
Advances in Mathematics 137, 299�395 (1998)

Quantum Electrodynamics of Confined
Nonrelativistic Particles

Volker Bach*

FB Mathematik MA 7-2, TU Berlin; Strasse d. 17 Juni 136, D-10623 Berlin, Germany
E-mail: bach�math.tu-berlin.de

Ju� rg Fro� hlich

Institut fu� r Theoretische Physik; ETH Ho� nggerberg, CH-8093 Zu� rich, Switzerland
E-mail: juerg�itp.phys.ethz.ch

and

Israel Michael Sigal-

Department of Mathematics, University of Toronto, Toronto, M5S 3G3, Canada
E-mail: sigal�math.toronto.edu

Received July 24, 1997; accepted January 3, 1998

We consider a system of finitely many nonrelativistic, quantum mechanical electrons
bound to static nuclei. The electrons are minimally coupled to the quantized electro-
magnetic field; but we impose an ultraviolet cutoff on the electromagnetic vector
potential appearing in covariant derivatives, and the interactions between the
radiation field and electrons localized very far from the nuclei are turned off. For
a class of Hamiltonians we prove exponential localization of bound states, establish
the existence of a ground state, and derive sufficient conditions for its uniqueness.
Furthermore, we show that excited bound states of the unperturbed system become
unstable and turn into resonances when the electrons are coupled to the radiation
field. To this end we develop a novel renormalization transformation which acts
directly on the space of Hamiltonians. � 1998 Academic Press
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I. INTRODUCTION: DESCRIPTION OF THE MATHEMATICAL
PROBLEM AND MAIN RESULTS

In this paper we establish mathematical results concerning physical
phenomena that stood at the origin of quantum theory: that of emission
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and absorption of electromagnetic radiation by systems of nonrelativistic,
quantum mechanical matter, such as atoms and molecules.

Our analysis supplies nonperturbative results supporting the conventional
picture of atoms and molecules interacting with the quantized radiation
field provided by low-order quantum mechanical perturbation theory,
adding mathematical precision to it. In particular, our results concerning
the structure of resonances in the fully interacting theory corresponding to
excited energy levels of an atom or molecule decoupled from the radiation
field are not entirely part of the conventional wisdom in this field and com-
plement the perturbative analysis, first carried out by Bethe [7, 8], of the
Lamb shift.

We conduct our analysis on a model, introduced in Subsection I.2, which
is somewhat simpler than the standard model (see Subsection I.1), but
which nevertheless retains all the physical features of the latter. In fact, we
believe that the infrared problem in our model is more severe than in the
standard one. Indeed, as stipulated by the Pauli-Fierz transformation (see
Subsection I.1) and will be explained in a subsequent publication, the
particular form of the interaction in the standard model (minimal coupling,
leading to gauge invariance) can be used to improve the infrared behaviour
of the interaction considerably and to make it, at least formally, much
more benign than the one considered in this paper. The full standard model
will be considered in a subsequent publication. For general background on
quantum field theory see [17].

I.1. The Standard Model of Nonrelativistic Quantum Electrodynamics

The starting point of our analysis is the following standard model of
nonrelativistic, quantum mechanical matter and radiation. The system
consists of a finite number of nuclei, in the following treated as static, and
of electrons treated as nonrelativistic, quantum mechanical point particles
coupled to the quantized electromagnetic field. First, we describe the radiation
field. Its Hilbert space is given by

Hf #F := �
�

n=0

(L2(R3, d 3k)�C2)}s n. (I.1)

In this formula, the subscript ``f '' refers to photon field. The space Hf =F

is the Fock space of photons. The factor C2 on the r.s. of (I.1) accounts for
the two possible polarizations of photons, and }s denotes a symmetric
tensor product appropriate for Bose�Einstein statistics.
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The transverse modes of the quantized electromagnetic field are described
in terms of the vector potential, A, in the Coulomb gauge: At time t=0,
A is given by

A(x) := :
*=1, 2

1
? |

d 3k

- 2|(k)
[=*(k) e&ik } xa-

*(k)+=*(k)* e ik } xa*(k)], (I.2)

where |(k)=|k| is the energy of a photon of momentum k; =*(k), *=1, 2,
are polarization vectors satisfying

=*(k)* } =+(k)=$*+ , k } =*(k)=0, *, +=1, 2;

and a-
*(k), a*(k) are the usual creation and annihilation operators on F

obeying the canonical commutation relations

[a*
* (k1), a*

+ (k2)]=0, [a*(k1), a-
+(k2)]=$*+ $(k1&k2), (I.3)

where a*=a or a-. The vector potential A and the creation and annihilation
operators are unbounded, operator-valued distributions on F. The space
F contains a unique vector 0, the vacuum vector, with the property that
a*(k)0=0, for all * and k. The free time-evolution of the radiation field is
generated by the Hamiltonian

Hf := :
*=1, 2

| d 3 k|(k) a-
*(k) a*(k). (I.4)

The free time-evolution of the quantized vector potential is given by

A(x, t)=eitHf A(x) e&itHf ,

while the evolution of the free electric and magnetic fields is given by

E(x, t)=
�
�t

A(x, t), B(x, t)={ 7 A(x, t).

Here we use units such that �=c=1, where � is Planck's constant and c
is the velocity of light.

Now we describe a system consisting of N electrons moving in the
electrostatic potential generated by M fixed nuclei of charges Zl e at
positions Rl , l=1,..., M. Its Hamiltonian is given by

Hel(R)= :
N

j=1

1
2m

[_j } (&i% j )]2+:V(x, R), (I.5)
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where m is the mass of an electron, _ j=(_x
j , _y

j , _z
j ), _x

j , _ y
j and _z

j are
the three Pauli matrices acting on the spin space of the j th electron,
:=e2�4?$(137)&1 is the feinstructure constant, and V(x, R)=
�N

j=1 �M
l=1 (&Zl�|xj&Rl | )+�1�i< j�N (1�|xi&xj | ). Here x=(x1 ,..., xN),

R=(R1 ,..., RM), &�M
l=1 Zl: |x&Rl |&1 is the electrostatic potential at x

corresponding to the charge distribution of the nuclei, and :�|xi&xj | is the
repulsive Coulomb potential between the i th and the j th electron. The
subscript ``el'' refers to electrons. This operator acts on the Hilbert space

Hel :=(L2(R3, d 3x)�C2)}a N. (I.6)

Moreover, the factor C2 on the r.h.s. of (I.6) accounts for the spin of
electrons, and � a denotes the anti-symmetric tensor product, in accord-
ance with the Pauli principle.

Now we are ready to describe a sytem composed of N electrons moving
in an electrostatic potential :V(x, R) and interacting with the photon field.
It is described by the Hamiltonian

Hel+f= �
N

j=1

1
2m

[_ j } (&i%j&ejA}(x j))]2+:V(x, R)�1f+1el�Hf ,

(1.7)

acting on the Hilbert space of the total system,

H=Hel�Hf . (I.8)

Here A}(x)=� d 3y }� (x&y) A(y) is the regularized vector potential, where
}� is the Fourier transform of a smooth function, }, with support contained
in the ball [k: |k|�const } :m], The Hamiltonian Hel+f describes the standard
model of Quantum Electrodynamics for nonrelativistic particles. The
smoothing operation applied to the original vector potential operator A(x)
is called the ultraviolet cutoff. It is justified by the fact that the phenomena
we study are nonrelativistic in nature as far as particles are concerned. It
is needed in order for the Hamiltonian to be well-defined.

A simple change of units exhibits the perturbative character of the present
spectral problem. Indeed, we dilate the electron coordinates and photon
momenta independently, (xj , k) [ ('xj , +&1k), employing a suitable unitary
operator, U1 , on H. Upon making the choice 1�2m'2=:�'=+, we obtain

H1 :=+&1U1H U 1*

= :
N

j=1

[_j } (&i%xj
&2?1�2:3�2A}� (:xj))]2

+V(x, '&1R)�1f+1el �Hf , (I.9)
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where }� (k) :=}(+k). This expression suggests to study the operator
+&1U1HU 1* as a perturbation of the operator Hel('&1R)�1f +1el �Hf ,
because :r1�137 is small.

The problem of radiation involves the control of photons at low energies.
The feature of the Hamiltonian which determines whether such a control
is possible is the small |k| behaviour of the coupling function g(k) :=
}� (k)(2|(k))&1�2, showing how strongly the low energy photons are coupled to
the particles. As far as the scaling dimension of the perturbation (see also
Section I.3 below) is concerned, g=const |(k)&1�2, as |k| � 0, is exactly a
borderline case. Some of the results of this paper require that � g2�|2<�
which the standard model for which }� (k) � 1, as |k| � 0, misses by a wisker.
However, on a formal level this problem is removed if we perform a Pauli�
Fierz transformation [34].

