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Abstract: In this paper we further develop a general theory of metastable states re-
sulting from perturbation of unstable eigenvalues. We apply this theory to many-body
Schrödinger operators and to the problem of quasiclassical tunneling.

1. Introduction

Though the notion of quantum resonance is one of the central notions in physics, the
mathematical theory of this phenomenon is still in its early stages. Usually, the resonance
is defined in terms of poles of theS-matrix or Green’s function, bumps in the scattering
cross-section, or solutions of the Schr¨odinger equation with certain boundary conditions
at infinity, while its physical picture is that of a metastable state. It is the latter picture
that still is very poorly understood and to which our paper aims to make its modest
contribution.

We consider in this paper a self-adjoint operatorH0 on a Hilbert-spaceH, such that
H0 has a (possibly degenerate) eigenvalueE0 which is embedded in the continuous
spectrum ofH0. We perturbH0 by a symmetric operatorW such that the operator
H ≡ H0 +W is self-adjoint, and study the Schr¨odinger evolution governed byH:

i∂tψ = Hψ. (1.1)

We assume that initial conditions are spectrally localized (with respect toH) in a neigh-
bourhood,1, ofE0:

ψ0 ≡ ψ|t=0 ∈ RanE1(H). (1.2)

Here,E1(λ) is the characteristic function of an interval1.
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One expects that the eigenvalueE0 of H0 is unstable under the perturbationW , for
W sufficiently small. Our goal is to understand how this instability manifests itself on
the evolution given by (1.1)–(1.2).

An important additional structure we need is given by a self-adjoint operatorA
on H, which measures the degree oflocalizationof vectors fromH. Namely, vectors
in the domain of< A >α≡ (1 + |A|2)α/2 for α sufficiently large are said to bewell
localized. In other words, by localization ofψ ∈ H, we mean its localization in the
spectral representation ofA. An orbit ψ(t) ∈ H is calleddispersive, or locally decay-
ing, if ||<A>−α ψ(t)||H vanishes ast → ∞. An obvious example of an operatorA is
the coordinate,x (or more precisely,|x|), if H is anL2-space of functions ofx. How-
ever, sometimes other choices are more convenient, especially the generator of dilation
transformations.

LetP be the orthogonal projector ofH0 onto Null(H0 −E0),P = 11−P , and letH
be the reduced HamiltonianH = PHP . We measure the smallness of the perturbation
W by the parameterκ ≡ || <A>α WP ||. We show thatψ can be written in the form

ψ(t) = ψres(t) + ψdisp(t), (1.3)

whereψres(t) = (11+O(κ))Pψ(t),ψdisp(t) is dispersive, i.e.||<A>−α ψdisp(t)||H → 0
ast → +∞, and

Pψ(t) = e−iλtPψ(0) +O(κ1−4β(t + 1)−β), (1.4)

for some bounded operatorλ satisfying

Reλ = E0P + O(κ) and Imλ = −0 + O(κ3), (1.5)

where0 = π〈WPδ(H − E0)PW 〉P > 0, and we used the notation〈A〉P ≡ PAP �
Ran P for an operatorA. The delta-function is defined in (A.24).

Equations (1.3)–(1.4) paint the following picture of the resonance behaviour (see
Remark 1 of Sect. 2.2 for a technical discussion). A system which is initially localized
in a small spectral interval around an unstable eigenvalue radiates energy/probability to
infinity, approaches the unstable unperturbed state, stays near it for a period of time of
order 1/0, but then eventually loses all the probability to infinity. The decay law (1.5)
is given by the celebrated Fermi Golden Rule.

We apply the result above to Schr¨odinger operators and in particular toN -body
systems and to the problem of tunneling.

Remarks.1. Equations (1.3)–(1.5) imply thatH has no eigenvalues in the interval1,
i.e. that the eigenvalueE0 of H0 is unstable under the perturbationW , and that no new
eigenvalues emerge. If one is interested in this result alone, a stationary approach would
give a simpler proof (cf. [AHS, Sig3] which contain results in this direction).

2. The perturbation parameterκ can be small even whenW is large. Exactly this happens
in the tunneling resonance problem. In this caseW is large but localized in a domain in
whichP is very small. Our result establishes a relation between the tunneling resonances
and the Fermi Golden Rule not observed previously.

3. The bounded operatorλ describes theresonancesofH splitting out of the eigenvalue
E0 of H0 to the orderO(κ3). One can extend the proof of (1.3)–(1.5) in order to detect
the resonance behaviour and obtainresonances to an arbitrary order. This way, one can
replace the condition0 > 0 by the condition which essentially states thatthe imaginary
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part of the resonance in question does not vanish at some order(see discussions after
Eq. (1.11) and in Sect. 3.1).

4. The assumption0 > 0 is satisfied generically for one-body Schr¨odinger operators
[AHS]. The same is expected to hold in a much more general context. Under stronger
direct assumptions onH this assumption can be essentially removed (see Remark 3 and
discussions in Sects. 2.1–2.3 and 3.1).

Strategy.The key tool used in the proof is a linear variant of the Liapunov-Schmidt
projection method in the theory of stable and unstable manifolds, or time-dependent
variant of the Feshbach method of perturbation theory. Namely we project Eq. (1.1)
along the subspaces RanP and RanP to obtain the new equations

i∂tPψ = (E0 + 〈W 〉P )Pψ + PWPψ, (1.6)

and

i∂tPψ =HPψ +PWPψ. (1.7)

We will not use the second equation in an essential way; instead, we remark the following:
in order to controlψ ≡ Pψ uniformly in κ (or W ), we would like to use a local
decay estimate fore−iHtψ(0). The latter however does not hold for arbitrary initial
conditionsψ0 ≡ ψ(0), but in general only for initial conditions from certain spectral
intervals with respect toH, see Condition (A5) and Sect. 4. Now, even ifψ0 is from
an appropriate spectral interval forH, the initial conditionψ0 may not be so forH. To
surmount this problem, we observe that sinceH is very close toPHP +PHP and since
ψ0 ∈ RanE1(H), the portion ofψ0 orthogonal to Rang1′ (H) is very small. Here,1′

is an interval containing1, andg1′ (λ) is a smoothed out characteristic function of the
interval1′ (in particular,g1′ (λ) = 1,λ ∈ 1′). So we can expressψ in terms of the state

ψd ≡ g1′ (H)ψ (1.8)

anda. This ingenious idea was used first by [SW3]. It yields the following representation
forψ:

ψ = B′Pψ + (11 +B′)ψd, (1.9)

whereB′ = O(κ) (i.e.B′ is a bounded operator with norm||B′|| ≤ Cκ). Sinceψ =
Pψ0 +ψ, the full solution is of the form (1.3) withψres(t) = BPψ(t) andψdisp = Bψd,
whereB = 11 +B′ = 11 +O(κ).

With Eqs. (1.6) and (1.8)−(1.9) in place, the stage for analysis is set. The component
ψd satisfies the local decay property uniformly inκbyAssumption (A4) which is verified
for a variety of systems. One important step must be made though, before we embark
on estimations ofPψ(t) as a solution to Eq. (1.6): we iterate Eqs. (1.6) and (1.7) (or the
resulting equation forψd). This is the only place where Eq. (1.7) is used. The iteration
is a rather subtle affair and it takes us to the equation

i∂tPψ = λPψ + f, (1.10)

whereλ is of the form (1.5) andf satisfies the estimate

r(t) ≡ −i
∫ t

0
e−iλ(t−s)f (s)ds = O(κ), t ≥ 0. (1.11)
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The purpose of this iteration is to pick up the leading imaginary term in the bounded
operatorλ multiplying the functionPψ(t). This leading term is of the second order by
Assumption (A5). As a result one needs only one iteration. In general, one should iterate
until such a term appears (see discussion in Sect. 3.1). In that case the bounded operator
λ yields the resonances ofH generated by the perturbation ofE0 to a higher order.
Equations (1.10)–(1.11) as well as a priori estimates for the dispersive partψd form a
foundation of the proof of the result outlined above.

In the analysis above, RanP plays the role of a stable manifold, so the function
ψres(t) describes the motion along this manifold and the componentψ is expected to
decay, at least locally. (This local decay or radiation to infinity differentiates between
infinite and finite dimensional dynamical systems.) However, there are two major dif-
ferences with the standard case. The first one pertains to the pecularity of the resonance
problem: The stable manifold is not really stable. It behaves as a stable manifold for long
time intervals – the life time of the resonance in question – but eventually it disintegrates
itself. The second difference is due to the fact that our problem is linear. This allows us
to seeka priori estimates for the dispersive partψ, rather than to use the equation for it,
Eq. (1.7).

