we shall not
concern ourselves with them here.

To obtain the tree property at ω2 in Mitchell’s result, we force to make the
weakly compact cardinal into ω2, but with a forcing that will preserve the tree
property. The tree property in the extension is a generic large cardinal property,
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a remnant of the fact that ω2 was weakly compact in an inner model. Destruction
and preservation of large cardinals is an important topic in set theory. In this paper
we study the destruction and preservation of the tree property as a generic large
cardinal property. There are immediate differences between large cardinals and
generic large cardinal properties in terms of destruction and preservation. Let us
focus on weak compactness and the tree property. Levy and Solovay proved that
if κ is weak compact, then it remains weakly compact after any forcing of size less
than κ. By contrast if ω2 has the tree property, then forcing with Coll(ω, ω1) makes
ω2 in to ω1 and there is always an ω1-Aronszajn tree. So it is possible for small
forcing to destroy the tree property. The aim of this paper is explore how fragile
or robust the tree property is as a generic large cardinal property.

Indestructibility of the tree property plays a key role in research of forcing ex-
tensions where the tree property holds. For example the work of Abraham[1], and
Cummings and Foreman[2] relies on constructing models in which the tree prop-
erty is indestructible. In [1], one first constructs a model in which ω2 has the tree
property in an indestructible way. One then forces over that model to obtain the
tree property at ω3 and argues that the tree property at ω2 cannot be destroyed by
further forcing.

Fragility of the tree property is also important although it seems less is known
about it. Results about the fragility of the tree property constrain the choice of
forcing posets in results like [1],[2],[10].

In Section 2 we describe Mitchell’s forcing for obtaining the tree property at ω2

from a weakly compact cardinal and state some of its properties. Also in this section
we will state some of the lemmas used in the proof that the tree property holds
at ω2 in the extension. Our results about the indestructibility of the tree property
will concern the extension by Mitchell’s forcing and another related model. For the
remainder of the paper Mitchell’s forcing will refer to the forcing from this section
and Mitchell’s model will refer to the extension by Mitchell’s forcing.

In Section 3 we prove that the tree property in Mitchell’s model is indestructible
under both ccc forcing of size ℵ1 and adding arbitrarily many Cohen reals. To
do this we prove Lemma 6 a generalization of a lemma used in the proof that the
tree property holds at ω2 in Mitchell’s model. Ideas from this lemma have found
application in recent work of Sinapova [11] and the lemma itself is used in recent
work of Neeman [10].

In Section 4 we show that in Mitchell’s model there is a countably distributive
ω2-cc forcing of size ω2, which adds a special ω2-Aronszajn Tree, in fact it adds a
�ω1-sequence.

In Section 5 we present a modification of Mitchell’s forcing which allows us to
construct a model in which the tree property at ω2 is robust. Starting from a
supercompact cardinal, we use a variation of the forcing from [1] to obtain a model
of the tree property at ω2 in which the tree property is indestructible under ω2-
directed closed forcing.

In Section 6 we conclude with some remarks and open problems.

2. Mitchell’s forcing

In this section we describe Mitchell’s forcing and state a few of its properties.
This presentation of Mitchell’s forcing along with a complete analysis appears in
[1].



FRAGILITY AND INDESTRUCTIBILITY OF THE TREE PROPERTY 3

Definition 3. Let θ be a regular cardinal and α be an ordinal. We call the forcing
for adding α-many subsets of θ Add(θ, α).

Definition 4. Let κ be an inaccessible cardinal. Let P(α) = Add(ω, α) for all
α ≤ κ, which we think of as finite partial functions from α to 2. M(κ) is the
collection of pairs (p, q) such that p ∈ P =def P(κ) and q is a function with do-
main a countable subset of κ and for all β ∈ dom(q), q(β) is a P(β)-name for a
condition in Add(ω1, 1)V P(β) . For the ordering, let (p, q) ≤ (p′, q′) if and only if
p′ ⊆ p, dom(q′) ⊆ dom(q) and for all β ∈ dom(q′), p � β 
VP(β) q(β) ≤ q′(β) in

Add(ω1, 1)V P(β) .

We can now state the forcing direction of Mitchell’s theorem more precisely.