From now on we write } for }� . Assuming that the charge distribution of
the nuclei is concentrated around the origin in R3, we unitarily transform
the Hamiltonian H1 in (I.9) by U2 :=exp[&i{A}� (0) } (�N

j=1 xj )]. This unitary
conjugation leaves all terms in H unchanged except for

U2(&i %xj
) U2*=&i %xj

+{A}� (0)

and

U2 a-
*(k) U2*=a-

*(k)+
i{}(k)

? - 2|(k) \ :
N

j=1

=*(k)* } x j+ .

Let H2 :=U2 H1U2*. Choosing { :=2 - ? :3�2 and using that

[_ } (&i%x&{A}� (:x))]2=(&i%x&{A}� (:x))2+{:(%x 7 A}� )(:x),

we obtain

H2=\Hel+4?:3c} \ :
N

j=1

xj+
2

+�1+1�H f

+2 - ? :3�2E}� (0) } \ :
N

j=1

xj++?1�2 :5�2 :
N

j=1

[_j } B}� (:xj )]

+ :
N

j=1

[i4?1�2:3�2 %xj
} [A}� (:xj)&A}� (0)]+4?:3 [A}� (:x j)&A}� (0)]2],

(I.10)

where E}� (x) :=i[Hf , A}� (x)] and B}� (x) :=% 7A}� (x) and

Hel := :
N

j=1

&2j +V(x, '&1R). (I.11)
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Here, c}� =?&2 � }(k)2 d 3k is a cutoff-dependent constant. This expression
shows that the singular behaviour of the coupling function }� (k)(2|(k))&1�2

can be traded for a perturbation growing as |�N
j=1 xj | � �. The latter does

not sound so bad, at least on a conceptual level, since the processes of
radiation we consider in this paper involve bound, and therefore exponen-
tially localized, electrons (see Theorem II.1 below). Note that H2 can be
written as

H2=\Hel+g2c}� \ :
N

j=1

xj+
2

+g2 :
N

j=1

f (:xj)+�1f+1el�Hf+Wg , (I.12)

Wg=gW1+g2 W2 , (I.13)

where g :=2 - ? :3�2, f (x) :=(4�?2) � (}� 2(k) sin2(k } x) d 3k)�|(k), and

W1=| [G1, 0(k)�a-
*(k)+G0, 1(k)�a-

*(k)] dk, (I.14)

W2=| [G2, 0(k, k$)�a-
*(k) a-

*(k$)+G0, 2(k, k$)�a*(k) a*(k$)

+G1, 1(k, k$)�a-
*(k) a*(k$)] dk dk$. (I.15)

Here Gm, n are functions of (k; *) or (k, k$; *, *$), respectively, with values
in the operators on Hel . Comparing (I.12)�(I.15) to (I.10), one easily verifies
that

G1, 0(k, *) :=G0, 1(k, *)*

:=\ }� (k)

? - 2|(k)+ :
N

j=1
{i|(k) =*(k) } xj +(e&i:k } xj&1)

_=*(k) } %xj
+

i:
2

e&i:k } xj [_ j } (k 7 =*(k))]= , (I.16)

G2, 0(k, *; k$, *$) :=G0, 2(k, *; k$, *$)*

:=\ }� (k) }� (k$)

2?2
- |(k) |(k$)+ (=*(k) } =*$(k$))

_ :
N

j=1

[(e&i:k } xj&1)(e&i:k$ } xj&1)], (I.17)

G1, 1(k, *; k$, *$) :=\ }� (k) }� (k$)

?2
- |(k) |(k$)+ (=*(k) } =*$(k$)*)

_ :
N

j=1

[(e&i:k } xj&1)(ei:k$ } xj&1)]. (I.18)
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The Hamiltonian H2 in (I.12) will serve as a starting point and a motiva-
tion in constructing the model treated in this paper. The crucial difference
between our model and H2 is the presence of a spatial cutoff (i.e., a cut off
in the � xj -variable) in the interaction term, Wg . This spares us the trouble
of controlling the large � xj -behaviour of the interactions. A spatial cutoff
in the � xj -variable is superfluous, provided the potential V(x, '&1R)
grows faster than linearly in x at infinity, i.e., V confines the electrons to
the nuclei. While the full model will be treated in a subsequent publication,
we focus in this paper on the resulting simplified model. Because we only
study the interactions between electrons bound to static nuclei and the
quantized radiation field, the large-xj cutoff is not expected to change the
physics.

I.2. Hamiltonians of Quantum Electrodynamics of Nonrelativistic Confined
Particles

In this section, we introduce the model to be treated in this paper. It is
closely related to the standard model described in the last section, given by
the Hamiltonian H2 in Eqns. (I.12)�(I.18). Compared to the latter model,
the crucial difference is that its coupling functions have a better behaviour
for large |xj |. Careful comparison of both models is done in Section I.6.
Moreover, we introduce a few inessential simplifications which serve to
streamline notations and to make the key ideas underlying our analysis
more transparent.

First, we neglect electron spin and replace the photons by scalar particles.
We thus redefine the Hilbert space of the system to be given by

H=Hel�Hf (I.19)

where Hel is L2(X, dx) or a subspace of it,

Hel�L2(X, dx), (I.20)

with X :=R3N, for some N # N, being the particle configuration space. The
Fock space of scalar photons is defined to be

Hf#F := �
�

n=0

L2(R3, d 3k)}s n. (I.21)

We study Hamiltonians of the form

Hg=H0+Wg=Hel�1+1�Hf+Wg , (I.22)

where Hel is a Schro� dinger operator on Hel ,

Hel :=&2x+V(x), (I.23)
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and the photon Hamiltonian, Hf , is now given by

Hf :=| dk |(k) a-(k) a(k) with |(k)=|k|. (I.24)

Here, we write k, instead of k, for vectors k # R3. We adopt this notation
henceforth. The interaction, Wg , is of the form

Wg :=gW1+g2W2, where (I.25)

W1 :=| [G1, 0(k)�a-(k)+G0, 1(k)�a(k)] dk, (I.26)

W2 :=| [G2, 0(k, k$)�a-(k) a-(k$)+G0, 2(k, k$)�a(k) a(k$)

+G1, 1(k, k$)�a-(k) a(k$)] dk dk$, (I.27)

where Gm, n are functions of k or (k, k$), respectively, with values in the
operators on Hel .

Next, before adding further specifications about Wg , we discuss spectral
properties of H0 and the problem of perturbation, Hg when g{0. We
formulate the main questions about mathematical models of radiation, and
we briefly describe our answers to those questions.

We assume that the particle Hamiltonian Hel in (I.23), in the absence of
the radiation field, is selfadjoint and has a standard spectrum, i.e., a conti-
nuum corresponding to the half-axis [7, �), for some 7�0, and discrete
eigenvalues E0 , E1 , ... on the left of (below) the continuum, i.e., E0<E1

< } } } <7 (HVZ Theorem, see e.g. [37]). The eigenvalues, Ej , can, of
course, be degenerate (see Fig. I.1).

The spectrum of Hf consists of a simple eigenvalue at 0 (corresponding
to the vacuum vector, 0 # F) and absolutely continuous spectrum covering
the half-axis [0, �). Consequently, by separation of variables, the unperturbed
Hamiltonian

H0=Hel�1f+1el�Hf , (I.28)

has the same point spectrum as Hel , i.e., [Ej], and the continuum covers
the half-axis [E0 , �) and consists of a union of branches, [Ej , �), starting
at the eigenvalues Ej , and the branch [7, �) (see Fig. I.2).

The crucial fact is that the eigenvalues Ej lie at tips of branches of
continuous spectrum of H0 , i.e., the numbers Ej play a double role as
eigenvalues and as thresholds of continuous spectrum.

The thresholds of continuous spectrum of H0 are the branch points of
the Riemann surface of fu, v(z)=(u | (H0&z)&1 v) , for arbitrary u, v in a
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FIG. I.1. The spectrum of Hel .

certain dense set of H. Figure I.2 describes a particular projection of this
Riemann surface onto the complex energy plane. A different projection is
shown in Fig. I.3 (see Section I.5 for more details).

The eigenfunctions of H0 corresponding to the eigenvalues Ej have the
form �j�0, where �j are the eigenfunctions of Hel corresponding to the
eigenvalues Ej , and 0 is the vacuum in F, Hf 0=0. The fate of these
eigenfunctions and the corresponding eigenvalues is a key concern in the
theory of radiation.