History. Since the early days of quantum physics, the resonance phenomena occupied
a central place (see e.g. [BW,KP,S,WW], and [LL] for a textbook discussion). The
mathematical theory of resonances could probably be traced to the work of V. Weisskopf
and E. Wigner [WW]; in its modern form, it was laid down by B. Simon [Sim1] who
used the theory of dilation analytic Hamiltonians due to J. Aguilar and J. M. Combes
and E. Balslev and J. M. Combes ([AC, BC]). This approach was further developed in
[Sim2, Sig1, Hun2, Ger, HeSj, HM]. Details and extensive references can be found in
[HiSig]. It requires the potential in question to have some analyticity properties at least
in a neighbourhood of infinity.A theory dispensing with the latter condition was initiated
in [Ort].

So far the theory developed was a stationary one, despite the fact that the physical
picture (but not the physical definitions!) was that of a metastable state. The time-
dependent theory was initiated in works of E. Skibsted and W. Hunziker ([Sk1,2, Hu2]),
and a space-time and the phase-space-time and variational analysis was given in [GS]
and [PF], respectively. A new powerful approach was suggested by A. Soffer and M.
Weinstein [SW3], who also obtained a rather detailed space-time description of evolution
of metastable (resonance) states in the one-body Schr¨odinger case and for a Schr¨odinger
particle coupled to a massive quantum field. Our paper generalizes the result of [SW3] to
many-body Schr¨odinger operators (and degenerate eigenvalues). Besides we also treat
the case of quasiclassical resonances, not considered in [SW3]. Though our approach
follows the same general line as that of [SW3], we had to introduce some essential
changes right at the beginning in order to make it applicable to a considerably wider
class of systems.

The approach outlined above was introduced in [SW1] (see also [SW2] and [BP]).
The latter work was further improved and coached in terms of the stable-unstable mani-
fold theory in [PW]. This approach is in fact what is known in physics as the (Feshbach)
projection method (with the projection operatorP ). It is usually applied to the stationary
Schrödinger equation (H − E)ψ = 0, while we apply it to the Schr¨odinger equation
(H− i∂t)ψ = 0. It serves also as a starting point to a renormalization group construction
in a recent work [BFS1-3].

Notation.We use the following notation besides the one introduced above:E1(λ) denotes
the characteristic function of an interval1, so thatE1(H) is the spectral projector of
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H corresponding to the interval1. The length of1 is written as|1|. A smoothened
characteristic function of an open bounded interval1 ⊂ R is denoted asg1, i.e.g1 ∈
C∞

0 (11), where11 is a slightly bigger interval than1, andg1(λ) = 1 on1. We set
g1 ≡ 1 − g1.

The norm in the HilbertspaceH is denoted as||·||H , and〈·, ·〉 is its inner product.
The expectation value of an operatorB in the stateψ is written as〈B〉ψ ≡ 〈ψ,Bψ〉.
Moreover,〈B〉P stands for the operatorPBP � RanP on the space RanP .

The domain of an (unbounded) operatorA on H is written asD(A). For t ∈ R, let
<t>≡ (1 + t2)1/2, and<A>= (1 +A∗A)1/2, whereA∗ denotes the adjoint. We also let
ReA = (A +A∗)/2, and ImA = (A−A∗)/2.

For a self-adjoint operatorH, we setδ(H−λ) = 1
π Im(H−λ− i0)−1, and P.V.(H−

λ)−1 = Re(H−λ−i0)−1, where the r.h.s. are assumed to be defined between appropriate
Banach spaces.

LetL(H) be the space of bounded linear operators onH with the standard norm|| · ||.
For a family{Bs rbrace of operators inL(H) depending on the parameters ≥ 0, we
writeBs = O(s) if ||Bs|| ≤ Cs, whereC is a constant independent ofs. For a complex-
valued functionf (s), f (s) = O(s) means|f (s)| ≤ Cs and forφs ∈ H,φs = O(s) means
||φs||H = O(s).

Finally, for notational convenience,C will denote a generic strictly positive constant
whose value can vary from expression to expression (C is allowed to depend onα, β, |1|,
see below, but not onκ or t).

2. Main Results

2.1. Assumptions.We will work in the setting presented above, and where dim RanP ≤
∞. The operatorsH0 andH are assumed to be self-adjoint on the same domain, andW
to be symmetric. We also assume that there is a self-adjoint operatorA and a number
α > 2 such that:

(A1) || <A>α P || < ∞,
(A2) the perturbationW satisfiesκ ≡ || <A>α WP || < ∞,
(A3) the multi-commutatorsad(k)

A (H) areH−bounded, uniformly inW , k = 1, . . . , n,
wheren > α + 1,

(A4) the following local decay estimate holds for allφ ∈ D(<A>α) andt ≥ 0:

||<A>−α e−iHtg1′ (H)Pφ||H ≤ C <t>−α ||<A>α Pφ||H , (2.1)

for some constantC > 0 independent ofW ,
(A5) the Fermi Golden Rule condition holds forE0 in the sense that there is aC0 > 0

such that the bounded, nonnegative operator

0 ≡ π〈Wδ(H − E0)PW 〉P
satisfies:

0 ≥ C0κ
2. (2.2)

Remarks.1. (A1)–(A3) are easily verified in the applications (see Sect. 2.3).

2. The uniformity clause in (A3) and (A4) is a restriction on the class ofW ’s allowed
for a givenH0.
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3. In Sect. 4, we derive Condition (A4) from the Mourre estimate. It is much easier to
check the latter, as we demonstrate in examples below.

4. It is shown in the appendix that0 is well defined and satisfies||0|| ≤ Cκ2 (see the
remark after (A.24)). Hence (A5) gives

C0κ
2 ≤ ||0|| ≤ Cκ2. (2.3)

5. If the Mourre estimate holds then one can show (see e.g. [Sig2]) that0 = γκ2+O(κ7/3),
whereγ = π〈Uδ(H0 − E0)PU〉P , andU = W/κ.

6. Condition (A5), or its more precise form given in Remark 5, is conjectured to hold
generically. For a more detailed discussion in the case of Schr¨odinger operators see
Paragraph 2.3. In fact, Condition (A5) can be removed at the expense of requiring a
largerα in Conditions (A1)–(A4) and a lengthier proof (see discussion in Sect. 3.1).

7. The smoothness Condition (A3) can be thought of as aCn(R) property of the family
H(θ) = U (θ)−1HU (θ), whereU (θ) = exp(iθA), the dilation group.

2.2. Abstract result.We present our main result in the setting of a general Hilbert-space
(in Theorem 2.1). We treat the case of Schr¨odinger operators in Sect. 2.3.

Theorem 2.1. Letα > 2 and0 ≤ β < min{1/2, α − 2} and letψ be the solution of
i∂tψ = Hψ, with initial conditionψ0 ∈ RanE1(H) ∩ D(<A>α). Then there exists a
constantκ0 (depending onα, β and|1|) such that forκ < κ0 we have the expansion:

ψ(t) = (11 + O(κ))Pψ(t) + ψdisp(t), (2.4)

whereψdisp(t) is a dispersive wave satisfying fort ≥ 0:

||<A>−α ψdisp(t)||H ≤ C
(||<A>α Pψ0||H <t>−α +κ1−2β <t>−β) , (2.5)

andPψ(t) satisfies fort ≥ 0:

Pψ(t) = e−iλtPψ0 + O(κ1−4β <t>−β). (2.6)

Hereλ is a bounded linear operator onRanP satisfying

Reλ = E0P + PWP − PW
(
P.V.(H − E0)−1

)
PWP + O(κ3), (2.7)

and

Im λ = −0 + O(κ3). (2.8)

The terms on the r.h.s. of (2.7) and (2.8) are well defined.

Corollary 2.2. Under the assumptions of Theorem 2.1,H has no eigenvalues in the
interval1.

Remarks.1. Equations (2.4)–(2.8) imply that though any orbitψ(t) starting atψ0 ∈
RanE1(H) is dispersive (i.e. locally decaying), for‖Pψ0‖H small and for anyR > 0,
the stateχ|A|≤R

ψ(t) is close to the “stationary” stateχ|A|≤R
e−iλtPψ0 in a time interval

of the order1
κ ln(κ−1).

2. Our analysis yields a more detailed information aboutPψ(t) andψdisp(t) than the
one given in Theorem 2.1. The dispersive wave satisfies
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||<A>−α ψdisp(t)||H ≤ C||<A>α Pψ0||H (<t>−α + <t>−β κ2−2β)

+C||Pψ0||H <t>−β κ1−2β .

SetPψ(t) = e−iλtPψ(0) + r(t). Then we have in particular

||r(t)||H ≤ C
(||<A>α Pψ0||H κ1−2β + ||Pψ0||H κ1−4β

)
<t>−β . (2.9)

3. There are various versions of Theorem 2.1 in which the conditionψ0 ∈ RanE1(H)∩
D(〈A〉α) is either relaxed or modified (e.g. toψ0 ∈ Ran P ).