Theorem 1. If there exists a weakly compact cardinal κ, then the generic extension
by M =def M(κ) satisfies

(1) 2ω = κ = ω2,
(2) ωV1 = ω1 and
(3) ω2 has the tree property.

We state some of the properties of Mitchell’s forcing that are used in the proof
of the above theorem and the proofs of our theorems below. For completeness we
reference the precise numbering of [1].

Definition 5. A poset P is κ-Knaster if for every sequence 〈pα | α < κ〉, there is
I ⊆ κ unbounded such that for all α, β ∈ I, pα and pβ are compatible.

Lemma 1 (Lemma 2.4 of [1]). M is κ-Knaster.

Notice that in the definition of the ordering there is a connection between the
first and second coordinates. The next lemma shows that at the cost of a little
more forcing we can disengage the coordinates.

Lemma 2 (Lemmas 2.5 and 2.8 of [1]). There is a countably closed forcing R such
that M is the projection of P× R.

For α < κ, the map from M to M(α) given by (p, q) 7→ (p � α, q � α) is a
projection. This means that we can form the quotient M/M(α). It turns out that
this quotient resembles M as defined in V M(α). The following Lemma combines
Definition 2.7 and Lemmas 2.8 and 2.12 of [1].

Lemma 3. In V M(α) there is an ℵ1-Knaster forcing P′ and a countably closed
forcing R′ such that M/M(α) is the projection of P′ × R′.

This completes the facts that we will need about M. We will now state a few
lemmas that are used in the proof of Theorem 1, which we will use also. The
following are often called branch lemmas.

Lemma 4 (Silver). Let τ and η be regular cardinals with 2τ ≥ η, T be an η-tree
and R be τ+-closed poset. Forcing with R cannot add a new branch through T , that
is every cofinal branch through T in V P is in V .

Lemma 5. κ-Knaster forcing cannot add a branch through a branchless tree of
height κ.



4 SPENCER UNGER

3. Indestructibility of the tree property in V M

Having described M we can state our indestructibility theorem precisely.

Theorem 2. Work in V M. Suppose that Q is either a ccc poset of size ℵ1 or
Add(ω, µ) for some cardinal µ, then the tree property holds at ω2 in the extension
by Q.

In order to prove Theorem 2, we will need to make use of a generalization of
Lemma 4. We state and prove the lemma and then return to the proof of Theorem
2.

Lemma 6. Let τ, η be cardinals with η regular and 2τ ≥ η. Let P be τ+-cc and R
be τ+-closed. Let Ṫ be a P-name for an η-tree. Then in V P forcing with R cannot
add a branch through T .

We begin with a definition and a lemma given in [8].

Definition 6. Let R be a poset and T be a tree. Assume that ḃ is a R-name for
a branch through T . We say that r1, r2 force contradictory information about ḃ at
level γ if for every pair r′1, r

′
2 ∈ R with r′1 ≤ r1 and r′2 ≤ r2 if r′1, r

′
2 each decide the

value of ḃ ∩ Levγ T , then they decide different values.

The following lemma shows that conditions forcing contradictory information
act as one might expect.

Lemma 7. Let T be a tree, R be a poset and ḃ be a R-name for a branch through
T . Suppose that r1, r2 force contradictory information about ḃ at some level γ, then

(1) for all γ′ > γ, r1, r2 force contradictory information about ḃ at level γ′ and

(2) for all r′1 ≤ r1 and r′2 ≤ r2, r′1, r
′
2 force contradictory information about ḃ

at level γ.

For a proof see [8]. We prove another basic fact [8] which says that if a branch
is forced to be new then we can always extend to find conditions that force contra-
dictory information about the branch at some level.

Proposition 1. Let T be a tree and R a poset. Suppose that ḃ is an R-name for
a branch through T such that 
R ḃ /∈ V . Then for every r1, r2 ∈ R there are r′1, r

′
2

and γ such that r′1 ≤ r1, r′2 ≤ r2 and r′1, r
′
2 force contradictory information about ḃ

at level γ.