Mathematically, we are faced with a problem of perturbation of eigenvalues
located at thresholds of continuous spectrum. This is the most difficult
situation in perturbation theory. (To our knowledge, it has not been treated
in the literature, yet.) The fact that the eigenvalues [Ej] of the atomic
Hamiltonian Hel are also branch points of continuous spectrum of H0 is due
to the property of photons that their rest mass vanishes, i.e., |(0)=0. (From
this it follows that the continuous spectrum of Hf covers the entire half-axis
[0, �), and thus [Ej , �) is a branch of continuous spectrum of H0 .) The
ensuing difficulties in developing a convergent perturbation theory for the
eigenvalues Ej are an aspect of the celebrated infrared problem of quantum
electrodynamics. The fact that the number of photons is neither conserved nor
bounded, for any energy interval, leads to an infinite number of degrees of
freedom in the perturbation problem. In physics language, small fluctuations
of energy allowed by the uncertainty principle (2E 2t��) may produce an
infinite number of photons whose energy is very close to 0. Such photons
are called soft photons. A standard physical imagery is of an atom surrounded
by a cloud of soft photons. The interaction between charged particles and
the quantized radiation field leads to a renormalization of physical para-
meters. In particular, it produces the energy shifts first measured by Lamb
and Retherford and estimated by Bethe [7, 8] (the Lamb shift and radiative
corrections).

FIG. I.2. The Spectrum of H0=Hel�1+1�Hf .
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FIG. I.3. A projection of the Riemann surface of (u | (H0&z)&1 v) onto the energy plane.

The main physical expectations underlying the theory of radiation are
that there exists a stable ground state and that the excited states of the
particle system, corresponding to the eigenvalues Ej , with j>0, become
unstable. They decay spontaneously (i.e., acquire a finite life-time) by
emission of photons. Mathematically, this phenomenon is described in the
language of resonances or, more generally, in terms of the Riemann surface
of matrix elements of the resolvent, (u | (Hg&z)&1 v), for a universal dense
set of vectors containing u, v.

Next we formulate some key mathematical problems in the theory of
radiation.

(a) Is the ground state (corresponding to the eigenvalue E0) of H0

stable when the interactions of particles with the quantized radiation field
are included?

(b) Are the excited states corresponding to the eigenvalues Ej , j>0,
of H0 unstable?

(c) Do the excited states turn into resonances? If they do, what are
the positions (i.e., the energies and life-times) of these resonances in the
complex energy plane?

(d) What is the structure of the Riemann surface of (u | (Hg&z)&1 v)
(for a universal dense set D % u, v, see [pp. 54�55, 37])?

The main results of this paper are as follows.

(i) Hg has a ground state originating from the ground state of H0 .
(The coupling constant g does not need to be particularly small, for this
result to hold.) The ground state is exponentially localized in the particle
coordinates.

(ii) Hg has no other eigenvalues outside small neighbourhoods of
the thresholds of Hel , besides the ground state energy. In other words, the
excited states of Hg become unstable. This is proved for sufficiently small
coupling constants. Moreover, the spectrum of Hg outside O( g2)-neigh-
bourhoods of the thresholds of Hel is purely absolutely continuous.

(iii) There are complex ``eigenvalues'' [Ej, l( g)]Nj
l=1 bifurcating from

each eigenvalue Ej of H0 , where Nj is the multiplicity of Ej . The energy
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E0, 1( g) with the smallest real part bifurcating from the ground state energy
E0 of Hg is real and is the ground state energy of Hg (see result (i)). Under
certain genericity assumptions on the coupling functions, Gm, n (see (I.49)),
all energies Ej, l( g), j�1, have a negative imaginary part, for g{0. They
are the complex resonance energies of Hg . (These notions will be explained
more precisely, below.)

(iv) We develop a constructive algorithm to calculate the functions
Ej, l( g). In particular, the radiative corrections, Ej, l( g)&Ej (0), are given
by

Ej, l( g)&Ej (0)==j, l g2+o( | g| 2), (I.29)

where Re[=j, l ] is given by Bethe's formula and Im[=j, l ] is given by
Fermi 's Golden Rule (as will be explained and proven below and in [5]).
For the hydrogen atom, the energy differences Re[(Ej, l( g)&Ei, k( g))&
(Ej (0)&Ei (0))] reproduce the observed Lamb shifts quite accurately, (i.e.,
up to effects due to the ultraviolet cutoff and relativistic corrections).

(v) Let C0(R
3) denote the space of continuous functions on R3 of

compact support, and let F(C0(R3)) be the photon Fock space over
C0(R3), i.e.,

F(C0(R3))= �
�

n=0

C0(R3)}s n. (I.30)

For all u, v # C0(X )�F[C0(R3)], (u | (Hg&z)&1 v) has an analytic
continuation in the variable z into the part of the lower complex half-plane
depicted in Fig. I.4.

The complex numbers Ej, l( g) are singularities of this continuation. The
angle of inclination of the cuts emanating from Ej, l( g) is related to the
choice of projection of the Riemann surface, on which (u, (Hg& z)&1 v) is
defined, onto the energy plane. The numbers Ej, l( g) are independent of the
choice of projection. For j�1, they correspond to resonances of Hg.

FIG. I.4. A projection of the Riemann surface for (u | (Hg&z)&1 v) .
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the particle system was replaced by a harmonic oscillator, and in [15,
18�20, 24�26, 41], the particle system was replaced by a 2_2 matrix (the
spin-boson model) or by a finite-rank matrix. The existence of a ground
state for the spin-boson model without infrared cutoff was proved by a method
and under conditions different to ours in [41], and recently, a proof of that
fact by methods and conditions similar to ours was given in [3]. The results
of the present paper were announced in [4].

In our analysis, we use the following tools: Our proof of (i) involves
constructive-field-theory techniques developed in [13, 16]. Our proof of
(ii) involves positive-commutator techniques (see also [15, 20] and [4])
and the technique of complex dilatation, in conjunction with the isospectral
Feshbach map which is a far-reaching extension of the standard Feshbach
projection method. A powerful extension of the positive-commutator
method appears in [6].

The deepest results of this paper are (iii) and (iv). In order to establish
them, we develop an operator-theoretic renormalization group method for
non-selfadjoint Hamiltonians, based on an iterative use of the isospectral
Feshbach map. Our renormalization map acts directly on quantum
Hamiltonians, rather than on their correlation functions, or indirectly
through partition functions, as is the case with the standard approach.

As a biproduct, our renormalization group construction yields alternative
proofs of results (i) and (ii), for small values of | g|.

I.3. Main Results

In this section, we present a precise formulation of our assumptions and
of our main results. Recall from (I.22)�(I.24) that Hg= H0+Wg , with
H0=Hel�1f+1el�Hf . The operator Hf=� d 3k |(k) a-(k) a(k), where
|(k)=|k|, is a selfadjoint operator on its natural dense domain, D(Hf )�F.
It is positive and

_(Hf )=_pp(Hf ) _ _ac(Hf ),

where _pp(Hf ) consists of the simple eigenvalue 0, corresponding to the
eigenvector 0 # F (the vacuum); _ac(Hf ) is the absolutely continuous
spectrum of Hf . It covers the half-axis [0, �) and has infinite multiplicity.
The singular continuous spectrum of Hf is empty.

Next, Hel=&2x+V(x) is a Schro� dinger operator. Throughout the paper
we assume that Hel is selfadjoint and has at least one eigenvalue, E0 , below
its continuum, 7. More specifically, we assume that Hel is an N-body
Hamiltonian, i.e., that the potential V(x) obeys:

V(x) is a real function of the form �finite Vi b ? i , where ?i are linear maps
from X (=R3N, the particle configuration space) to Rni and Vi # L pi (Rni )+
L�(Rni ), with pi=2 if ni�3, pi>2 if n i=4, and pi=ni �2 if ni�5.

311QUANTUM ELECTRODYNAMICS



This is not the most general condition that suits our purposes, but it is
simple and general enough, as it includes V in (I.7). In particular, under
this condition Hel is selfadjoint on the domain D(Hel)=D(&2x). From
our Hypothesis on V(x) above and the HVZ-Theorem (see e.g. [10, 37]),
it follows that the particle Hamiltonian Hel in (I.23) has a standard
spectrum: a continuum corresponding to the half-axis [7, �), for some
7�0, and discrete eigenvalues Ej of finite multiplicity, 1�Nj<�, j=0,
1, 2, ... on the left of (below) the continuum, i.e., E0<E1< } } } <7.