2.3. Schr¨odinger operators. In this section, we choose our Hilbert-space to beH =
L2(X) ≡ L2 (with norm ||·||2 ), whereX is a finite dimensional inner product space,
the configuration space of a system in question. The Hamiltonian is given by

H0 = −1 + V, (2.10)

where1 is the Laplacian onX, andV is a real function onX called the potential. Our
choice of the operatorA is the dilation generator

A =
1
2

(x · p + p · x),

wherep = −i∇, and the dot product is a coupling ofX andX ′. We assume here that
W = κ′U , whereκ′ is a real number, andU : X → R, dim RanP < ∞. Setting
κ ≡ || <A>α WP || as before, we haveκ = κ′|| <A>α UP ||, andκ → 0 is equivalent
to κ′ → 0, provided|| <A>α UP || < ∞ (see (2.11)). Making the perturbation small
means here to makeκ′ small. We assume that for somen > α + 1:

(S1) V,U ∈ Cn, with bounded derivatives,
(S2) (i) (x · ∇)kV isH-bounded, 0≤ k ≤ n,

(ii) (x · ∇)kU isH-bounded, 0≤ k ≤ n,
(S3) there exists a neighbourhood11 of E0 such that

E11(H0)i[H0, A]E11(H0) ≥ θ1E11(H0) +K,

whereθ1 > 0 andK is a compact operator onL2,
(S4) the Fermi Golden Rule Condition holds in the sense that

0 = π(κ′)2〈Uδ(H0 − E0)PU〉P > 0

(0 is positive definite).

Conditions (S2) withk = 0,1 and (S3) imply that the projectionP satisfies the
following two estimates:

|| <A>α UP || < ∞, (2.11)

and for any multi-indicesm1 andm2 with |m1,2| ≤ n:

||xm1pm2P || < ∞. (2.12)

Indeed, proceeding as in [HS1,CFKS], one can show that there is aδ > 0 such that
||eδ|x|P || < ∞. Using then (p2 + V )P = E0P , and Condition (S1), it is easily shown
that||eδ|x|pmP || < ∞, for |m| ≤ n, from which (2.11) and (2.12) follow.
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Remark.In the one-body case (see e.g. the problem of tunneling in Sect. 2.3.2), Condi-
tion (S4) was shown to hold generically at least forE0 simple ([AHS], for more details
see below). The latter is still a conjecture in the many-body case. The only general re-
sults in that case are those of [AHS]. Translated into our context they state, under some
additional conditions, thatδ(H0 − E0) 6= 0 and that, given a many-body Hamiltonian
H0 as above and an open set� ⊂ X (for the definition ofX see Sect. 2.3.1) there is a
real potentialG ∈ C∞

0 (�), s.t.〈Gδ(H − E0)G〉P > 0 at least forE0 simple.

Theorem 2.3. Theorem2.1 holds for the Schr¨odinger operator (2.10) if we replace
Conditions(A1)–(A5) by (S1)–(S4).

The proof of Theorem 2.3 is given in Sect. 5. It consists in showing that the Condi-
tions (S) imply the Conditions (A) in the case of Schr¨odinger operators. The essential
part is to show that starting from the Mourre estimate (S3) forH0, we get a strong Mourre
estimate for the reduced HamiltonianH, see Theorem 4.1, and therefore the local decay
estimate (A4) forH.

2.3.1.N -body systems.ForN -body systems in the physical spaceR
d, the configuration

space is
X = {x = (x1, . . . , xN ) ∈ R

dN |∑mixi = 0}.
Heremi is the mass of particlei. The HamiltonianH0 is a Schr¨odinger operator (2.10)
with V0, anN -body potential:

V0(x) =
∑
i<j

Vij(xi − xj),

where the two-body potentialsVij : R
d → R vanish at infinity. In terms of the two-body

potentials, (S2)(i) means that (x · ∇)kVij is 1-bounded, 0≤ k ≤ n. For example, we
can take (x · ∇)kVij to be Kato-potentials onRd, 0 ≤ k ≤ n. Similarly, (S2)(ii) is
satisfied if (x · ∇)kU are Kato-potentials onRdN , for 0 ≤ k ≤ n.

If E0 is separated from the thresholds ofH0, then E0 is finitely degenerate,
dim RanP < ∞ (see [HS1,CFKS]), and the Mourre estimate holds forH0 andA
if 11 is sufficiently small. Thus we obtained

Corollary 2.4. The conclusion of Theorem 2.1 holds under the assumptions on the
potentials mentioned above, provided thatE0 is separated from the thresholds ofH0,
and if the Fermi Golden Rule Condition holds.

2.3.2. Tunneling in quasiclassical approximation.We consider the following initial
value problem onL2(Rd):

i~∂tψ = Hψ, (2.13)

ψ|t=0 ≡ ψ0 ∈ RanE~1(H), (2.14)

where~ > 0 is considered to be a small parameter, and1 is an interval to be specified,
lying at the bottom of the continuous spectrum ofH, and~1 ≡ {~E|E ∈ 1}. Here
the Schr¨odinger operatorH is given by

H = p2 + V, p = −i~∇, (2.15)

andV is a volcano-shaped bounded potential with a local minimum at the origin, defined
in the Conditions (T) below. We define a reference potentialV0, such that
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(i) V0 isCn(Rd), and such that (x · ∇)kV0 is bounded, 0≤ k ≤ n,
(ii) V0(x) = V (x) in a neighbourhoodN of the origin, and infx∈Rd\N V0(x) > V (0).

We set

H0 = p2 + V0, (2.16)

and thereforeH = H0 + W with W = V − V0. For ~ small enough,H0 has a unique
(normalized) ground-stateϕ0 with energyE0 separated from the continuous spectrum
of H0. LetA ≡ (x · p + p · x)/(2~) andκ ≡ ||<A>α Wϕ0||2 .

We give now conditions on the potentialV , and state then the result of this section,
Theorem 2.5.

(T1) V ≥ 0,V ∈ Cn(Rd), and (x · ∇)kV is bounded, 0≤ k ≤ n,
(T2) V has a non-degenerate local minimum atx = 0 and vanishes as|x| → ∞,
(T3) there is aδ > 0 such that�δ ≡ {x ∈ R

d|V (x) < V (0) + δ} has a connected
component�ext

δ containing∞, on whichV (x) is non-trapping: ∀x ∈ �ext
δ ,

2(V (0) − V (x)) − x · ∇V (x) ≥ θ, for someθ > 0, (2.17)

(T4) the Fermi Golden Rule Condition holds:0 ≡ π〈δ(H − E0)〉PWϕ0
satisfies0 ≥

C0~
pκ2, for somep ≥ 0.

Remarks.1. By non-degeneracy of the local minimum in (T2), we mean that the Hessian
of V at 0 is strictly positive definite.

2. From the harmonic approximation (see e.g. [HiSig], Chapter 11), it follows thatE0 =
V (0)+O(~). Hence for small~, Condition (ii) implies that the classically allowed region
{x ∈ R

d|V0(x) ≤ E0} is compact. This implies thatϕ0 is localized inx exponentially
around the origin:∀ε, ε′ > 0, ∃Cε,ε′ (independent of~) such that

||e(1−ε)ρE0/~ϕ0||2 ≤ Cε,ε′e
ε′/~. (2.18)

Here,ρE0(x) is the geodesic distance betweenx and 0, measured in the Agmon metric
corresponding to the energyE0. The proof of (2.18) is easily obtained e.g. from [HiSig],
Theorem 3.4.

3. SinceE0 = V (0) +O(~), then for small~,W is supported in the classically forbidden
region{x ∈ R

d|V0(x) > E0}. The exponential decay (inx) of ϕ0 implies then that
κ = ||<A>α Wϕ0||2 = O(e−η/~), for someη > 0.

Theorem 2.5. Assume Conditions (T1)–(T4) hold, and let0 ≤ β < min{α − 2,1/2}.
Then there is a~0 > 0 (dependent onα, β, n, |1|, p) such that for~ < ~0, the solution
to (2.13)–(2.14) has the expansion

ψ(t) = a(t)ϕ1 + ψdisp(t), (2.19)

whereϕ1 = ϕ0 +O(κ/~), andψdisp(t) is a dispersive wave satisfying fort ≥ 0:

||<A>−α ψdisp(t)||2 = ||<A>α Pψ0||2O(< t >−α
~

−q)

+O(< t >−β
~

−qκ1−2β), (2.20)

with q, a positive integer depending onα, β, n, p. Moreover,a(t) = 〈ϕ0, ψ(t)〉 satisfies
for t ≥ 0:
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a(t) = e−iλt/~a(0) +O(< t >−β
~

−qκ1−4β), (2.21)

with

Reλ = E0 + 〈W 〉ϕ0 − 〈P.V.(H − E0)−1〉PWϕ0
+O(~−2κ3), (2.22)

Im λ = −π〈δ(H − E0)〉PWϕ0
+O(~−2κ3). (2.23)

We prove Theorem 2.5 in Sect. 6. A general discussion of the quasiclassical
Schrödinger problem and extensive references can be found in [HiSig].

