Welcome back to MAT137- Section L5101

- Before next class:
 - Watch videos 2.10, 2.11

Let's get started!!

Today's videos: 2.7, 2.8, 2.9 Today's topic: The formal definition of limit Any question from previous class?

Infinite limits - 2

Which one(s) is the definition of $\lim_{x\to a} f(x) = \infty$?

- 1. $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$
- 2. $\forall M \in \mathbb{Z}, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$
- 3. $\forall M > 0, \exists \delta > 0$ s.t. $0 < |x a| < \delta \implies f(x) > M$
- 4. $\forall M > 5, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) > M$
- 5. $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies f(x) \ge M$

6. $\forall M < 10, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies f(x) \ge M$

Related implications

Let $a \in \mathbb{R}$. Let f be a function. Assume we know $0 < |x - a| < 0.1 \implies f(x) > 100$

1. Which values of $M \in \mathbb{R}$ satisfy ... ?

$$0 < |x-a| < 0.1 \implies f(x) > M$$

Related implications

Let $a \in \mathbb{R}$. Let f be a function. Assume we know $0 < |x - a| < 0.1 \implies f(x) > 100$

1. Which values of $M \in \mathbb{R}$ satisfy ... ?

$$0 < |x - a| < 0.1 \implies f(x) > M$$

2. Which values of $\delta > 0$ satisfy ... ?

$$0 < |x - a| < \delta \implies f(x) > 100$$

Let f be a function with domain \mathbb{R} . Write the negation of the statement:

IF
$$2 < x < 4$$
, THEN $1 < f(x) < 3$.

Existence

Write down the formal definition of the following statements:

1.
$$\lim_{x\to a} f(x) = L$$

- 2. $\lim_{x \to a} f(x)$ exists
- 3. $\lim_{x \to a} f(x)$ does not exist

Implications

Suppose you know:

1. If
$$|x - a| < 2$$
, then A is true.

2. If |x - a| < 5, then *B* is true.

What condition do you need to guarantee both A and B are true?

Implications

Suppose you know:

- 1. If |x a| < 2, then A is true.
- 2. If |x a| < 5, then B is true.

What condition do you need to guarantee both A and B are true?

Suppose you know:

- 1. If x > 100, then A is true.
- 2. If x > 1000, then B is true.

What condition do you need to guarantee both A and B are true?

Preparation: choosing deltas

1. Find a value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 1.$$

2. Find *all* values of $\delta > 0$ such that

$$|x-3|<\delta\implies |5x-15|<1.$$

3. Find a value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 0.1.$$

4. Let us fix $\varepsilon > 0$. Find a value of $\delta > 0$ such that

$$|x-3|<\delta\implies |5x-15|<\varepsilon.$$

What is wrong with this "proof"?

Prove that

$$\lim_{x\to 3}(5x+1)=16$$

"Proof:"

Let $\varepsilon > 0$. WTS $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $0 < |x - 3| < \delta \implies |(5x + 1) - (16)| < \varepsilon$ $|(5x + 1) - (16)| < \varepsilon \iff |5x + 15| < \varepsilon$ $\iff 5|x + 3| < \varepsilon \implies \delta = \frac{\varepsilon}{3}$

Your first $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

(1)

Your first $\varepsilon-\delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

(1)

directly from the definition.

1. Write down the formal definition of the statement (1).

Your first $\varepsilon-\delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

(1)

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.

Your first $\varepsilon-\delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

(1)

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Write down a complete formal proof.

Goal

We want to prove that

$$\lim_{x\to 0} \left(x^3 + x^2 \right) = 0$$

(2)

Goal

We want to prove that

$$\lim_{x\to 0} \left(x^3 + x^2 \right) = 0$$

(2)

directly from the definition.

Write down the formal definition of the statement (2).

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

- Write down the formal definition of the statement (2).
- 2. Write down what the structure of the formal proof should be, without filling the details.

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0 \tag{2}$$

- Write down the formal definition of the statement (2).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Rough work: What is δ ?

Goal

We want to prove that

$$\lim_{x \to 0} (x^3 + x^2) = 0$$
 (2)

- Write down the formal definition of the statement (2).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Rough work: What is δ ?
- 4. Write down a complete formal proof.

Is this proof correct?

Claim:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x| < \delta \implies |x^3 + x^2| < \varepsilon.$$

Proof:

• Let
$$\varepsilon > 0$$
.
• Take $\delta = \sqrt{\frac{\varepsilon}{|x+1|}}$.
• Let $x \in \mathbb{R}$. Assume $0 < |x| < \delta$. Then
 $|x^3+x^2| = x^2|x+1| < \delta^2|x+1| = \frac{\varepsilon}{|x+1|}|x+1| = \varepsilon$.
• I have proven that $|x^3 + x^2| < \varepsilon$.