Our model is specified by conditions on the coupling functions Gm, n in
the interaction Wg defined in (I.25)�(I.27). For different results of this paper
we need different conditions. We list these conditions below. For notational
convenience the hypotheses presented below tend to be somewhat stronger
than those used in the actual proofs. More general hypotheses can be found
in the corresponding chapters; (see the end of this chapter for a guide). Here
is the first set of conditions on Gm, n that we use in Chapters II and III:

Hypothesis 1. The coupling functions G2, 0#G0, 2#G1, 1#0 vanish identi-
cally, and G0, 1(k)=G1, 0(k)* is a multiplication operator in the Schro� dinger
representation Hel=L2(X), i.e., for every k # R3, G0, 1(k) acts as multiplication
by a function which is denoted Gx(k). This coupling function Gx(k) obeys the
following bounds, for some =>0:

41 := sup
x # R3N {| _1+

1
|(k)& |Gx(k)|2 dk=

1�2

<�, (I.33)

42, = := sup
x # R3N {e&= |x| |

|Gx(k)|2

|(k)2 dk=
1�2

<�. (I.34)

We refer to W1 as Wx .

The second set of hypotheses is somewhat more general than Hypothesis 1.
It is used in Chapters IV and V (confer to the end of Section I.1).

Hypothesis 2. For some %0>0 and all k, k$ # R3, the maps

% [ (&2x+1)&1�4 e3%�2Gm, n(e
&% k)(&2x+1)&1�4, (I.35)

for m+n=1, and

% [ e3% Gm, n(e&%k, e&%k$), (I.36)
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for m+n=2, are analytic as maps: [ |%|�%0] � B[Hel ], the bounded
operators on Hel . Define J(k) to be the smallest non-negative function such
that, for m+n=1,

sup
|%|�%0

&(&2x+1)&1�4 e3%�2Gm, n(e&% k)(&2x+1)&1�4 &�J(k), (I.37)

and, for m+n=2,

sup
|%|�%0

&e3%�2 Gm, n(e&%k, e&% k$)&�J(k) J(k$). (I.38)

Then J obeys

41+; :={| [1+|(k)&1&; ] |J(k)|2 dk=
1�2

<�, (I.39)

for some ;>0.

In Section V, where our renormalization group analysis is presented, we
need the following assumption, in addition to Hypothesis 2:

Hypothesis 3. Hypothesis 2 holds. The function J, defined by (I.37) and
(I.38), obeys

4(+) := sup
k # R 3

[|(k) (1&+)�2 J(k)]<�, (I.40)

for some +>0.

The condition that + be strictly positive ensures that we are dealing with
a perturbation problem that is asymptotically free in the infrared region of
the photon degrees of freedom. To see this, we assume, for simplicity, that
the electron degrees of freedom have already been eliminated (by taking a
``partial trace'' over Hel). The resulting effective Hamiltonian, Heff , then has
the form Heff=E+T[Hf ]+�m+n�1 Wm, n with E # C, T[r]&r=O(g2 r),
and

Wm, n=| a-(k(m)) wm, n[Hf ; k(m); k� (n)] a(k� (n)) dk(m) dk� (n),
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where

k(m) :=(k1 ,..., km), dk(m) := `
m

j=1

d 3k j, and a-(k(m)) := `
m

j=1

a-(k j ).

Hypotheses 2 and 3 turn out to imply that

sup
r�0

|wm, n[r; k(m) ; k� (n)]|�!m+n `
m

j=1

|k j |
(+&1)�2 `

n

j=1

|k� j |
(+&1)�2, (I.41)

for some constant ! and all m, n # N0 such that m+n�1.
A key problem arising in our renormalization group analysis is to

estimate the size of matrix elements of Heff between vectors in the subspace
/Hf<\F of photon Fock space, where /Hf<\ is the spectral projection of Hf

onto energies smaller than \, for an arbitrary photon energy scale \, with
0<\<\0 . Here, the constant \0 is of order O(1 Rydberg). We choose units
such that \0=1. By dilating the photon momenta

k � \k,

we find that Heff is unitarily equivalent to the Hamiltonian \H (\)
eff , where

H (\)
eff =\&1E+T (\) [Hf ]+ :

m+n�1

\(1+(+�2))(m+n)&1 W (\)
m, n , (I.42)

with T (\) :=\&1 T[\Hf ] and

W (\)
m, n=| a-(k(m)) w (\)

m, n[Hf ; k (m) ; k� (n)] a(k� (n)) dk(m) dk� (n), (I.43)

w (\)
m, n[r; k (m) ; k� (n)] :=\(+&1)(m+n)�2 wm, n[\r; \k(m) ; \k� (n)]. (I.44)

Using the bounds (I.41), we find that the kernels w (\)
m, n again satisfy the

bounds (I.41). Because m+n�1, and since +>0 (by Hypothesis 3), each
term in the perturbation of Hf on the right side of (I.43) is multiplied by
a factor bounded above by

\+(m+n)�2 (I.45)

which tends to 0 exponentially fast in m+n, as \ � 0. This bound implies
that the perturbations Wm, n are irrelevant [11, 29] in the infrared.
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More specifically, this feature will imply that the effective Hamiltonian,
on a photon energy scale 0<\<1, of the physical systems we study, is a
small perturbation of the operator

T (\) [Hf ]+2E (\) 1, (I.46)

with norm bounded by O(\+�2). Moreover,

T (\) [r] � r, \ 2E (\) � 2E (0),

as \ � 0; (see Section V).
When +=0, W0, 1 and W1, 0 are marginal perturbations, while Wm, n are

irrelevant, for m+n�2. Then the renormalization group analysis becomes
more subtle. We defer these problems to a separate analysis.

Our results concerning the Hamiltonian Hg , defined in (I.22)�(I.27) are
summarized in the following three theorems.

Theorem I.1 (Binding). Suppose that Hypothesis 1 holds for some 0�
=<(7&E0&g2 |Gx |2�|)1�2. Then E0(g) :=inf G(Hg)> &�, and

(a) There exists a constant, M=<�, which depends only on V and 41 ,
such that if

$= :=g2 M=42
2, = } _1+4g2(7&E0)&2 sup

x {| |Gx(k)|2 dk=&<1, (I.47)

then the Hamiltonian Hg has a ground state , # H, Hg,=E0(g),.

(b) This ground state has a non-vanishing overlap with Pel�P0 ,
where Pel :=/Hel�(E0+7)�2 is the ( finite dimensional ) projection onto the
bound states of Hel with energy below (E0+7)�2, and P0=|0)(0| is the
projection onto the photon vacuum. More specifically, (Pel�P0),�1&$=>0.

(c) Moreover, this ground state satisfies the exponential bound

&e= |x| �1f ,&�M= . (I.48)

(d) As g � 0, the ground state energy and the ground state subspace of
Hg converge to the unperturbed ground state energy (=the ground state
energy of the atom or molecule) and the ground state subspace, respectively.

(e) If Hel=L2(R3N ) and Gx(k)=Gx(&k), for all k # R3, then the
ground state is unique.

(f ) Assume Hypotheses 2 and 3 with %0=0 hold. Set { :=min[E1 , 7]
&E0 . Then, for g{&1�2 sufficiently small, the degeneracy of the ground state
of Hg does not exceed the degeneracy of the ground state of Hel .
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Theorem I.2 (Instability of Excited States). Suppose Hypothesis 2 holds,
and assume that Ej>E0 is an isolated eigenvalue of Hel of degeneracy Nj<�
with eigenvectors �j, 1 ,..., �j, Nj

. Assume that the Nj_N j selfadjoint matrix

(Aj)+& :=|
Ej&0

&�
| dk (G10(k) � j, + | d/Hel�E G10(k) �j, &) $[|(k)&Ej+E]

(I.49)

is positive definite, i.e., Aj�aj 1>0. Then we have that

(a) the operator Hg has absolutely continuous spectrum in each interval

[ 2
3 Ej&1+ 1

3 Ej ,
1
3 Ej+

2
3Ej+1 ];

(b) for vectors u, v # D, the matrix elements (u | (Hg&z)&1 v) of the
resolvent (Hg&z)&1 have an analytic continuation from C+ into

Ij :=[ 2
3Ej&1+ 1

3Ej ,
1
3Ej+

2
3Ej+1]+i(R+&#j ), (I.50)

where #j :=g2a j .

In particular, excited states of Hel are unstable under the perturbation Wg .

Let C\ denote the upper and lower halfplane, respectively.

Theorem I.3 (Riemann Surface of Hg). Suppose that Hypotheses 2 and
3 hold, let E0(g)=inf _(Hg) , and pick {>0. Then, for some ', �>0, for g
sufficiently small, and for u, v # C0(X)�F(C0(R3)), (u | (Hg&z)&1 v) has
an analytic continuation across the interval I :=(E0(g), 7&{)/_cont(Hg)
into the domain [I+i(&'+R+)]"A, where

A := .
j�0

.
Nj

l=1

[Ej, l(g)+Tj, l [ g, e&i�r]+b | r>0, |b|�r1+(+�2)], (I.51)

contained in the second Riemann sheet (see Fig. I.5). Here Ej, l(g) and
Tj, l[ g, } ] have the following properties, for all j�0 and 1�l�Nj .

