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In this somewhat expository paper we write up some of the details required to
interleave collapses with Gitik’s gap 2 short extender forcing [1]. In a previous
paper [4] we gave a distilled view of the chain condition argument for the gap 2
forcing. A definition of the appropriate forcing was given in [3], but most of the
details are omitted. In this paper we prove the following theorem.

Theorem 0.1 (Gitik). Assuming there is a sequence 〈κn | n < ω〉 with κ =
supn<ω κn and each κn is κ+n+2

n -strong, then there is a forcing extension in which
κ = ℵω is strong limit and ℵωω = ℵω+2.

We assume familiarity with the presentation of the gap 2 forcing as presented in
either our previous paper [4] or in Gitik’s [2]. We present the poset P ∗ with the
Prikry ordering first and highlight the way that the gap 2 short extender forcing
(P,≤) sits inside it. The restricted ordering on P ∗ which satisfies the κ++-cc is
obtained by restricting the Prikry ordering to use (P,→) instead of (P,≤). The
main obstacle in this case is to reconstruct the proof of the Prikry lemma with the
added collapses.

1. The main forcing

Recall that for n < ω we have (κn, κ
+n+2
n )-extenders En witnessing that κn is

κ+n+2
n -strong. Let P be the gap 2 short extender forcing. We define a new poset
P ∗ with some extra features. In order to collapse between the κn’s we record the
diagonal Prikry sequence corresponding to the normal measure in each extender.
We use this sequence to break up the collapse. For notational convenience we let
κ−1 = ω1.

Definition 1.1. Let p = 〈d〉 _ 〈pn | n < ω〉 be in P ∗ if there is l = lh(p)
such that for n < l we have pn = (ρn, fn, gn, hn) and for n ≥ l we have pn =
(an, An, fn, gn, Hn) with the following properties

(1) the sequence 〈fn | n < l〉_ 〈(an, An, fn) | n ≥ l〉 ∈ P ,
(2) for n < l, ρn ∈ (κn−1, κn),
(3) for n < l, (gn, hn) ∈ Coll(κ+n+8

n−1 , < ρn)× Coll(ρ+n+4
n , < κn),

(4) for n ≥ l, gn ∈ Coll(κ
+(n−1)+8
n−1 , < κn) and Hn is a function with domain

πmc(an)0“An such that for all ρ in the domain, Hn(ρ) ∈ Coll(ρ+n+4, < κn).

To indicate that a particular component belongs to a particular poset we add a
superscript p, so for instance we might have pn = (ρpn, f

p
n, g

p
n, h

p
n). We also define

the natural map σ : P ∗ → P , which for a condition above returns the element of P
mentioned in the first item. Let p, q ∈ P ∗. We define p ≤ q if
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(1) σ(p) ≤ σ(q) in (P,≤) in particular lh(p) ≥ lh(q) and there is a sequence
〈νn | n ∈ [lh(q), lh(p))〉 of elements from relevant measure one sets witness-
ing this extension,

(2) for all n < lh(q), hpn ≤ hqn and ρpn = ρqn,
(3) for all n with lh(q) ≤ n < lh(p), πmc(aqn)0(νn) = ρpn and hpn ≤ Hq

n(ρpn),
(4) for all n ≤ lh(p) and all ρ ∈ dom(Hp

n), Hp
n(ρ) ≤ Hq

n(ρ), and
(5) for all n < ω, gpn ≤ gqn.

As usual we have p ≤∗ q if p ≤ q and lh(p) = lh(q).

To ensure coherence between the selected ρ’s, we work on the dense set of
conditions such that for all n and for all η ≤En δ ∈ rng(an) and all ν ∈ An,
πδ0(ν) = πη0(πδη(ν)).

The definition makes it clear that σ is a projection map from (P ∗,≤) to (P,≤). It
follows that κω ≥ κ++ in the extension provided we can show that κ++ is preserved.

Definition 1.2. We define another ordering → on P ∗ by replacing σ(p) ≤ σ(q)
with σ(p)← σ(q) in clause (1) of the definition of the ordering.

Again it is clear that σ defines a projection from (P ∗,→) to (P,→).

Lemma 1.3. For all p ∈ P ∗ and all dense open D in (P ∗,≤) there are p∗ ≤∗ p

and n∗ < ω such that for all ~ν ∈
∏

lh(p∗)≤i<lh(p∗)+n∗ A
p∗

i , p∗ _ ~ν ∈ D.