3. Proof of Theorem 2.1

The proof of Theorem 2.1 consists of two main steps. In a first step, we establish dif-
ferential equations forPψ andψd(t) (the latter function is defined in (1.8)), write the
corresponding integral equations, and bring these equations to a convenient form. We do
this in Sect. 3.1. In the second step we use these equations in order to prove the desired
estimates onPψ(t) andψd(t). This is done in Sect. 3.2. Theorem 2.1 is then derived by
observing that

ψ(t) = B (Pψ(t) + ψd(t)) , (3.1)

where the operatorB satisfiesB = 11 +O(κ).

3.1. Differential equations forPψ(t) and ψdisp(t). In this section, we establish the
coupled differential equations forPψ andψd and iterate them in a suitable manner. The
main result here is Eq. (3.13) together with the set of equations (3.14). Projecting (1.1)
onto RanP and RanP yields

i∂tPψ = (E0 + PWP )Pψ + PWPψ, (3.2)

i∂tPψ =HPψ +PWPψ. (3.3)

Recall thatψd = Pdψ, wherePd = g1′ (H)P . To pass fromPψ to ψd, we multiply both
sides of (3.3) byg1′ (H) and get

i∂tψd =Hψd + PdWPψ. (3.4)

Now we expressPψ in (3.2) in terms ofPψ andψd. Notice thatψ0 ∈ RanE1(H), so
thatψ0 = g1(H)ψ0. Henceψ = g1(H)ψ and thereforePψ = Pg1(H)ψ. Introducing
11 = g1′ (H) + g1′ (H) into the last equation yields

Pψ = (g1′ (H) + g1′ (H))Pg1(H)ψ

= g1′ (H)Pg1(H)ψ + g1′ (H)Pψ

= g1′ (H)Pg1(H)Pψ + g1′ (H)Pg1(H)Pψ + Pdψ.

Hence (11 − g1′ (H)Pg1(H))Pψ = g1′ (H)Pg1(H)Pψ + ψd. The following proposition
is proven in the appendix:

Proposition 3.1. g1′ (H)Pg1(H) = O(κ) and consequently, for smallκ, B ≡ (11 −
g1′ (H)Pg1(H))−1 exists as a bounded linear operator onH, and||B|| ≤ C (uniformly
in κ for smallκ).
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We have therefore

Pψ = B′Pψ +Bψd, (3.5)

whereB′ = B−11, andB is defined in Proposition 3.1 above. Remark thatB = 11+O(κ),
andB′ = O(κ). With expression (3.5) forPψ, we get

ψ(t) = BPψ(t) + ψdisp(t), (3.6)

where we defined

ψdisp(t) = Bψd(t). (3.7)

Equation (3.6) shows thatψ is of the form (2.4).
From (3.2) and (3.5), we have the following equation of motion forPψ:

i∂tPψ = λ1Pψ + PWBψd, (3.8)

whereλ1 is a bounded linear operator on RanP :

λ1 = E0 + PWBP. (3.9)

Next, we rewrite Eq. (3.4) in the integral form

ψd(t) = e−iHtψd(0) − i

∫ t

0
e−iH(t−s)PdWPψ(s)ds. (3.10)

The last term can be transformed as follows: pickz ∈ C
+ and integrate by parts in the

following way:

−i
∫ t

0
e−iH(t−s)PdWPψ(s)ds

= −ie−iHt
∫ t

0
ei(H−z)seizsPdWPψ(s)ds

= −(H − z)−1PdWPψ(t) + e−iHt(H − z)−1PdWPψ(0)

+
∫ t

0
e−iH(t−s)(H − z)−1PdW [izPψ(s) + (∂sPψ)(s)] ds.

(3.11)

In order to make the last term on the r.h.s. of (3.11) small, we want to takez to the real
axis. Such a procedure is justified in the first two statements of the proposition to follow.
The third statement of this proposition shows whyz must approach the real axis from
above fort > 0 (the outgoing condition).

Proposition 3.2. For ω ∈ R andφ ∈ H ∩ D(<A>α), we have:

(i) ∀t ≥ 0 :<A>−α e−iHt(H − ω − iε)−1Pdφ converges inH asε ↓ 0. The limit is
denoted as<A>−α e−iHt(H − ω − i0)−1Pdφ.

(ii) The convergence in (i) is uniform int ∈ R+, and thereforet 7→<A>−α e−iHt(H−
ω − i0)−1Pdφ is continuous as a map fromR+ to H.

(iii) ||<A>−α e−iHt(H − ω − i0)−1Pdφ||H ≤ C(t + 1)−α+1||<A>α Pφ||H , ∀t ≥ 0.
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This proposition is proven in the appendix.
Notice that as Imz → 0, the individual terms in (3.11) do not converge inH.

However, settingω = Rez, and using our assumption that<A>α WP is a bounded
operator (see (A2)) and Proposition 3.2, we get forPWB acting on the second term on
the r.h.s. of (3.10):

−i
∫ t

0
PWBe−iH(t−s)PdWPψ(s)ds

= −i
∫ t

0
PWB′e−iH(t−s)PdWPψ(s)ds

−PW (H − ω − i0)−1PdWPψ(t) + PWe−iHt(H − ω − i0)−1PdWPψ(0)

+i
∫ t

0
PWe−iH(t−s)(H − ω − i0)−1PdW (ω − λ1)Pψ(s)ds

−i
∫ t

0
PWe−iH(t−s)(H − ω − i0)−1PdWPWBψd(s)ds,

(3.12)

where the termPW (H−ω− i0)−1PdWPψ(t) and similar ones are well defined. To get
the last two terms, we replaced∂tPψ in (3.11) using (3.8). Expression (3.12) contains
the term of order two inκ that acts onPψ(t).

Let us chooseω ≡ E0, so thatω − λ1 = −PWBP = O(κ). Using (3.8), (3.10)
and (3.12), we get our final version of the equation of motion forPψ:

i∂tPψ = λPψ + f, (3.13)

whereλ ≡ λ1 − PW (H − E0 − i0)−1PdWP , f =
∑5
j=1 fj , and thefj ’s are given by

f1(t) = PWBe−iHtψd(0),

f2(t) = PWe−iHt(H − E0 − i0)−1PdWPψ(0),

f3(t) = −i
∫ t

0
PWe−iH(t−s)(H − E0 − i0)−1PdWPWBPψ(s)ds,

f4(t) = −i
∫ t

0
PWe−iH(t−s)(H − E0 − i0)−1PdWPWBψd(s)ds,

f5(t) = −i
∫ t

0
PWB′e−iH(t−s)PdWPψ(s)ds. (3.14)

The expression forλ is analyzed in

Proposition 3.3. The expansion (2.7)–(2.8) holds forλ.

The proof is given in the appendix.

Discussion.Our proof is based on estimating Eqs. (3.4) and (3.13) (obtained estimates are
then synthesized into the final theorem with the help of Eqs. (3.6)–(3.7)). Equation (3.13)
is a one-iteration of Eq. (3.8). This iteration is needed so that the bounded operator
λ multiplying the vector functionPψ on the r.h.s. of the equation forPψ captures
the leading non-zero term of the imaginary part of the resonance. In our case, due to
Assumption (A5), this term is the second order. That is why we need only one iteration.
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For the leading term of the imaginary part of a higher order (one can show that the leading
term is always of an even order and positive) one should iterate Eq. (3.13) further (n−2
times for ordern). Controlling the resulting terms would require faster time decay of
terms likeWψd(t) which would result in a higher powerα in Conditions (A1)–(A4).

3.2. Estimates ofPψ(t) andψd(t) and proof of Theorem 2.1.In this section, we show the
estimates given in Theorem 2.1. Due toψ = B(Pψ + ψd) (see (3.6), (3.7)) and Lemma
A.1 of the appendix which proves that

||<A>−α Bφ||H ≤ C||<A>−α φ||H , ∀φ ∈ H, (3.15)

and

||<A>−α B′φ||H ≤ Cκ||<A>−α φ||H , ∀φ ∈ H, (3.16)

it suffices to demonstrate appropriate estimates onPψ(t) andψd(t). To this end, write
the integral equations forPψ(t) andψd(t) (cf. (3.13) and (3.9)):

Pψ(t) = e−iλtPψ(0) + r(t),

ψd(t) = e−iHtψd(0) +R(t),

wherer(t) =
∑5
j=1 rj(t), with

rj(t) = −i
∫ t

0
e−iλ(t−s)fj(s)ds, (3.17)

j = 1, . . . ,5, and

R(t) = −i
∫ t

0
e−iH(t−s)PdWPψ(s)ds. (3.18)

The strategy (see [SW3]) is the following: forT > 0 and someβ ≥ 0, introduce the
norms

[r]T = sup
0≤t≤T

(t + 1)β ||r(t)||H (3.19)

and

[R]T = sup
0≤t≤T

(t + 1)β ||<A>−α R(t)||H . (3.20)

Using (3.17) and (3.18), we then show that [r]T ≤ Cκ1−2β , where the constant is
independent ofT ,κ is sufficiently small and 0≤ β < min{1/2, α−2}. TakingT → ∞
gives us the desired result:||r(t)||H ≤ Cκ1−2β(t+1)−β . The corresponding estimate for
||<A>−α ψd(t)||H is obtained similarly. These estimates and Eqs. (3.6), (3.7) and (3.15)
imply the proof of Theorem 2.1.