(a) Ej, l( g) # C& and Ej, l( g) � Ej , as g � 0,

(b) Tj, l [ g, } ] # C0(R+) and |�rTj, l [ g, r]&1|�1�8,

(c) E0, 1( g) is the ground state energy, and Ej, l( g) are resonances of
Hg (see Section I.5 for precise definitions), provided j�1 and Aj in (I.49) is
strictly positive definite.
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(d) Ej, l( g) and Tj, l[ g, } ] can be explicitly computed to any order in
g by a convergent renormalization group scheme. In particular, we have

Ej, l=Ej+ej, l g2+o( g2), (I.52)

where Re[ej, l ] g2 is given by Bethe's formulae for radiative corrections,
yielding the Lamb shift. Furthermore, Im[ej, l ] is an eigenvalue of the matrix
Aj , generalizing Fermi 's golden rule to the degenerate case (see Figure I.5).

Before proceeding to some simple technical matters, we give an outline
of the organization of this paper. Our paper contains five chapters. The
present chapter is an introductory one. The remainder of this chapter is
devoted to the derivation of some elementary bounds, proving e.g. the self-
adjointness of Hg , and to the definition and discussion of the complex
dilatations of Hg needed in the proof of Theorems I.2 and I.3. We will conclude
this chapter with a comparison of Hypotheses 1�3 to features of the standard
model of nonrelativistic QED, as described by the Hamiltonian H2 in
(I.10)�(I.18). Chapters II�V are devoted to an analysis of the operator Hg.
Chapter II, Chapter III and Sections IV�V are fairly independent of each
other.

Chapter II deals with the problem of binding. Its main result is Theorem
I.1(a) which is a transcription of Theorem II.8 and Corollary II.9.

Chapter III deals with the nature of the spectrum of Hg . Here, we
establish positivity of certain commutators. The main result in this chapter
is Corollary III.5. Improved results of this type appear in [6].

In Chapter IV, Section IV.1, the reader will have the first glimpse at
what we term the (isospectral) Feshbach map. The Feshbach map is the
main connection of Chapter IV with Chapter V. Using the Feshbach map,
in conjunction with complex dilatation, we derive Fermi's golden rule in
Section IV.2. Here, our main result is Theorem IV.3 which immediately
implies Theorem I.2.

In Chapter V, the renormalization group approach to spectral problems
on Fock space is developed. This theme is pursued in more detail in [5].
Except for some lengthy technical estimates, it is fairly self-contained. Techni-
cally, it is the most involved part of the paper. In Section V we apply techniques

FIG. I.5. A projection of the Riemann surface for (u | (Hg&z)&1 v) .
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Proof. Let fx=Gx �|. Then, omitting the integration variable k,

1el�Hf+gWx=| [1el�a-a+fx�a-+fx*�a]| dk

=| [(1el�a+fx�1f )* (1el�a+fx�1f )]| dk

&|
|Gx | 2

|
�1f .

Hence

1el�Hf+gWx�&|
|Gx | 2

|
�1, (I.55)

which implies (I.54). K

Lemma I.6 (Relative Bounds).

&a( f )�&F�\| | f | 2

| +
1�2

&H 1�2
f �&F (I.56)

and

&a-( f )�&2
F�|

| f |2

|
&H 1�2

f �&2
F+| | f |2 &�&2

F (I.57)

Proof. By the Schwarz inequality we have (dropping the subscript F)

&a( f )�&�| | f | &a�&�\| | f |2

| +
1�2

\| | &a�&2+
1�2

.

Since

| | &a�&2=(�, Hf �) ,

this implies (I.56). Next, we use that

a( f ) a-( f )=|| f� ( p) f (k) a( p) a-(k)=|| f� ( p) f (k) a-(k) a( p)+| | f ( p)|2,
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and that

|| f� ( p) f (k)(a-(k) a( p))��\| f ( p) &a( p)�&2+
2

�|
| f | 2

|
(Hf ) � ,

to obtain (I.57). K

Since the interaction Wx can be written as

Wx=a-(Gx)+a(Gx), (I.58)

we have the following corollary.

Corollary I.7 (Relative Bound of Wx w.r. to (Hf )1�2). Suppose that Hypo-
thesis 1 holds; in particular, assume 41 = supx � |Gx |2 + supx � |Gx |2�|<�.
Then

&Wx �&2�2 "\| |Gx | 2

| +�H 1�2
f �"

2

+"| |Gx | 2�1f �"
2

. (I.59)

Moreover,

|(Wx) � |�2 sup
x {| |Gx |2

| =
1�2

} &H 1�2
f �& } &�&. (I.60)

Thus Hg is essentially selfadjoint on the domain D(Hel)�D(Hf ).

It is interesting to extend this result to Hamiltonians obeying Hypothesis 2.

Corollary I.8 (Relative bound of Wl). Assume Hypothesis 2 with
%=0. (In particular, no analyticity is required and %=0 in (I.35)�(I.36)).
Then

&W1 �&�241+; &(&2+1)1�2 � (Hf+1)1�2 �&, (I.61)

&W2 �&�241+; &1el� (Hf+1)�& . (I.62)

Thus, for g<(441+;)&1, Hg is essentially selfadjoint on the domain
D(Hel)�D(Hf).

I.5. Resonances and Spectral Deformation

The natural extension of the notion of eigenvalue is the notion of (quantum)
resonance. Though originally not rigorously defined, it has played a key role
in physics since the birth of quantum mechanics. The first rigorous definition
of a resonance was given in [40]. Resonances were the subject of intensive
study ever since this work appeared; (see the review in [39]). There are three
ways to generalize the notion of an eigenvalue: starting from an eigenequation,
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from the space-time picture, or from the analytic structure of the resolvent.
We use the third way to define a resonance, the first one as an efficient tool
in investigating it, and the second one to interpret it physically.

We recall a definition from Section I.3. Let C0(R3) be the one-photon
space of continuous and compactly supported functions. (In the vector
model, functions on R3 should be replaced by transverse vector fields on
R3, i.e., by vector fields, f, obeying k } f (k)=0.) Let F(C0) be the bosonic
Fock space over C0(R3), i.e., F(C0)=��

n=0 C0 (R3)}s n, where }s stands
for the symmetric tensor product. This space is a core for Hf , while
D#C �

0 (X )�F(C0) is a core for Hg . Consider the analytic continuation
of (u | (Hg&z)&1 v) , for u, v # D, from C+ (the upper half-plane) across
the real axis into the lower half-plane, provided such a continuation exists.
We define the resonance eigenvalues (or simply, resonances) as positions of
singularities on the second sheet, i.e., in the lower half-plane C& , of the
analytic continuation described above.

The connection with eigenvalues is simple. The eigenvalues of Hg , being
positions of the singularities of (u | (Hg&z)&1 v) on the real axis, can turn
into resonances under perturbations. The real part of the resonance is
called the resonance energy, the imaginary part is the resonance width. The
resonance width is interpreted as the decay rate, its reciprocal is called the
life-time of the resonance.

In Schro� dinger quantum mechanics, these singularities are isolated poles.
But, for the Hamiltonians studied in this paper, they are located at branch
points.

Next we proceed to explain the connection between our definition of
resonances and an eigenvalue problem.

Theorem I.9. Assume Hypothesis 2. Then

(i) (u | (z&Hg)&1 v) has an analytic continuation from C+ across
the continuous spectrum of Hg into a complex neighbourhood of R, for all
u, v # D,

(ii) there is a type-A family, % [ Hg(%), of operators analytic in a
neighbourhood of %=0, such that Hg(%)*=Hg(%� ), _(Hg(%))/C& , for
Im %>0, and

Hg(%)=U(Re %) Hg(Im %) U(Re %)&1

for a one-parameter group, U(*), of unitary dilatations. Additionally assuming
Hypothesis 3, the singularities and branch points of the analytic continuation,
described in (i), occur at the eigenvalues of Hg(%) and are fixed points of
_[Hg(%)] under small variations of Im %>0.
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Theorem I.9 follows from the results in Chapters IV and V. Here, we
construct the family Hg(%) described in the theorem. Let U% be a dilatation
transformation on the one-photon space, i.e., U% : f (k) � e&3%�2 f (e&% k).
(More generally, one can shift along a flow in R3, see below.) Define the
spectral deformation on the Fock space by

Uf (%) a-( f ) Uf (%)&1=a-(U% f ). (I.63)

An application of Eq. (I.63) yields

Hf (%)=Uf (%) Hf Uf (%)&1=| dk |% (k) a-(k) a(k),

where |%=U%|(k) U &1
% =|(e&% k). Since |%=e&%|, we have

Hf (%)=e&%Hf .
We do not dilate the particle coordinates, and hence we lift the dilatation

Uf (%) to H=Hel�F by

U(%)=1el�Uf (%). (I.64)

Remembering the definition of Hg , we obtain

Hg(%)=Hel�1f+e&% 1el�Hf+W (%)
g ,

where W (%)
g := U(%) WgU(%)&1. Moreover, W g

(%)=gW (%)
1 +g2W (%)

2 , where
W (%)

l :=U(%) W lU(%)&1. Applying U(%) to W1 and W2 by using (I.63), one
easily checks that W (%)

l is obtained from W l by the replacement

Gm, n(k
�
) � G (%)

m, n(k
�
) :=e(3%�2)(m+n) Gm, n(e&%k

�
) (I.65)

in (I.26) and (I.27), where k
�

# R3(m+n). By Hypothesis 2, % [ Hg(%) defines
an analytic family of type A.

We note that the dilatation U(%) above dilates the photon momenta but
leaves the particle coordinates unchanged. This has the strange effect that
terms like exp(ik } x) are transformed into exp(ie&%k } x) which grow
exponentially in some directions in X, unless a spatial cutoff in the particle
coordinates that decays super-exponentially fast is imposed. We come back
to this point in Section I.6.