Proof. Let p ∈ P ∗ and D ⊆ P ∗ be dense open. The argument proceeds in four
rounds. In the first round we get a ‘universal upper part’.

Claim 1.4. There is a condition q ≤∗ p such that for all r ≤ q, if r ∈ D, then
〈rn | n < lh(r)〉_ 〈qn | n ≥ lh(r)〉 ∈ D.

We work to diagonalize over possible extensions of p. For each k < ω, we

enumerate ~g = 〈gn | n < lh(p) + k〉, ~h = 〈hn | n < lh(p) + k〉 and ~ν = 〈νi | i < k〉
such that for some q ≤ p _ ~ν, gn = gqn and hn = hqn for n < lh(q). We note that
there are just κlh(p)+k−1 such sequences and the forcing restricted to coordinates

greater than or equal to lh(p) + k is κ+lh(p)+k−1-closed.

We work by induction on k < ω to create a decreasing sequence of direct exten-
sions of p. At stage k in the induction we diagonalize over the above enumeration.
At a given stage in our enumeration, we have a condition q ≤∗ p and we work with

some ~g, ~h and ~ν, we ask if there is a direct extension r of the condition determined

by q and ~g, ~h and ~ν which is in D. If one exists then we must “capture” it using a
direct extension q. We work as follows:

• For n < lh(p), we decrease fqn to frn.
• For n ∈ [lh(p), lh(p) + k), we decrease fqn to frn � (dom(frn) \ dom(aqn)).
• For n ≥ lh(p) + k, we decrease qn to rn.

Using the closure of the relevant posets there are no issues with the limit stages
of the construction. The desired q is a direct extension of all “q”’s appearing in
the construction. Using the fact that every extension in P ∗ can be viewed as first
adding a sequence ~ν in a minimal way and then taking a direct extension, it is not
hard to see that q has the desired universal property.

In the second round of the construction, we capture extensions of the top most
collapse in the lower part of the condition. We use a similar enumeration as in
round one of our construction except that we omit hlh(p)+k−1.
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We define a sequence of sets Ym for m < ω and a sequence 〈qm | m < ω〉 of
direct extensions of q where we have only decreased the values of the constraining
functions Hn and the fn. We let Y0 be the set {r � n | r � n _ q � [n, ω) ∈ D} and
q0 = q

Assuming that we have defined qm and Ym for some m < ω, we seek to define
Ym+1 and qm+1. We work with qm+1 first and construct it by diagonalizing over
the enumerations mentioned above by induction on k. We work with some k < ω

and at each stage in the diagonalization we work with some ~g,~h and ~ν (note that

the ~h is shorter this time). By induction, we have a direct extension q̂ of qm and

we ask if there are an extension ~f of 〈f q̂n | n < lh(q) + k〉 and an extension h of

Hqm

lh(qm)+k−1(πmc(aqmn )0(νk−1)) such that q̂ � (lh(qm) + k) strengthened by ~g, ~f and

h is in Ym. If there is then we update the f q̂n’s using ~f and the relevant constraining
function in q̂ to return h on the relevant coordinate.

Again there is no issue at limit stages since we may assume that there are just
ρ+ lh(qm)+k+2 many ν’s which project to a given ρ and the contraining functions at
ρ take values in ρ+ lh(qm)+k+4-closd forcing. Further, the forcing in the f -parts is
κ+-closed. We let qm+1 be a lower bound for the construction.

We define

Ym+1 ={r � n | r ∈ P ∗, lh(r) = n and (∃g ≤ gqm+1
n )(∃A ∈ Enmc(aqn))

(∀ν ∈ A) if ρ = π
mc(a

qm+1
n )0

(ν) then

r � n _ (ρ, (aq
m+1

n , Aq
m+1

n , fqm+1
n ) _ ν, g,Hqm+1

n (ρ)) ∈ Ym}
We note that Ym+1 is closed under strengthening the f , g and h parts of r � n.

At this point it is not clear that we can meet the challenge of getting lower parts
in to the Ym. We only know that if we manage to succeed, then we did not need to
decrease the topmost collapsing condition nor the f -part below the length of the
condition.