Ingredients of the estimations.
• The basic tool in the estimations is the local decayAssumption (A4), and its integrated
version given in Proposition 3.2(iii).
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• In order to estimate||e−iλt||, we use the expansion forλ given in Proposition 3.3. We
have

||e−iλt|| ≤ eCκ
3te−C0κ

2t. (3.21)

In order to prove this inequality, we use the differential inequality

d

dt
||e−iλtu||2 = 〈e−iλtu, i(λ∗ − λ)e−iλtu〉

≤ 2 sup(Imλ)||e−iλtu||2,
and the initial condition||e−iλtu|| |t=0 = ||u|| to obtain that||e−iλt|| ≤ ||eIm λt||. (The
latter inequality can also be derived by taking the norm of the Trotter representation
of e−iλt = limn→∞[e−iReλt/neIm λt/n]n.) Using that Imλ = −0 + O(κ3) and that the
spectrum of0 is bounded below byC0κ

2, we arrive at (3.21). Settingγ ≡ C0κ
2/2, we

derive from (3.21) forκ small:

||e−iλt|| ≤ e−γt, t ≥ 0. (3.22)

• We have the following uniform bounds int ≥ 0. a) For 0≤ β ≤ σ:

(t + 1)β
∫ t

0
e−γ(t−s)(s + 1)−σds ≤ C(1 +γ−1−β) ≤ Cκ−2−2β .

If 0 ≤ β ≤ σ − 1 andσ > 1, then the r.h.s. above can be replaced byC(1 + γ−β) ≤
Cκ−2β .
b) Forσ > 1, 0≤ β ≤ σ − 1:

(t + 1)β
∫ t

0
(t− s + 1)−σ(s + 1)−βds ≤ C.

Estimations.We use the above mentioned points and the conditionα−2 ≥ β to estimate
||rj(t)||H , for j = 1, . . . ,5.

1) ||r1(t)||H ≤
∫ t

0
e−γ(t−s)||PWBe−iHsψd(0)||H ds

≤ C||<A>α Pψ0||H κ

∫ t

0
e−γ(t−s)(s + 1)−αds

≤ C||<A>α Pψ0||H κ1−2β(1 + t)−β , t ≥ 0. (3.23)

In the second step, we used (3.15) and the local decay estimate (A4).

2) ||r2(t)||H ≤ C||Pψ0||H κ2
∫ t

0
e−γ(t−s)(s + 1)−α+1ds

≤ C||Pψ0||H κ2−2β(t + 1)−β , t ≥ 0. (3.24)

3) ||r3(t)||H ≤ Cκ3
∫ t

0
e−γ(t−s)

∫ s

0
(s− τ + 1)−α+1||Pψ(τ )||H dτds.

(3.25)
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We split||Pψ(τ )||H as

||Pψ(τ )||H ≤ e−γτ ||Pψ0||H + ||r(τ )||H ≤ e−γτ ||Pψ0||H + [r]T (τ + 1)−β

≤ C(γ−β ||Pψ0||H + [r]T )(τ + 1)−β ,

where we used (γτ )βe−γτ ≤ C, uniformly in γ, τ ≥ 0. So

||r3(t)||H ≤ Cκ3
(
κ−2β ||Pψ0||H + [r]T

) ∫ t

0
e−γ(t−s)(s + 1)−βds

≤ Cκ1−2β
(
κ−2β ||Pψ0||H + [r]T

)
(t + 1)−β . (3.26)

4) ||r4(t)||H ≤ Cκ3
∫ t

0
e−γ(t−s)

∫ s

0
(s− τ + 1)−α+1||<A>−α ψd(τ )||H dτds.

We decompose the last term in the integral as

||<A>−α ψd(τ )||H ≤ ||<A>−α e−iHτψd(0)||H + ||<A>−α R(τ )||H
≤ C(τ + 1)−α||<A>α Pψ0||H + (τ + 1)−β [R]T .

Using this decomposition in the double-integral, we get

||r4(t)||H ≤ C
(||<A>α Pψ0||H κ3−2β + [R]Tκ

1−2β
)

(t + 1)−β . (3.27)

5) ||r5(t)||H ≤ Cκ3
∫ t

0
e−γ(t−s)

∫ s

0
(s− τ + 1)−α||Pψ(τ )||H dτds

≤ Cκ1−2β
(
κ−2β ||Pψ0||H + [r]T

)
(t + 1)−β . (3.28)

Summing (3.23), (3.24), (3.26), (3.27) and (3.28), we find for 0≤ t ≤ T :

(t + 1)β ||r(t)||H ≤ C[r]Tκ
1−2β +C[R]Tκ

1−2β

+C||Pψ0||H κ1−4β +C||<A>α Pψ0||H κ1−2β ,

(3.29)

where the r.h.s. is independent oft. In order to close the estimates, we express [R]T in
terms of [r]T . From (3.18), we get

||<A>−α R(t)||H ≤ Cκ

∫ t

0
(t− s + 1)−α||Pψ(s)||H ds

≤ C
(
κ1−2β ||Pψ0||H + [r]Tκ

)
(t + 1)−β , (3.30)

and thus from (3.20): [R]T ≤ Cκ1−2β ||Pψ0||H +Cκ[r]T . Taking the supremum over
t ∈ [0, T ] in (3.29), and replacing [R]T in (3.29) by the last estimate, we get

[r]T ≤ C[r]Tκ
1−2β +C||Pψ0||H κ1−4β +C||<A>α Pψ0||H κ1−2β . (3.31)

We can now isolate [r]T in this inequality ifβ < 1/2, and forκ small enough. We get

[r]T ≤ C||Pψ0||H κ1−4β +C||<A>α Pψ0||H κ1−2β . (3.32)
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The estimate is uniform inT , and takingT → ∞ yields

||r(t)||H ≤ Cκ1−4β(t + 1)−β . (3.33)

Similarly, using [r]T ≤ Cκ1−4β in (3.30) gives

||<A>−α R(t)||H ≤ Cκ1−2β(t + 1)−β . � (3.34)

The estimates given in Remark 2 after Theorem 2.1 are immediate from (3.30) and (3.32).

4. The Mourre Estimate for Reduced Operators and Local Decay

4.1. The Mourre estimate.In this section, we derive the strict Mourre estimate for the
operatorH ≡ PHP from the Mourre estimate forH0 and use the former to prove the
local decay for the operatorH. We consider perturbationsW of the formW = κ′U ,
whereU is fixed, andκ′ is assumed to be sufficiently small. The main result of this
section is related to some results in [AHS]. It is given in the following

Theorem 4.1. Suppose thatAP and [H0, A](H0 + i)−1 are bounded, and thatAWP ,
W (H0 + i)−1 and[W,A](H0 + i)−1 areO(κ′). Moreover, suppose that there is a neigh-
bourhood11 ofE0 =6 0 such that

E11(H0)i[H0, A]E11(H0) ≥ θ1E11(H0) +K, (4.1)

whereθ1 > 0 andK is a compact operator. Then∀ε > 0 ∃C(ε) > 0 such that

E13(H)i[H,A]E13(H) ≥ (θ1 − ε)E13(H), (4.2)

for any neighbourhood13 ofE0, 13 ⊂ 11, provided|13| ≤ C(ε), andκ′ ≤ C(ε). In
particular, |13| is so small that0 6∈ 13.

Proof. We divide the proof into two steps. In Step 1, we pass from the Mourre estimate for
H0 to astrongMourre estimate forH0, in an appropriate interval12, 0 6∈ 12 ⊂ 11. This
is done by shrinking12 aroundE0 as to make the contribution of the compact operator
K arbitrarily small. In the second step, we pass from the strong Mourre estimate forH0
to one forH.

Step 1.We show that∀ε1 > 0 ∃C1(ε1) > 0 such that

E12(H0)i[H0, A]E12(H0) ≥ (θ1 − ε1)E12(H0) (4.3)

for any neighbourhood12 of E0 such that12 ⊂ 11, and|12| ≤ C1(ε1).
Let 12 be an open set containingE0 but not 0, and12 ⊂ 11. ApplyingPE12(H0) =
E12(H0) to both sides of Eq. (4.1) and usingE11(H0)P = E11(H0)P = E11(H0), we
obtain

E12(H0)i[H0, A]E12(H0) ≥ θ1E12(H0) +E12(H0)KE12(H0), (4.4)

where the last term on the r.h.s. can be made arbitrarily small by shrinking12 around
E0 (H0 has no eigenvalues in a neighbourhood ofE0 if E0 =6 0, thusE12(H0) → 0
strongly; andK is compact). This shows (4.3).
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Step 2.Let now12 satisfy (4.3). We show that∀ε2 > 0 ∃C2(ε2) > 0 such that

E13(H)i[H,A]E13(H) ≥ (θ1 − ε1 − ε2)E13(H), (4.5)

for any neighbourhood13 of E0 such that13 ⊂ 12, providedκ′ ≤ C2(ε2).
We have

[H,A] = [H0, A] + [W,A]. (4.6)

We claim

E12(H)[W,A]E12(H) = O(κ′). (4.7)

To prove the last estimate, write

[W,A] = [W,A] + [PWP,A] − [PW,A] − [WP,A].