Proof. Assume that the proposition is false. So there are r1, r2 such that for any
r′1 ≤ r1, r

′
2 ≤ r2 and γ, r′1, r

′
2 do not force contradictory information about ḃ on

level γ. We work through the meaning of ‘do not force contradictory information.’
For any r′1, r

′
2 and γ as above there are r′′1 ≤ r′1 and r′′2 ≤ r′2 such that r′′1 and

r′′2 decide the same value for ḃ ∩ Levγ T . In particular we have a dense set below

(r1, r2) ∈ R × R that forces interpretation of ḃ by the left generic to be equal to

that of the right generic. This contradicts the fact that 
R ḃ /∈ V . �

We are now ready to begin the proof of Lemma 6

Proof. In V P let ḃ be an R-name for a cofinal branch through T , the interpretation
of Ṫ . Assume for a contradiction that 
R ḃ /∈ V P.
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Claim. For all r1, r2 ∈ R, there is a dense set Dr1,r2 ⊆ P such that for all p ∈
Dr1,r2 , we have

(1) p 
 There are r′1, r
′
2 ∈ R and γ < η such that r′1 ≤ r1, r′2 ≤ r2 and r′1, r

′
2

force contradictory information about ḃ on level γ and
(2) p decides the value of γ, r′1, r

′
2.

We apply Proposition 1 in V P with R, T, ḃ as in the lemma to see that in fact
every condition in P forces (1). We can then extend a given condition to obtain
(2), which shows that the set of conditions satisfying (1) and (2) is dense. This
completes the claim.

Next given r ∈ R we construct a maximal antichain A in P and conditions r∗1 , r
∗
2

and γ∗ < η such that r∗1 , r
∗
2 ≤ r and for all p ∈ A, p 
 r∗1 , r

∗
2 force contradictory

information about ḃ at level γ∗. The above claim might give us different conditions
in R for incompatible extensions in P. We now show that we can find a pair of
conditions in R that works for each element in a maximal antichain in P.

To construct A, r∗1 , r
∗
2 , γ
∗ as above we construct an increasing sequence of length

less than τ+ of antichains 〈Aα〉 in P, decreasing sequences 〈rαi 〉 for i = 1, 2 and a
sequence of ordinals 〈γα〉 as follows. For definiteness, we fix a well order of P.

To begin the construction we fix r ∈ R and let p0 ∈ Dr,r. Let r01, r
0
2, γ0 witness

this, that is they satisfy (1) of the claim. Let A0 = {p0}.
Assuming we have constructed, rα1 , rα2 , Aα, γα, we define rα+1

1 , rα+1
2 , Aα+1,

γα+1 or halt the construction. If Aα is a maximal antichain then terminate the
construction and set A = Aα, r∗i = rαi for i = 1, 2 and γ∗ = γα. Otherwise we
choose the least p in the well order of P such that p is incompatible with everything
in Aα. Choose p′ ≤ p with p′ ∈ Drα1 ,r

α
2

and let rα+1
1 ≤ rα1 , rα+1

2 ≤ rα2 and γα+1 > γα
witness that p′ ∈ Drα1 ,r

α
2

. Define Aα+1 = Aα ∪ {p′}.
For the limit step assume that α is a limit ordinal and that for all β < α we

have constructed, rβ1 , r
β
2 , Aβ , γβ . By the construction so far 〈rβ1 | β < α〉 and 〈rβ2 |

β < α〉 are each decreasing sequences and 〈Aβ | β < α〉 is an increasing sequence
of antichains. Let Aα =

⋃
β<αAβ , rα1 , r

α
2 be lower bounds for the appropriate

sequences and γα = (supβ<α γβ) + 1.
Easy induction shows that for each relevant α, Aα is an antichain. Combining

the τ+-cc of P and the τ+-closure of R, we can continue the construction at limit
stages. Again by the τ+-cc of P, the construction must terminate at some stage
less than τ+.

We claim that r∗1 , r
∗
2 , A, γ

∗ are as required. Let p ∈ A, then by construction we
chose p at some stage α + 1 and p ∈ Drα1 ,r

α
2

with witnesses rα+1
1 , rα+1

2 , γα+1. Now

for i = 1, 2 we have r ≥ rαi ≥ rα+1
i ≥ r∗i . p 
 “rα+1

1 , rα+1
2 force contradictory

information at level γα+1.”
Passing to stronger conditions and moving up in levels, we get p 
 “ r∗1 , r

∗
2 force

contradictory information at level γ.” This is what we wanted. Note that we can
modify this construction to make γ∗ above any ordinal less than η that we fixed in
advance.