We choose a condition qω below each qm. In the third round of the construction
we wish to capture the g parts which witness membership in each Ym. It is not
hard to show that we can find qω+1 ≤ qω such that for all m and for all r ≤ qω+1

of length n if r � n ∈ Ym and this is witnessed by some g ≤ g
qω+1
n , then it is also

witnessed by g
qω+1
n . This is accomplished by another diagonalization very similar

to the first round of the construction.
In the fourth and final round of the construction we define measure one sets

which capture membership (and non-membership) of each r � n in each Ym. To do
so we need a claim.

Claim 1.5. Let n,m < ω and r ∈ P ∗ be a condition of length n. If r � n /∈ Ym+1,
then {ν < κn | for all g ≤ g

qm+1
n setting ρ = πmc(aqn)0(ν) if sup(rng(g)) < ρ, then

r � n _ (ρ, (aq
m+1

n , Aq
m+1

n , f
qm+1
n ) _ ν, g,H

qm+1
n (ρ)) /∈ Ym} ∈ Enmc(aqn).

Assuming r � n /∈ Ym+1, for each g we have a measure one set Ag in Enmc(aqn)

such that for all ν ∈ Ag, the natural way of extending r � n by ν is not a member
of Ym. It follows that the set A = {ν | for all g, if sup rng(g) < πmc(aqn)0(ν), then
ν ∈ Ag} ∈ Enmc(aqn). The set A is the one required for the claim.

Let Sn be the set of 〈(ρk, gk, hk) | k < n which satisfy (1) and (2) in the definition
of P ∗. To make a given s ∈ Sn an initial segment of a condition in P ∗ we only need
to add a sequence of f parts. For each s ∈ Sn and m < ω, we let As,m witness that
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s⊕ 〈fqω+1

k | k < n〉 ∈ Ym if possible and otherwise we let it be the measure one set
witnessing the previous claim. We let A∗

n be the intersection of the As,m for s ∈ Sn
and m < ω and we strengthen qω+1 to qω+2 by restricting it’s measure one sets to
〈A∗

n | n < ω〉.
We are now ready to complete the argument. Let r ≤ qω+2 with r ∈ D. Let n∗ =

lh(r)− lh(qω+2) and let p∗ = r � lh(qω+2) _ qω+2 � [lh(qω+2, ω). A straightforward
inductive argument shows that p∗ � lh(qω+2) = r � lh(qω+1) ∈ Yn∗ . Another
inductive argument using round three of the construction shows that every n∗ step
extension of p∗ is in D. �

Let G be (P ∗,≤)-generic and derive D and sequences ~ρ and ~C where D is

Coll(ω1, < ρ0)-generic, ~ρ is the union of the sequences ~ρp for p ∈ G and ~C is

a sequence of generics such that ~C � n is generic for
∏
i<n Coll(ρ+i+4

i , < κi) ×
Coll(κ+i+8

i , < ρi+1).

Corollary 1.6. If X is a bounded subset of κ in V [G], then X ∈ V [D× ~C � n] for
some n < ω.

Corollary 1.7. In V [G], κ = ℵω and κ+ = ℵω+1.

It is not hard to see that we have added κ++ ω-sequences to κ. So we are finished
if we can show that κ++ is preserved in the extension by (P ∗,→) which is induced
by G. To do this we prove the following lemma.

Lemma 1.8. (P ∗,→) has the κ++-cc.

The proof is a fairly straight forward combination of the fact that (P,→) has
the κ++-cc and so do the collapsing functions when viewed as a large product. The
following claim is standard. Here we use in for the ultrapower map derived from
En0.

Claim 1.9.
∏
n<ω Coll(κ+n+4

n , < in(κn))Ult(V,En0) × Coll(κ+n+8
n , < κn+1) has the

κ++-cc

Proof of Lemma 1.8. Let 〈pα | α < κ++〉 be a sequence of elements of P ∗. We may
assume that for all α, β < κ++,

(1) σ(pα) and σ(pβ) are compatible in the → ordering on P ,
(2) pα and pβ have the same length and
(3) for all n < lh(pα), gpαn and g

pβ
n , and hpαn and h

pβ
n are compatible.

The proof is complete by noticing that the collapsing conditions above the common
length of the conditions comes from a poset which is subsumed by the product from
the previous claim. �
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