The last three commutators areO(κ′) since||AP || < ∞ and||AWP || = O(κ′). The fact
that [W,A](H + i)−1 = O(κ′) follows from the assumption [W,A](H0 + i)−1 = O(κ′)
andW (H0 + i)−1 = O(κ′).

Let us now examineE13(H)i[H0, A]E13(H), where13 is a neighbourhood ofE0,
and13 ⊂ 12. Leth ∈ C∞

0 (12) be such thath = 1 on13. We haveh(H) = h(H0) + I,
where

I ≡ −
∫

(H0 − z)−1W (H − z)−1dh̃(z),

and since [H0, A](H0 + i)−1 is bounded, and bothI and (H0 + i)I areO(κ′), we get

E13(H)i[H0, A]E13(H)

= E13(H)h(H)i[H0, A]h(H)E13(H)

= E13(H)h(H0)i[H0, A]h(H0)E13(H) + O(κ′). (4.8)

Using (4.3) andh2(H0) = h2(H) +O(κ′), we estimate the first term on the r.h.s. of (4.8)
from below by

(θ1 − ε1)E13(H)h2(H0)E13(H) = (θ1 − ε1)E13(H) + O(κ′).

This together with (4.8) implies

E13(H)i[H0, A]E13(H) ≥ (θ1 − ε1)E13(H) + O(κ′). (4.9)

Multiplying (4.6) from both sides byE13(H) and taking into account (4.7) and (4.9)
yields the desired result (4.5). �

4.2. Local decay.

Theorem 4.2. Suppose (A3) and (4.2) hold,||W (H0+i)−1|| < 1, and(H0+i)mad(r)
A (P )

(H0 + i)−m are bounded form = 0,1 andr ≤ n. Then there is an interval1′, E0 ∈
1′ ⊂ 13 such that the local decay estimate (A4) holds.
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Proof. We verify first that we have the upper bound (uniformly inW ):

||ad(k)
A (H)(H + i)−1|| ≤ C, k = 1, . . . , n. (4.10)

Expanding the multicommutator of orderk gives

ad(k)
A (H) = ad(k)

A (PHP ) =
∑

r1+r2+r3=k

Cr1,r2,r3ad
(r1)
A (P )ad(r2)

A (H)ad(r3)
A (P ). (4.11)

Equation (4.10) follows since all the operators

ad(r1)
A (P ), ad(r2)

A (H)(H0 + i)−1, (H0 + i)ad(r3)
A (P )(H0 + i)−1,

and (H0 + i)(H + i)−1 are bounded (the last fact follows from||W (H0 + i)−1|| < 1).
Theorem 4.1 together with (4.10) imply, due to a result of [HSS] that

||<A>−α e−iHtPdφ||H ≤ const. (t + 1)−α||<A>α Pφ||H , t ≥ 0.

The constant depends onH (andκ) only through||ad(k)
A (H)(H + i)−1||, k = 1, . . . , n.

�

5. Proof of Theorem 2.3

• We show (A1), i.e.|| <A>α P || < ∞. From || <A>α P || ≤ C(1 + ||AαP ||), we
see that it is enough to show thatAnP is bounded, for some integern ≥ α. Now

An =

(
1
2

(x · p + p · x)

)n
=

n∑
k=0

ck(x · p)k. (5.1)

But (x · p)kP is bounded by (2.12),k ≤ n: in fact, (x · p)k is a sum of terms of the
form xmpm, wherem ≡ (m1, . . . ,mν) are multi-indices with|m| ≡ ∑ν

j=1mi ≤ k,

xm = xm1
1 · · ·xmν

ν , andpm = (−i)|m|∂m1
x1

· · · ∂mν
xν

, with ν = dimX.

• (A2) follows directly fromW = κ′U and (2.11).
• We show that (A3) is satisfied. From

ad(k)
A (H) = (−2i)kp2 + ik(x · ∇)kV + ik(x · ∇)kW,

W = κ′U and (S2), it is clear thatad(k)
A (H) isH-bounded, uniformly inκ′.

• We show now the local decay estimate (A4). Equation (2.11) shows thatAWP =
O(κ′), and (S2)(ii) withk = 0,1 gives thatW (H0+i)−1 and [W,A](H0+i)−1 areO(κ′).
Boundedness ofAP follows from || <A>α P || < ∞, which we have shown above,
and [H0, A](H0 + i)−1 is bounded by (S2)(i) withk = 1. This together with (S3) shows
that the conditions of Theorem 4.1 are met. Due to Theorem 4.2, it is then enough to
check that (H0 + i)mad(r)

A (P )(H0 + i)−m is bounded forr ≤ n, m = 0,1. We do this
now.

Letm = 0. Clearlyad(0)
A (P ) = P is bounded. Ifr ≥ 1, thenad(r)

A (P ) = ad(r)
(x·p)(P ).

This multi-commutator is a sum of terms of the form (x · p)lP (x · p)m, l + m = r.
It is thus enough to show thatxlplPpmxm is bounded,|l| + |m| ≤ r, r ≤ n. This is
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guaranteed by (2.12). We conclude thatad(r)
A (P ) is bounded (and does not depend on

κ′).
Letm = 1. We write

(H0 + i)ad(r)
A (P )(H0 + i)−1 = ad(r)

A (P ) +
[
H0, ad

(r)
A (P )

]
(H0 + i)−1.

For r = 0, the commutator is zero. Forr > 0, the general term in the commutator is of
the form

H0(x · p)lP (x · p)m − (x · p)lP (x · p)mH0.

BecauseH0 is p2-bounded, it is enough to show thatp2(x · p)lP (x · p)m is bounded for
anyl,m, l +m ≤ n. This is again ensured by (2.12).
• (A5) follows immediately from (S4). �

6. Proof of Theorem 2.5

The proof of Theorem 2.5 is analogous to the proof of Theorem 2.1 for a non-degenerate
eigenvalueE0. In the quasiclassical case however, we must keep track of the parameter
~. The delicate point in the proof of Theorem 2.5 is to show local decay. The latter is
deduced from the quasiclassical Mourre estimate (cf. [G, Gr, HN]). This estimate is of
an independent interest. We begin with it.

6.1. The quasiclassical Mourre estimate.

Theorem 6.1. Assume the non-trapping Condition (T3). Then∀ε > 0, there is aCε > 0
and a neighbourhood11 of E0/~ (with |11| independent of~) such that for~ ≤ Cε,
we have

E~11(H)
i

~
[H,A]E~11(H) ≥ (θ − ε)E~11(H). (6.1)

Proof. We write [H,A] = P [H,A]P +PH[P,A] + [P,A]HP . SincePA andAP are
bounded, andPHP =PWP = O(κ), we getP [H,A]P =P [H,A]P +O(κ). Let11 be
an interval containingE0/~, and of fixed length as specified in Proposition 6.2(i) below,
and such that 0/∈ ~11. Then we haveE~11(H) = E~11(H)P , and hence

E~11(H)
i

~
[H,A]E~11(H) = E~delta1(H)

i

~
[H,A]E~11(H) + O(κ). (6.2)

Now i
~

[H,A] = 2(H −E0) + 2(E0 −V (x)) −x ·∇V (x), so withE0 ≥ V (0), it follows
that

E~11(H)
i

~
[H,A]E~11(H)

≥ E~11(H)
(

2(V (0) − V (x)) − x · ∇V (x)
)
E~11(H) + O(~). (6.3)

Let N be a bounded neighbourhood of 0∈ R
d on whichV (x) = V0(x) (see (ii) in

Paragraph 2.3.2). Let∂N ≡ N\N◦
be the boundary ofN . We putδ1 = minx∈∂N (V (x)−

V (0)), andδ2 = min{δ1, δ}/2, whereδ is given in (T3). The sets�ext
δ , N and�C

δ2
≡

{x ∈ R
d|V (x) ≥ δ2} coverRd.
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We introduce aC∞-decomposition of unity: 1 =χ1(x) + χ2(x) + χ3(x), such that
suppχ1 ⊂ N , suppχ2 ⊂ �ext

δ , suppχ3 ⊂ �C
δ2

. We estimate the r.h.s. of (6.3) on the
supports ofχ1, χ2 andχ3. We have

χ3(x)E~11(H) = O(e−ρ/~), (6.4)

for someρ > 0 (see [Gr], Lemma 6). On the support ofχ1 we haveV (x) = V0(x),
suggesting thatχ1E~11(H) is close toχ1E~11(H0), which in turn is zero if~11 does
not contain any eigenvalues ofH0. We have in fact

Proposition 6.2. There is a neighbourhood~11 ofE0, such that|11| is independent of
~ (|11| depends only on the second derivatives ofV at the origin), and such that

(i) ~11 ∩ σ(H0) = {E0},
(ii) χ1E~11(H) = O(~1/2).