We conclude our discussion of Theorem I.9 by showing how to analyti-
cally continue matrix elements of the resolvent of Hg across the spectrum
of Hg . We obtain this analytic continuation by the Combes argument.
Namely, by the unitarity of U(%) for real %,

(u| (Hg&z)&1 v) =(u(%� ) | (Hg(%)&z)&1 v(%)) , (I.66)

where u(%)=U(%)u, etc., for z # C+ . Assume now that u(%� ) and v(%) have
analytic continuations into a complex neighbourhood of %=0. Then
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the r.h.s. of (I.66) has an analytic continuation in % into a complex
neighbourhood of %=0. Since Eq. (I.66) holds for real %, it also holds in
the above neighbourhood. Fix % on the r.h.s. of (I.66), with Im %>0. The
r.h.s. of (I.66) can be analytically continued across the real axis into the
part of the resolvent set of Hg(%) which lies in C& . This yields an analytic
continuation of the l.h.s. of (I.66). We show in Chapter V that the thresholds
of Hg(%), i.e., the points at which branches of continuous spectrum of Hg(%)
originate, and the eigenvalues of Hg(%) are independent of %. Thus the
(complex) eigenvalues of Hg(%) are the resonances of Hg . In fact, the justifica-
tion of this statement is not easy, since, as we will see later, the eigenvalues in
question lie at the tips of continuous spectrum of Hg(%), and therefore
adequate control of the latter is needed. See Chapters IV�V and [5].

We have assumed above that u and v are such that u(%� )#U(%� )u and
v(%)#U(%)v have analytic continuations into a complex neighbourhood of
%=0. The set of such vectors is dense in Hel�F. However, it is not the
set D. In order for u(%� ), with u # D, to have an analytic continuation into
a neighbourhood of %=0, we have to modify the deformation family U(%).
We briefly sketch such a modification. Let u # D, and let V be a vector field
on R3 supported outside the support of the one-photon part of u and
approaching the identity vector field, V0(k)=k, as |k| � �. Define ,% to be
either the flow generated by V (see [38]) or the shift along V, i.e.,
,% (k)=k+%V(k), (a linear approximation to the flow above, see [9, 21]).
Both definitions have their advantages. We shall appeal to the second one,
since it obviously guarantees the analyticity in % needed for our purposes.
Now we define U% on the one-photon space by

U% : u � - Jac u b ,% , (I.67)

where Jac is the Jacobian of the transformation k � ,% (k). Using (I.63), we
lift U% to Hf =F and then, using (I.64), to Hel�Hf . The resulting trans-
formation U(%) has the desired property that U(%)u has an analytic
continuation into a neighbourhood of %=0, for u, v # D.

Note that the Riemann surface of (Hg&z)&1 is independent of the choice
of the transformation U(%), while the cuts depend only on the behaviour of
V(k) at infinity.

Now we define the thresholds of Hg(%) as fixed points of _(Hg(%)) under
small variations of % (i.e., as branch point of the Riemann surface of Hg).
It turns out that the eigenvalues of Hg(%) are either isolated or located at
its thresholds, and thus they are independent of %.

The real eigenvalues of H(%), for Im %>0, are just the eigenvalues of Hg ,
while the complex eigenvalues are located at the singularities of the analytic
continuation of z [ (u, (Hg&z)&1 v) , with u, v # D, onto the second
Riemann sheet and therefore are identified with the resonances of Hg .
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Thus, to find resonances of Hg , we have to locate complex eigenvalues of
Hg(%) for an appropriate % with Im %>0.

Observe that the eigenvalues of H0(%) are real and, by separation of
variables, the fact that _pp[Hf (%)]=[0], and _cont[Hf (%)]=e&%R+, we
have

_pp[H0(%)]=_pp[Hel ] and _cont[H0(%)]=_[Hel ]+e&%R+ .

I.6. Comparison to the Standard Model

We come back to our discussion at the end of Section I.1: the coupling
functions Gm, n in (I.16)�(I.18) contain terms growing linearly in xj . Thus,
H2 fails to be a relatively bounded perturbation of Hel�1f+1el�Hf ,
unless we impose a spatial cutoff in the particle coordinates or assume the
potential V to be confining. Thus, together with the help of the UV-cutoff
} that regularizes the electromagnetic vector potential, A � A}� , we need to
restrict the electron coordinates to small distances from the nucleus. To this
end, we have introduced an analytic function }� obeying }� (0)=1 and decaying
sufficiently fast at infinity. To be specific, we choose }� (k) :=exp(&|k|4). So,
}� (e&%k�K ) acts as an ultraviolet cutoff, cutting off the photon momenta on
scale K (keeping % fixed). Similarly, we replace

Gm, n � Gm, n; reg := `
N

j=1

}� (xj �rel )Gm, n (I.68)

in (I.16)�(I.18). Here, }� (x�rel ) imposes a spatial cutoff on the electron
variables x at length scale rel . In physics, one would choose rel of the order
maxn Z&1

n , the diameter of the atom or molecule under consideration.
As we have pointed out in the preceeding section, if we ignored the

spatial cutoff functions }� (x�rel ) then G%
m, n; reg would grow exponentially as

|k| � �. One way of avoiding this growth is to simultaneously dilate the
electron coordinates x [ e% x and the photon variable k [ e&%k. In order
not to unnecessarily encumber the present exposition, we refrain from
doing so and, rather, damp &G%

m, n; reg& by a rapidly decaying cutoff, }� .
Now, we will show that G%

m, n; reg fulfills Hypotheses 2 and 3, provided
we choose }� (k) :=exp(&|k|4), for example. We remark that the choice
}~ (k) :=exp(&|k|2) would not suffice at this point because (I.71) would not
hold��unless we additionally assume gKrel<<1.

Theorem I.10. Let }� (k) :=exp(&|k|4). Then G (%)
m, n; reg fulfills Hypothesis

2 and 3 with

J(k)�C0 |k|1�2 exp[&|k|4�C0 ], (I.69)

for some constant C0 depending on V and �0>0, where |Im %|��0 .
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Proof. We will give the proof only for G(%)
1, 0; reg and G (%)

2, 0; reg ; but the
other cases are similar. For our argument we need three basic estimates

|exp[&e&4% |k|4�K4&|x|4�r4
el ]| |x|

�const } rel } exp[&e? |k|4�K4], (I.70)

|exp[&e&4% |k|4�K4&|x|4�r4
el+:e |%| |k| |x|]|

�const } rel } exp[&e&? |k| 4�(2K4)&|x| 4�(2r4
el )], (I.71)

|exp[&i:e&%k } x]&1|

�: } e |%| |k| } |x| exp[:e |%| |k| |x|], (I.72)

the proofs of which are elementary. Since G (%)
2, 0; reg(k, *; k$, *$) is a multiplica-

tion operator on Hel , its norm is given by the supremum of its modulus.
Thus

&G (%)
2, 0; reg(k, *; k$, *$)&�

8N
?

sup
x # R 3

[ f (k, x) f (k$, x)], (I.73)

where

f (k, x) :=|(k)&1�2 |exp[&e&4% |k|4�K4&|x|4�r4
el ]|

} |exp[&i:e&% (k } x)]&1|

�const :rel e
?�4 |(k)1�2 exp[&e? |k| 4�(2K4)], (I.74)

successively applying (I.70), (I.71), and (I.72). The right side of (I.74) yields
the desired estimate for G (%)

m, n; reg .
Returning to the definition of G (%)

1, 0; reg(k, *), we observe that it is a sum
of three terms corresponding to the r.s. in (I.16). Two of these are multi-
plication operators on Hel , and they are shown to be bounded in the same
way as we have just demonstrated for G (%)

2, 0; reg(k, *; k$, {$). So, all terms in
G(%)

m, n; reg are bounded operators, except one which is only relatively
(�N

n=1&2n)1�2-bounded. But this is sufficient for the estimate (I.37). K

II. BINDING

In this chapter we address the issue of binding, i.e., Problem (a) described
in Section I.2. Theorem II.8 or, equivalently, Theorem I.1(a) represent our
solution of this problem. Our approach is based on introducing an IR (infrared)
cutoff, obtaining estimates on the cutoff problem that are uniform in the
cutoff and then removing the cutoff and showing that the cutoff objects con-
verge to those of the original problem. Note that the role of the IR cutoff is
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to make the eigenvalues of interest isolated. The manner in which we
realize the cutoff is not very important. We do it by decoupling photons of
energies �m from the electrons, so our estimates must be uniform in m. In
this chapter, we require Hypothesis 1, i.e., we consider the operator
Hg=H0+gWx with the assumption that (I.33)�(I.34) hold. To ease the
handling of the many sub- and superindices that we introduce below, we
write H#Hg in this section.