Next we construct a binary tree of conditions. Let χ be least such that 2χ ≥ η.
Then χ ≤ τ . Using the above construction repeatedly, we get conditions rs for
s ∈ <χ2 such that rsa0, rsa1 ≤ rs and there is a maximal antichain As in P such

that for all p ∈ As, p 
 rsa0, rsa1 force contradictory information about ḃ at some
level. If `(s) is a limit ordinal then rs ≤ rs�α for all α < `(s).
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Inductively we can ensure that for all α < χ there is a level ζα such that for all
s, t ∈ <χ2 with `(s) = `(t) = α rs and rt force contradictory information about ḃ at
level ζα. This is possible since the set of s ∈ <χ2 with a given length α is smaller
than η. Let ζ = supα<χ ζα and note that ζ < η.

Since we are working in V and R is τ+-closed in V , for each s ∈ χ2 we can find
a lower bound rs for the decreasing sequence 〈rs�α : α < χ〉. Let G be P-generic
over V . Then G ∩As 6= ∅ for all s ∈ <χ2.

Work in V [G]. We claim that for all s 6= t ∈ χ2, rs, rt force contradictory

information about ḃ on level ζ. To see this look at the largest α < χ where the s
and t agree. Since G∩As�α 6= ∅, it follows that r(s�α)a0, r(s�α)a1 force contradictory

information about ḃ at some level less than ζ. Moving up in levels we have that
rs, rt force contradictory information about ḃ on level ζ. It follows that level ζ of
T has 2χ ≥ η many nodes, a contradiction. �

We are now ready to prove Theorem 2.

Proof. For ease of argument we assume that we started with a measurable cardinal,
but note that the weakening to a weakly compact cardinal poses no problem. Let
κ be a measurable cardinal. Let M be Mitchell’s poset as described above. Let
j : V →M witness that κ is measurable where we assume that κM ⊆M .

In the first part of the proof we let Q be ccc of size ℵ1. Let H be V -generic for
j(M) and let G be the induced V -generic filter over M. Then we have j“G ⊆ H
since each condition in M is in Vκ. It follows that in V [H] there is a generic
elementary embedding j : V [G] → M [H] with critical point ω2. We can assume
that Q ∈ Hω2 and it follows that j(Q) = Q and j � Q = idQ. Thus we can lift the
generic embedding further to j : V [G][x] → M [H][x] where x is V [H]-generic for
Q.

Assume for a contradiction that Ṫ ∈ V [G] is an Q-name for an ω2-Aronszajn
tree. Since V |= κM ⊆M and G is generic for κ-cc forcing, V [G] |= κM [G] ⊆M [G].

It follows that Ṫ ∈ M [G] and thus T ∈ M [G][x]. We argue that T has acquired a
branch in M [H][x]. Since the critical point of j is κ, j(T ) � κ = T . In M [H][x],
j(T ) is a tree of height j(κ). So if we fix a point on level κ of j(T ), this determines
a branch through T . So we have a branch through T in M [H][x] and we would like
to show that the forcing to get from M [G][x] up to M [H][x] could not have added
this branch, a contradiction. To show this we look at a particular outer model
of M [H][x]. By Lemma 3 applied to j(M)/M, M [H] can be viewed a submodel
of M [G][H1][H2] where H1 is generic for Cohen forcing and H2 is generic for a
countably closed term forcing from M [G]. By Easton’s Lemma and the fact that
x is generic over V [H] ⊇ V [G][H1], x,H1, H2 are mutually generic and it follows
that M [H][x] ⊆M [G][x][H2][H1].

To obtain a contradiction it suffices to show that H2, H1 could not have added the
branch. We apply Lemma 6 with M [G] as the ground model, Q as the ccc forcing
and the forcing which adds H2 as the countably closed forcing. It follows that T
is still branchless in M [G][x][H2]. By a standard argument, the ω2 of M [G][x] is
collapsed to an ordinal of cofinality ω1 by the addition of H2. In M [G][x][H2] the
height of T is no longer a cardinal, so we replace T by its restriction to a cofinal ω1

sequence of levels. Note that the resulting tree need not be an ω1-tree, since T is
an ω2 tree in M [G][x] and thus can have levels of size ω1. Now since Cohen forcing
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is ℵ1-Knaster, we have that our restricted tree is branchless in M [G][x][H2][H1] by
Lemma 5. This is a contradiction.