The proof is given below. Putting 1 =χ1(x) + χ2(x) + χ3(x) in front of the last
factorE~11(H) in the r.h.s. of (6.3), we then get, using (6.4), Proposition 6.2 and the
non-trapping Condition (T3):

E~11(H)
i

~
[H,A]E~11(H)

≥ E~11(H) (2(V (0) − V (x)) − x · ∇V (x)) (χ1(x) + χ2(x))E~11(H) + O(~)

≥ E~11(H)
(
θχ2(x) + O(~1/2)

)
E~11(H) + O(~)

≥ E~11(H)
(
θ + O(~1/2)

)
E~11(H). � (6.5)

Proof of Proposition 6.2..(i) is a simple consequence of the harmonic approximation.
In order to prove (ii), we introduce the unitary transformationU onL2(Rd) defined

by

(Uψ)(x) = ~
d/4ψ(~1/2x), ψ ∈ L2(Rd). (6.6)

It is easily seen thatUHU−1 = ~H ′, UH0U−1 = ~H ′
0, where the rescaled Hamiltonians

are given byH ′ = −1 + ~
−1V (~1/2x), andH ′

0 = −1 + ~
−1V0(~1/2x). The spectra

are related asσ(H) = ~σ(H ′), andσ(H0) = ~σ(H ′
0). For a functiong of H, we have

Ug(H)U−1 = g(~H ′). We letH ′ ≡ P ′H ′P ′, whereP ′ = 11 − P ′, P ′ = UPU−1, and
H ′

0 ≡ P ′H ′
0P

′.
Pick nowg ∈ C∞

0 such thatg = 1 on11, andsuppg ∩ σ(H ′
0) = {E0/~} (this is

possible by (i)). Sinceg(H ′
0) = 0, we have

χ1(~1/2x)g(H ′) = χ1(~1/2x)
(
g(H ′) − g(H ′

0)
)

= −χ1(~1/2x)
∫

(H ′
0 − z)−1P ′ 1

~
W (~1/2x)P ′(H ′ − z)−1dg̃ (6.7)

= −χ1(~1/2x)
∫

(H ′
0 − z)−1 1

~
W (~1/2x)P ′(H ′ − z)−1dg̃ + O(~−1κ).

In the last step, we used

P ′ 1
~
W (~1/2x) =

1
~
UPWU−1 = O(~−1κ). (6.8)
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The r.h.s. of (6.7) is now shown to be small by commutingχ1(~1/2x) through the resolvent
(H ′

0 − z)−1 to the right, and usingχ1(~1/2x)W (~1/2x) = 0:

χ1(~1/2x)(H ′
0 − z)−1 1

~
W (~1/2x)

= (H ′
0 − z)−1

[
−1, χ1(~1/2x)

]
(H ′

0 − z)−1 1
~
W (~1/2x)

= −2~
1/2(H ′

0 − z)−1∇ · (∇χ1)(~1/2x)(H ′
0 − z)−1 1

~
W (~1/2x)

+ ~(H ′
0 − z)−1(1χ1)(~1/2x)(H ′

0 − z)−1 1
~
W (~1/2x). (6.9)

Notice that||(H ′
0 − z)−1∇|| ≤ C| Im z|−1, uniformly in ~, and that

(H ′
0 − z)−1 1

~
W (~1/2x)P ′(H ′ − z)−1 = (H ′

0 − z)−1 − (H ′ − z)−1 + O(~−1κ)

= O(| Im z|−1) + O(~−1κ).

We then get from (6.7) and (6.9):

χ1(~1/2x)g(H ′) = O(~1/2). (6.10)

Notice that we were able to use
∫ | Im z|−4dg̃ < C, uniformly in~, since the size of the

support of the functiong is independent of~. From (6.10), it follows that

U−1χ1(~1/2x)g(H ′)U = χ1U−1g(H ′)U = χ1g(H/~) = O(~1/2), (6.11)

and (ii) of Proposition 6.2 is proved by multiplying the last equation byE~11(H). �

6.2. Local decay in the quasiclassical case.

Theorem 6.3. Suppose that the Mourre estimate (6.1) holds, and that Conditions (ii)
and (T1) of Paragraph 2.3.2 are satisfied. Then there is an interval1′ ⊂ 11 such that
the local decay estimate holds:

||<A>−α e−iHt/~g~1′ (H)Pφ||2 ≤ C~
−N <t>−α ||<A>α Pφ||2 , (6.12)

whereN is an integer depending onα, n, andC depends on|1′|, but not on~.

Proof. Via the unitary transformationU (introduced in the previous paragraph), (6.12)
is equivalent to

||<A>−α e−iH′tg1′ (H ′)P ′φ||2 ≤ C~
−N <t>−α ||<A>α P ′φ||2 . (6.13)

Notice thatU commutes withA. From (6.1), we get by conjugating withU :

E11(H ′)i[H ′, A]E11(H ′) ≥ (θ − ε)E11(H ′). (6.14)

We have also

||ad(k)
A (g1′ (H ′))|| ≤ Ck~

−2k. (6.15)

Estimate (6.15) is obtained by using the representation (A.1) and expanding the mul-
ticommutator (as in the proof of Lemma A.1, see (A.12)). From (6.14) and (6.15), we
get (6.13) following [HSS] and keeping track of the dependence on~ in (6.15). �
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6.3. Proof of Theorem 2.5.Remarks 2 and 3 after Conditions (T) in Paragraph 2.3.2
show that (A1) and (A2) are satisfied. Clearly, (A3) is also true by (T1) and Condition
(i); in fact,ad(k)

A (H)(H+i)−1 = O(~k). (A4) holds modulo the factor~−N (see Theorem
6.3), and (A5) holds modulo~p (see (T4)). Theorem 2.5 follows proceeding as in the
proof of Theorem 2.1, and keeping track of~. �

A. Appendix

We first present an operator calculus which we then apply to find some norm-estimates
on the operatorB introduced in Proposition 3.1 that were used at various places in this
work. In the subsequent sections, we give the proofs of Propositions 3.1–3.3.

A.1. Operator calculus.The operator calculus presented below is based on a formula
due to Helffer and Sj¨ostrand [HeSj] with estimates of the remainders given in [IS, HS2]
(see also [D]). We follow [HS2]. LetA be a self-adjoint operator. For a complex-valued
g ∈ C∞

0 (R), we have the representation

g(A) =
∫

(A− z)−1dg̃(z), (A.1)

where the integral is overC, g̃(z) is an almost analytic extension ofg to the complex
plane, and

dg̃(z) ≡ 1
2π

(∂x + i∂y)g̃(z)dxdy. (A.2)

The function ˜g(z) has compact support, and satisfies the estimate∫
|Im(z)|−pd|g̃|(z) < ∞, p > 0. (A.3)

Consequently, the integral (A.1) converges absolutely in norm.
We need also estimates on commutators like [h(H), f (A)], whereH,A are self-

adjoint operators,h ∈ C∞
0 and f ∈ C∞. If the multicommutatorsad(k)

A (H), k =
1, . . . , n areH−bounded, andf satisfies the condition given below, then we have the
following expansion:

[h(H), f (A)] =
n−1∑
k=1

1
k!
f (k)(A)ad(k)

A (h(H)) +Rn, (A.4)

where

Rn =
∫

(A− z)−nad(k)
A (h(H))(A− z)−1df̃ (z).

We then have

||Rn|| ≤ Cn||ad(n)
A (h(H))||

n+2∑
k=0

∫
<x>k−n−1 |f (k)(x)|dx, (A.5)

where<x>≡ (1 + x2)1/2. The condition onf is that the integrals in (A.5) exist. For
details, see [HS2].
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A.2. Proof of Proposition 3.1.We want to show that||g1′ (H)Pg1(H)|| < 1 for smallκ,
thenB is given by the norm-converging Neumann series

B = (11 − g1′ (H)Pg1(H))−1 =
∞∑
n=0

[
g1′ (H)Pg1(H)

]n
. (A.6)

Sinceg1(H) commutes withP , andg1′g1 = 0, we getg1′ (H)Pg1(H) = g1′ (H)P (g1(H)−
g1(H)). Using the second resolvent identity gives

P (g1(H) − g1(H)) = −P
∫

[(H − z)−1 − (H − z)−1]dg̃1(z)

= −
∫

(H − z)−1PWP (H − z)−1dg̃1(z). (A.7)

With ||WP || ≤ κ, we get

||(H − z)−1PWP (H − z)−1|| ≤ κ

|Im(z)|2 .