II.1. Exponential Bounds

Theorem II.1. Let 2/R be an interval with sup 2<7 :=inf _cont(Hel)
�0 and let :, g>0 satisfy :2<�&sup 2&g2 supx � |Gx |2�|. Then there
exists a constant, M2<�, depending only on V, 41 , and 2, such that

&e: |x| �1f /2(H)&�M2<�. (II.1)

Proof. The idea of the proof is based on the fact (see e.g. [10, 23]) that,
for any =>0, there is R>0 such that

Hel�7&= on H1([ |x|�R]). (II.2)

Let /R be the characteristic function of the set [ |x|�R]. Denote by HR the
operator obtained from H by replacing the particle potential V(x) by
V(x) /R(x). Then, by the inequalities \gWx�=Hf+( g242�=), where 4=
supx[� |Gx |2�|]1�2, and by an analogue of (II.2), we have that

HR�[ 1
2Hf&2g242+7&=].

Hence by the condition on 2, and for g and = sufficiently small, sup 2<
7&=&2g242, and therefore

/2(HR)=0.

This implies that

/2(H)=/2(H)&/2(HR). (II.3)

Without loss of generality we can replace /2(+) by a smooth function
which we again denote by /2(+). In this case there is a smooth function f
on C which is almost analytic [31] (i.e., �z� f=0 on R) and compactly
supported, such that

/2(A)=| df (z)(z&A)&1, (II.4)

where df (z)=&(1�2?) �z� f (z) dx dy, z=x+iy, for any selfadjoint operator
A. Moreover, the support of f can be taken to be inside an arbitrarily small
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complex neighbourhood of the interval 2 (see [23]). Equation (II.3) then
implies

/2(H)=| df (z)[(z&H)&1&(z&HR)&1]

=&| df (z)(z&HR)&1 /RV(z&H)&1,

where /R=1&/R . Now, let ,: R+ � R+ be a smooth, convex function
with ,#0 on (0, 2] and ,(r)=r&3 for r�4. Then |,$|�1. Defining
F(x) :=:R,( |x|�R), we observe that F#0 on [ |x|�2R] and F(x)=
: |x|&3: for all |x|�4R. Moreover, |{xF |�:. Define HR, F=eFHRe&F.
Then

eF (z&HR)&1 e&F=(z&HR, F)&1.

Since F is chosen such that eF /R=/R , the last two relations yield

eF/2(H)=&| df (z)(z&HR, F)&1 /R V(z&H)&1. (II.5)

In order to estimate the first factor on the r.h.s., we write

HR, F=HR&|{xF |2&iAF ,

where AF= 1
2 ( p } {xF+{x F } p), with p=&i {x . Having chosen supp f % z

sufficiently close to 2 and = sufficiently small, we note that HR&|{xF |2&
Re(z)�7&=&2g242&:2&Re(z)�const>0. Moreover, AF is a pertur-
bation of Q :=HR&|{xF |2&Re(z) of relative bound zero. Thus

&(HR, F&z)&1&�&Q&1�2&2 } &(1&iQ&1�2(AF+Im z)Q&1�2)&1&

�&(HR&|{xF | 2&Re z)&1&�const.

This, together with (II.5), yields

&eF�1f /2(H)&�const &V(H+i)&1 & } | "H+i
H&z" |df (z)|.

Since |�z� f (z)|�const } | y|, with z=x+iy, and f is compactly supported,
the r.h.s. is bounded. K
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II. 2. Existence of the Ground State for Hm , m>0

We begin by introducing an IR cutoff in the interaction, replacing
W#Wx=�[Gx(k)�a-(k)+G� x(k)�a(k)] dk by

Wm=|
[|(k)�m]

[Gx(k)�a-(k)+G� x(k)�a(k)] dk. (II.6)

We define

Hm=Hel�1f+1el�Hf+gWm=H0+gWm (II.7)

Our task is to prove that Hm has a ground state and then to obtain good
control of the latter.

Theorem II.2. Let 7 :=inf _cont(Hel ), E0 :=inf _(Hel) and assume that

7&E0&g2 sup
x {| |Gx(k)|2 |&1(k) dk=�4m>0. (II.8)

Then Hm has a ground state ,m at the bottom Em :=inf _(Hm) of its
spectrum. Moreover, ,m is unique, provided that Gx(k)=Gx(&k), for
all k # R3.

Proof. We begin the proof with the remark that if the one-particle
Hilbert space h is a direct sum h1�h2 , then the bosonic Hilbert space F

over h is isomorphic to F1�F2 , where Fi is the Fock space over hi .
Indeed, if [ f j] is an orthonormal basis in h1 and [gj] is an orthonormal
basis in h2 , this isomorphism is given by

a-( f1) } } } a-( fk) a-(g1) } } } a-(gl)0

[ a-( f1) } } } a-( fk) 01�a-(g1) } } } a-(gl)02 .

In the present situation we have h=L2(R3)=L2(Al)�L2(As), where
As :=[k | |(k)<m] and Al :=R3"As . The isomorphism above maps Hf to
Hf, l �1s+1l �Hf, s and gWm to gWm�1s . Here, Hf, s�l :=�As�l

|a-a. In
this representation, Hm appears as

Hm=Hm, l�1s+(1el �1l )�Hf, s , (II.9)

as an operator on (Hel �Fl)�Fs , where

Hm, l=Hel �1l+1el �Hf, l+gWm .

From Representation (II.9) it is obvious that Hm has a ground state
,m # (Hel �Fl)�Fs if and only if Hm, l has a ground state ,m, l # Hel �Fl .
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Indeed, in this case ,m=,m, l �0s . Thus the existence of the ground state
,m follows from Lemma II.3 below. We postpone the uniqueness part of
the proof after the proof of Lemma II.3.

Lemma II.3. Under the conditions of Theorem II.2 Hm, l has a ground
state ,m, l at the bottom Em :=inf _(Hm)=inf _(Hm, l) of its spectrum.

Proof. The claim follows by proving that, for any 0<m1<m,

dimRan[/Hm, l�Em+m1
]<�. (II.10)

To prove this inequality, we employ a discretization, i.e., a family of operators
H =

m, l , for =>0, with &(H =
m, l&Hm, l)(Hm, l&Em+1)&1& � 0, as = � 0. This

ensures that Hm, l&Em&m1�H =
m, l&Em&m2 , for any m1<m2<m, and

hence,

dimRan[/Hm, l�Em+m1
]=dimRan[/H =

m, l�Em+m2
]

provided =>0 is sufficiently small. Therefore, (II.10) holds, provided we
prove that dimRan[/H =

m, l�Em+m]<�, for sufficiently small =>0, which we
demonstrate below.

We now construct the discretized operators H =
m, l . Consider =|(k) as a

scale function on R3 and partition R3 w.r. to this function. Namely, we
decompose R3 into a disjoint union of ``cubes'' C:, = s.t.

c= dist(C:, = , 0)�diam(C:, =)�C= dist(C:, = , 0)

for some universal c and C (1 and 4, say). One can find such a decomposi-
tion by breaking R3 first into the shells [=2&n&1�|k|<=2&n], n # Z, and
then breaking each shell into segments by intersecting it with cones based
on a partition of the unit sphere, S2, into sets of equal size. (Alternatively,
we observe that = |k| is a distance of k to the set [0] and appeal to a
general result in [42] (Chapter VI, Theorem 1), giving the desired decomposi-
tion into cubes, indeed. Note, in parentheses, that such a decomposition is
locally finite, i.e., every point of R3 belongs to closures of a uniformly bounded
number of cubes.) Define |=(k)=AvC:, =(|)#(vol C:, =)

&1 �C:, = |, where
C:, = % k, and

H =
f, l=|

Al

|=a-a

Note that by the choice of the C:, = 's

sup
||&|= |

|
�const } = (II.11)
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and therefore

\(Hf, l&H =
f, l)�const } =Hf, l (II.12)

Similarly, we define gW =
m by replacing Gx(k) by G =

x :=AvC:, =
(Gx) for

C:, = % k. We set

H =
m, l=Hel�1l+1el�H =

f, l+gW =
m . (II.13)

Now we show that &(H =
m, l&Hm, l)(Hm, l&Em+1)&1& � 0, as = � 0.