We move on to the case where Q = Add(ω, µ) for some cardinal µ. We are
thinking of elements ofAdd(ω, µ) as finite partial functions from µ to 2. We can

assume that µ ≥ ω2, since otherwise we are in the previous case. Again let Ṫ be a
Q-name for an ω2-Aronszajn tree. We view Ṫ as a name for a subset of ω2 which
codes an ω2-tree in a fixed way. Hence for each α < ω2, there is a maximal antichain
Aα so that each q ∈ Aα decides the statement α ∈ Ṫ . Let B = ∪{dom q | q ∈ Aα
for some α}. Then |B| = ω2 and Q � B ' Add(ω, ω2). We replace Q with its

isomorphic copy where Ṫ is forced to be equal to a Q � ω2-name.
As before we have a lifted embedding j : V [G] → M [H] in V [H]. We lift this

embedding to the extension V [G][x] where x is V [G]-generic over Q. We let x∗

be j(Q)-generic over M [H] with j′′x ⊆ x∗. Again using the lifted elementary
embedding there is a branch through T in M [H][x∗]. We let x0 be the initial
segment of x which is generic for Add(ω, ω2). Then by the argument of the preceding
paragraph, T ∈ M [G][x0] and our assumption for a contradiction implies it is an
Aronszajn tree in this model. Since crit(j) = ω2, we can write x∗ = x0 × x1,
where x1 is generic for the quotient j(Q)/(Q � ω2). Note that this quotient is
just Cohen forcing. Using mutual genericity and Lemma 3, we write M [H][x∗] ⊆
M [G][x0][H2][H1][x1] where H1, H2 are generic for the forcings P′,R′ from Lemma
3. Again we apply Lemma 6 to show that T is still branchless in M [G][x0][H2]. In
M [G][x0][H2], (ω2)M [G][x0] has been collapsed to an ordinal of cofinality ω1. Again
we look at a restriction of the tree of a cofinal set of levels. To finish the proof we
note that H1 × x1 is generic for Cohen forcing which has the ω1-Knaster property
and thus cannot add a branch through a branchless tree by Lemma 5. This is a
contradiction, since T has a branch in M [G][x0][H2][H1][x1]. �

4. Adding an ω2-Aronszajn tree in V M

In this section we describe a forcing for adding �ω1
with countable conditions.

The forcing below is due to Foreman and Magidor [4].

Definition 7. Let λ be an inaccessible cardinal. Let c ∈ C if and only if c is a
function with dom(c) ⊆ Lim(λ), |dom(c)| = ℵ0 and for all α ∈ dom(c),

(1) c(α) is a countable closed subset of α,
(2) if cf(α) = ω, then c(α) is unbounded in α,
(3) if cf(α) > ω, then max(c(α)) is greater than all β < α with β ∈ dom(c)

and
(4) for all β ∈ Lim(c(α)), β ∈ dom(c) and c(α) ∩ β = c(β).

Let c2 ≤ c1 if and only if dom(c2) ⊇ dom(c1) and for all α ∈ dom(c1), c2(α) end
extends c1(α).

The following lemmas are easy.

Lemma 8. C is countably closed and λ-cc

Lemma 9. If X is V -generic for C and Cα =
⋃
{c(α) | c ∈ X and α ∈ dom(c)},

then for all α ∈ Lim(λ) ∩ cof(> ω)V , Cα is a club of order type ω1 in α.

It follows that in a generic extension by C, λ is collapsed to ω2 and 〈Cα | α ∈
Lim(λ)〉 is a �ω1

-sequence. Having shown the basic properties of C, we return to
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the setting of Mitchell’s forcing. Recall κ is a measurable cardinal in V and G be
V -generic for M. Let C ∈ V be the forcing described above with λ = κ.