Now |Im(z)|−2 is integrable with respect tod|g̃1|(z), see (A.3). The integral in (A.7) is
thus bounded byκC(1), where

C(1) =
∫

| Im(z)|−2d|g̃1|(z),

and this shows existence ofB for κ < 1/C(1). Moreover

||B|| ≤
∞∑
n=0

κnC(1)n = (1− κC(1))−1.

This completes the proof of the proposition.�

A.3. Norm estimates on the operatorB.

Lemma A.1. We have∀φ ∈ H:

||<A>−α Bφ||H ≤ C ||<A>−α φ||H , (A.8)

||<A>−α B′φ||H ≤ Cκ||<A>−α φ||H , (A.9)

where the constants are independent ofκ for smallκ.

Proof. Due to (A.6) it is enough to show that

|| <A>−α g1′ (H)Pg1(H) <A>α || ≤ Cκ. (A.10)

Due to (A.7) andg1′ (H)g1(H) = 0, in order to show (A.10), it is enough to show∣∣∣∣
∣∣∣∣
∫
<A>−α (H − z)−1PWP (H − z)−1g1(H) <A>α dg̃1′ (z)

∣∣∣∣
∣∣∣∣ ≤ Cκ. (A.11)

We have||WP || ≤ κ. Introduce<A>α<A>−α betweenP and (H − z)−1 in (A.11)
and notice thatP <A>α is bounded by Condition (A1). The norm of the integrand
in (A.11) is then bounded by
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κ | Im(z)|−1|| <A>−α (H − z)−1g1(H) <A>α ||
≤ κ | Im(z)|−1

(| Im(z)|−1 + || <A>−α [(H − z)−1g1(H), <A>α]||) .
To estimate the commutator in the last expression, notice that∀z /∈ R, x ∈ R, x 7→
(x − z)−1g1(x) ∈ C∞

0 (1). Hence we can apply expansion (A.4)-(A.5) withh(x) ≡
(x − z)−1g1(x), andf (x) =<x>α. Estimate (A.5) implies||Rn|| ≤ C||ad(n)

A ((H −
z)−1g1(H))||. Now

ad(k)
A ((H − z)−1g1(H))

=
∫
ad(k)
A ((H − z)−1(H − ζ)−1)dg̃1(ζ)

=
∑

r1+r2=k

Cr1,r2

∫
ad(r1)
A ((H − z)−1)ad(r2)

A ((H − ζ)−1)dg̃1(ζ),

for some numbersCr1,r2. Therefore
∣∣∣
∣∣∣ad(k)

A ((H − z)−1g1(H))
∣∣∣
∣∣∣

≤ C
∑

r1+r2=k

||ad(r1)
A ((H − z)−1)||

∫
||ad(r2)

A ((H − ζ)−1)||d|g̃1|(ζ) (A.12)

In order to estimate (A.12) further, observe that

||ad(k)
A ((H − z)−1)|| ≤ C

k+1∑
j=2

| Im(z)|−j (A.13)

uniformly in κ for smallκ. The integral in (A.12) is thus bounded by

C

∫ k+1∑
j=2

| Im(ζ)|−jd|g̃1|(ζ) < ∞,

uniformly in κ, for smallκ. So we get

||ad(k)
A ((H − z)−1g1(H))|| ≤ C

k+1∑
j=2

| Im(z)|−j ,

and hence the l.h.s. of (A.12) is indeed bounded by

Cκ

∫ (| Im(z)|−2 + | Im(z)|−n−2
)
d|g̃1′ |(z) ≤ Cκ, (A.14)

uniformly in κ, for smallκ. This shows (A.8). (A.9) is then readily obtained from the
fact thatB′ = g1′ (H)Pg1(H)B and (A.10). �

A.4. Proof of Proposition 3.2.Forφ ∈ D(<A>α), ε ↓ 0, t ≥ 0 fixed, we show that

φε(t) ≡<A>−α e−iHt(H − ω − iε)−1Pdφ

is a Cauchy-net inH. We notice that (forε > 0)
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(H − ω − iε)−1 = i
∫ ∞

0
e−i(H−ω−iε)sds, (A.15)

and so we get, using the first resolvent identity:

(H − ω − iε)−1 − (H − ω − iε′)−1

= −i(ε− ε′)
∫ ∞

0
e−i(H−ω−iε)sds

∫ ∞

0
e−i(H−ω−iε′)σdσ.

Therefore

||φε(t) − φε′ (t)||H
≤ |ε− ε′|

∫ ∞

0
e−εs

∫ ∞

0
e−ε′σ||<A>−α e−iH(t+s+σ)Pdφ||H dσds

≤ |ε− ε′|
∫ ∞

0
ds

∫ ∞

t+s
dτ ||<A>−α e−iHτPdφ||H

≤ |ε− ε′|
∫ ∞

0
ds

∫ ∞

s

dτ (τ + 1)−αC||<A>α φ||H , (A.16)

where we used the local decay (2.1). Sinceα > 2, the double integral in (A.16) is finite,
so we get

||φε(t) − φε′ (t)||H ≤ C|ε− ε′| ||<A>α φ||H , ∀t ≥ 0,

which shows thatφε is a Cauchy-net, and (i) is proved.
To prove (ii), we remark that from (A.16), we have that the limitφ0(t) ≡ limε′↓0 φε′ (t)

exists, andφε → φ0 uniformly in t. Soφ0 is continuous since theφε’s are.
To prove (iii), remark that (t ≥ 0, ε > 0):

e−iHt(H − ω − iε)−1 = ie−iωteεt
∫ ∞

t

e−i(H−ω−iε)sds,

so that we get

||<A>−α e−iHt(H − ω − iε)−1Pdφ||H
≤ eεt

∫ ∞

t

e−εs||<A>−α e−iHsPdφ||H ds

≤ C||<A>α φ||H
∫ ∞

t

(s + 1)−αds

≤ C(t + 1)−α+1||<A>α φ||H .

This completes the proof of the proposition.�

A.5. Proof of Proposition 3.3.The definition ofλ is (see the sentence after (3.13))

λ = E0 + PWP + PWB′P − PW (H − E0 − i0)−1PdWP. (A.17)

We analyze firstPWB′P . SinceB′ = g1′ (H)Pg1(H) + O(κ2), we have

PWB′P = PWg1′ (H)Pg1(H)P + O(κ3). (A.18)
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Usingg1′ (H)g1(H) = 0, we get

g1′ (H)Pg1(H) = g1′ (H)P (g1(H) − g1(H))

= −g1′ (H)P
∫

(H − z)−1WP (H − z)−1dg̃1(z).

Since (H − z)−1 = (H0 − z)−1(11 − W (H − z)−1) andPW andWP areO(κ), we
deduce that

g1′ (H)Pg1(H) = −g1′ (H)P
∫

(H − z)−1(E0 − z)−1dg̃1(z)WP + O(κ2).
(A.19)

Now
(H − z)−1(E0 − z)−1 = −(H − E0)−1

(
(H − z)−1 − (E0 − z)−1

)
,

and therefore

g1′ (H)Pg1(H) = g1′ (H)P (H − E0)−1
(
g1(H) − g1(E0)

)
WP + O(κ2)

= −g1′ (H)P (H − E0)−1WP + O(κ2).

Combining this relation with (A.18), we find

PWB′P = −PWg1′ (H)(H − E0)−1PWP + O(κ3). (A.20)

Notice that the term of order two inκ of PWB′P is self-adjoint.
Let us now examinePW (H − E0 − i0)−1PdWP , which will give the non-zero

anti-self-adjoint contribution of order two inκ,

PW (H − E0 − i0)−1PdWP

= PW (H − E0 − i0)−1PWP − PWg1′ (H)(H − E0)−1PWP. (A.21)

Observe that the first term on the r.h.s. exists, because of Proposition 3.2 (and the
assumption that<A>α WP is bounded). The second term exists sinceE0 /∈ supp(g1′ ).

Hence it follows from (A.17), (A.20) and (A.21) that

λ = E0 + PWP − PW (H − E0 − i0)−1PWP + O(κ3). (A.22)

Notice that sincePW (H −E0 − iε)−1PWP converges strongly asε ↓ 0, then so does
its adjointPW (H − E0 + iε)−1PWP . The proof is now complete if one observes that
the principal value and the delta-function have the representations:

P.V.(H − E0)−1 =
1
2

lim
ε↓0

(
(H − E0 − iε)−1 + (H − E0 + iε)−1

)
(A.23)

and

δ(H − E0) =
1

2πi
lim
ε↓0

(
(H − E0 − iε)−1 − (H − E0 + iε)−1

)
. � (A.24)

Remark.To show||0|| ≤ Cκ2 (see (2.3)), notice that||PW (H−E0 ± i0)−1PdWP || =
O(κ2). This is shown to hold using Proposition 3.2(ii) witht = 0, and the assumption
PW <A>α= O(κ).
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