Lemma 10. In V [G], C is countably distributive and ω2-cc

Proof. We prove the latter property first. Let Ȧ be an M name for an antichain
in C of size ω2. We can view Ȧ as a κ-sequence of names each of which names a
member of C. For α < λ let mα ∈M decide the value of the αth member of Ȧ to be
cα. Since M is κ-Knaster, we can find I ⊆ κ unbounded such that for all α, β ∈ I,
mα is compatible with mβ . It follows that {cα | α ∈ I} is an antichain of size κ in
C, a contradiction.

We use Easton’s Lemma (Lemma 15.19 of [5]) to show that in V [G], C is count-
ably distributive. Let X be C-generic over V [G]. In V [G][X] we force with the
quotient (P×R)/M to obtain V [G][X][G′]. This quotient forcing exists by Lemma
2. So X and G′ are mutually generic and we have V [G][X][G′] = V [G][G′][X].
By the general theory of projections we have that M ∗ ((P × R)/M) is isomorphic
to P × R. We use this isomorphism to read off generics H1, H2 for P,R respec-
tively such that V [G][G′][X] = V [H1][H2][X]. Now H2 × X is generic for R × C,
which is countably closed in V . Since H1 is generic for ccc forcing, we can apply
Easton’s lemma to see that every ω-sequence of ordinals from V [H1][H2][X] is in
V [H1]. It follows that forcing with C over V [G] did not add any ω-sequences, since
V [H1] ⊆ V [G][X] ⊆ V [G][X][G′] = V [H1][H2][X]. �

So in V [G] forcing with C preserves cardinals and adds a �ω1 -sequence. It is
a well known fact due to Jensen[3] that �ω1

implies that there is a special ω2-
Aronszajn tree.

Remark 2. We note that the forcing P × R/M is also countably distributive and
ω2-cc, and it adds a special ω2-Aronszajn tree. The proofs of distributivity and
chain condition are routine. To see that it adds a special ω2-Aronszajn tree, we
note that V R is an inner model of V P×R with the same ω2 and moreover V R � CH.
It follows that there is a special ω2-tree in V R and it is still special in V P×R.

5. Making the tree property indestructible under closed forcing

In this section we assume that κ is supercompact and we construct a model in
which the tree property is indestructible under ω2-directed closed forcing. It is
known that in models of PFA the tree property is indestructible under ω2-closed
forcing [7]. However, the result of this section provides a more flexible proof for a
weaker conclusion. In particular the forcing from this section generalizes easily to
higher cardinals.

The definition of the forcing that we present is not the most general, but it is
enough for the application. For a complete analysis of this style of forcing in a
different and more general context, we refer the reader to [1] or [2]. Our account
of the forcing comes from [2]. Before defining the forcing, we give the definition of
Laver function.

Definition 8. A function f : κ→ Vκ is a Laver function if for every λ and every
x ∈ Hλ+ , there is j : V →M with crit(j) = κ, j(κ) > λ, λM ⊆M and j(f)(κ) = x.

Definition 9. Let P =def Add(ω, κ) and for all α < κ let P(α) =def Add(ω, α).
Let F be a Laver function from κ to Vκ. We define a forcing M∗ by induction on
β ≤ κ. Let (p, q, f) ∈M∗(β) if and only if
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(1) p ∈ P(β),
(2) q is a partial function on β with |dom(q)| = ℵ0, dom(q) is a set of successor

ordinals and if α ∈ dom(q), then f(α) is a P(α)-name for a condition in
Add(ω1, 1)V P(α) and

(3) f is a partial function on β with |dom(f)| = ℵ0, dom(f) is a set of limit
ordinals such that for all α ∈ dom(f), 
M∗(α) “F (α) is α-directed closed
forcing and f(α) ∈ F (α).”

Define the ordering on M∗(β) by (p, f, r) ≤ (p′, f ′, r′) if and only if

(1) p ≤ p′ in P(β),
(2) dom(q) ⊇ dom(q′),
(3) for all α ∈ dom(q′), p � α 
P(α) q(α) ≤ q′(α),
(4) dom(f) ⊇ dom(f ′) and
(5) for all α ∈ dom(f ′), (p, q, f) � α 
M∗(α) f(α) ≤ f ′(α)

We set M∗ =def M∗(κ).

We state without proof the lemmas needed to show the following theorem. The
proofs of the lemmas are routine modifications of the analogous lemmas in [2].

Theorem 3. Let G be V -generic over M∗. V [G] satisfies

(1) 2ω = ω2 = κ,
(2) ω1 = ωV1 and
(3) the tree property at ω2.

Lemma 11. M∗ is κ-Knaster.

Lemma 12. M∗ projects onto the posets P, M∗(α) and P(α) ∗Add(ω1, 1)V P(α) for
any α < κ.

Lemma 13. There is a countably closed forcing U such that M∗ is the projection
of P× U.

Lemma 14. For all α < κ, in V M∗(α) there is a ℵ1-Knaster forcing P′ and a
countably closed forcing U′ such that M∗/M∗(α) is the projection of P′ × U′.

We are now ready to prove the theorem for this section.

Theorem 4. Let G be V -generic for M∗. In V [G] the tree property still holds at
ω2 after any ω2-directed closed forcing.

Proof. Let Q ∈ V [G] be ω2-directed closed and X be V [G]-generic for Q. By the
property of our Laver function F , there is an embedding j : V → M witnessing
that κ is (2|Q|)+-supercompact with j(F )(κ) = Q̇ a canonical name for Q. We work
to lift this embedding.

Note that for all (p, f, r) ∈ M∗, (p, f, r) ∈ Vκ. It follows that j � G = idG.
So in order to lift j to the extension by G we need only to choose a j(M∗)/M∗
generic object. Using the elementarity of j and Lemma 12, we have that j(M∗)
projects on to j(M∗)(κ+ 1). It is easy to see from the definition of the forcing that
j(M∗)(κ+1) is equivalent to M∗ ∗j(F )(κ). So it is enough to choose a j(F )(κ) = Q
generic object and a j(M∗)/(M∗ ∗Q) generic object. Let X be Q-generic over V [G]
and G′ be j(M∗)/(M∗ ∗Q)-generic over V [G][X].

In V [G][X][G′] we can lift the embedding j to j : V [G] → M [H] where H is
the generic object obtained from G,X,G′ for j(M∗). We would like to lift further.
First note that X ∈ M [H]. Since j witnesses that κ is (2|Q|)+-supercompact in
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V and G,H ∈ M [H], we have that j � Q ∈ M [H]. It follows that j“X ∈ M [H]
and M [H] � j“X is a directed subset of j(Q) of cardinality |Q|. M [H] � j(Q) is
j(κ)-directed closed and hence we can find a lower bound for j“X in j(Q). Force
below this lower bound to obtain X ′ which is j(Q)-generic over V [G][X][G′]. It
follows that we can lift again to obtain an embedding j : V [G][X]→M [H][X ′].

Assume for a contradiction that T in V [G][X] is an ω2-Aronszajn tree. By
standard arguments T ∈ M [G][X] and has acquired a branch b in M [H][X ′]. We
work to show that the forcing to get from M [G][X] to M [H][X ′] could not have
added the branch. To start we observe that b ∈ M [H], since X ′ is M [H]-generic
for j(κ)-closed forcing. From above we have M [H] = M [G][X][G′] and by Lemma
14, there are generics H1, H2 for ℵ1-Knaster forcing and countably closed forcing
respectively such that M [G][X][G′] ⊆ M [G][X][H2][H1]. By the usual arguments
using branch lemmas, we have that T is still branchless in M [G][X][H2][H1], a
contradiction. �

Remark 3. The results from Sections 3 and 4 hold in the extension by M∗.

6. Conclusion

Our work with Mitchell’s model leaves a gap between forcings which are known
to preserve the tree property and forcings which can destroy it. We have shown that
there is some relatively mild forcing in the Mitchell Model which destroys the tree
property. Is there a ccc forcing in the Mitchell model which adds an ω2-Aronszajn
tree? Our results imply that such a forcing must have size at least ω2 and that the
forcing cannot be Cohen forcing. We have only worked with Mitchell’s model and
other closely related models. Can the tree property at ω2 be even more fragile? In
particular, is there a model where the tree property holds at ω2, but is destroyed
by adding a Cohen real? In Section 5 using a supercompact cardinal we showed
that the tree property at ω2 can be made indestructible under ω2-directed closed
forcing. We suspect that an reasonable attempt to construct a model as in Section
5 will require at least a strongly compact cardinal and that such a result could be
proved using a theorem of Viale and Weiss [13].
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