The second resolvent equation, Corollary I.7 and Eq. (II.12) imply that

&(H =
m, l&Hm, l)(Hm, l&Em+1)&1&

�const {=+sup
x

| (1+|&1(k)) |Gx, =(k)&Gx(k)|2 dk= ,

and the right side converges to 0, as = � 0, by Lebesgue dominated
convergence.

We complete the proof by showing that dimRan[/H=m, l�Em+m2
]<� for

small but non-zero =>0, i.e., that H =
m, l&Em&m2 has only finitely many

negative eigenvalues. To this end, we decompose the one-photon state
space into discrete and fluctuating parts as

L2(Al , dk)=hd �h f , (II.14)

where hd (the ``discrete subspace'') is the l 2-space of functions which are
constant on the cubes C:, = , while h f (the ``fluctuating subspace'') is the
orthogonal complement of hd. As in the proof of Theorem II.2, the decom-
position (II.14) leads to the representation

Hel�Fl=(Hel�Fd)�Ff ,

on which H =
m, l decomposes as

H =
m, l=H =

m, d�1f+1d �H =
f, f (II.15)

where

H =
m, d=Hel�1d+1el�H =

f, d+gW =
m . (II.16)
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Note that

E =
m :=inf _(H =

m, l)=inf _(H =
m, d )�E0 .

Let us denote the projection onto the vacuum in Fd�f by Pd�f , remarking
that H =

f, fP
=
f �mP=

f . Hence,

H =
m, l&E =

m&m�(H =
m, d&E =

m)�P=
f +(H =

m, d&E =
m&m)�Pf

�(H =
m, d&E =

m&m)�Pf . (II.17)

Next, we set Pel :=/Hel�7&m , so that Hel�E0Pel+(7&m)P=
el . Note that

Pel is finite dimensional. We use (I.60) which implies that for any *>1, we
have

gW =
m>&*&11el �H =

f, d&*F =, (II.18)

where F = :=supx �Al
|G=

x(k)|2 |&1
= dk. Passing to sufficiently small =>0,

we may assume that F =�m+supx � |Gx(k)| 2 |&1(k) dk�7&E0&3m,
according to (II.8). Thus

H =
m, d�Hel�1d&*F =+(1&*&1) 1el �H =

f, d

�P=
el � (7&m&*F =)+Pel � ((1&*&1) H =

f, d+E0&*F =). (II.19)

Choosing * :=1+m(7&E0)&1, and remembering that E0�E =
m , we obtain

H =
m, l&Em&m2�H =

m, l&E =
m&m�Pel� ((1&*&1) H =

l, d&7+E0)�Pl ,

(II.20)

for =>0 sufficiently small.
We conclude the proof by using the min-max principle, which implies,

together with (II.20), that

dimRan[/H =
m, l�Em+m2

]�dimRan[Pel] } dimRan[/H =
f, d�m&1 (7&E0+m)2].

(II.21)

The right side is clearly finite, since H =
f, d has discrete spectrum of finite

multiplicity in any interval [0, a]. K

II.3. Uniqueness of the Ground State of Hm , for m>0

To prove uniqueness of the ground state in the case where Hat=L2(R3N)
(ignoring the statistics of electrons) and Gx(k)=Gx(&k), we use a Perron�
Frobenius argument (see [16]). We consider the Schro� dinger representa-
tion, L2(S$real(R3), d+C), of the Fock space F, where d+C is the Gaussian
measure with mean 0 and covariance operator C=(2|)&1. In the Schro� dinger
representation, W=a(Gx)+a-(Gx) is a real multiplication operator. Further-
more, as follows from [16], the operators exp(&tHf ) are positivity preserving
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and ergodic, for all t>0. Ergodicity means that, for arbitrary non-negative
functions � and , in L2(S$real(R

3), d+C) of positive L2-norm,

(� | e&tHf ,)>0,

for t large enough. The proof of ergodicity presented in [16] does not quite
cover our case, but a variant of their proof still holds: First, note that the
vacuum 0 in L2(S$real(R

3), d+C) is the functional identically equal to 1,
0#1. Let P0 be the orthogonal projection onto 0, and P=

0=1&P0 . Then

(� | e&tHf,)=(� | P0,)&(�, e&tHf P=
0 ,)

�| � | ,&&e&t�2Hf P=
0 �& &e&t�2Hf P=

0 ,&,

where � �#�S$real (R
3) �(.) d+C(.). Since � and , are non-negative functions,

there exists some $>0, depending on � and ,, such that

| � | ,�$2 &�& &,&

Since the spectrum of Hf is absolutely continuous on Ran P=
0 , there is

some =>0 (depending on � and ,) such that

&/Hf �=P=
0 �&�

$
4

&�&,

and similarly for ,.
Next, we choose t0 so large that

&e&(t�2) Hf /Hf �= �&�e&t=�2 &�&�
$
4

&�&,

for arbitrary t�t0 , and similary for ,. Combining all these inequalities, we
conclude that

(� | e&tHf ,) �| � | ,&&e&(t�2) Hf P=
0 �& } &e&(t�2) Hf P=

0 ,&

� 3
4$2 &�& } &,&>0,

for t�t0 . This proves ergodicity even for the massless, scalar field.
The theory of Schro� dinger operators tells us that, under our assumptions

on V(x), e&tHel, for t>0, is a positivity preserving and ergodic operator on
L2(R3N)); (see e.g. Theorems XIII.44 and XIII.46 in [37]). Hence e&tH0,
with H0=Hel�1f+1el�Hf , is positivity preserving and ergodic on L2(R3N)
�L2(S$real(R

3), d+C), for t>0. Define the bounded real multiplication
operator Wm, N=Wm/ |Wm |�N . Since Wm, N is H-bounded, we conclude that
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H0+Wm, N converges to H0+Wm #Hm in the strong resolvent sense, as
N � �. Hence, by Theorems XIII.43 and XIII.45 in [37], e&tHm is positivity
preserving and ergodic. The last property implies that the ground state is
strictly positive and therefore unique (see Theorem XIII.43 in [37]). This
finishes the proof of Theorem II.2. K

Recall that (41)2=supx � [1+|(k)&1] |Gx |2 dk<�. Thus, due to
Corollary I.7, Hm is resolvent norm continuous in g. We have shown that,
for each g (including g=0), the interval of length m�2 at the bottom of the
spectrum of Hm consists of a finite number of eigenvalues of finite multi-
plicity. General perturbation theory implies that those eigenvalues are
continuous in g.

Finally, we point out that Wm and thus Hm are subject to Hypothesis 1.
In particular, V, 7, 41 , and 42, = are the same as for H. Consequently, the
exponential decay estimate (II.1) holds for Hm , as it does for H, with
M2<� uniformly in m>0. We formulate this as a corollary of Theorem II.1.

Corollary II.4. Let =�0 satisfy =2<7&E0&g2 supx � |Gx | 2�|, and
let ,m be a (normalized ) ground state of Hm . Then there exists a constant,
M=<�, depending only on V and 41 , uniformly in m>0, such that

&e= |x| �1f ,m&2�M=<�. (II.22)

Proof. Clearly, Em�(Hm) �0, 1�0=E0 for Hel�0, 1=E0�0, 1 , by the
variational principle. Thus, the claim follows from Theorem II.1 upon
choosing 2 :=[Em&1, E0]. K

II.4. Control on Soft Photons

The main result of this section is the following theorem, which yields
control on the number of soft photons and is inspired by [14].

Theorem II.5. Let ,m be a normalized ground state of Hm , and let N be
the photon number operator. Then

(,m | 1el�N,m) �g2 |
&Gx(k)�1f ,m&2 dk

|(k)2

�&e= |x| �1f ,m&2 } sup
x

[e&= |x| |
|Gx(k)| 2 dk

|2 = , (II.23)

where 0�=�(7&E0&g2 � |Gx |2�|)1�2.
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Proof. By the definition of N,

(,m | 1el�N,m) =| &1el�a(k),m&2 dk. (II.24)

Thus the theorem follows from Lemma II.6 below. K

Lemma II.6. Let ,m be a ground state of Hm . Then

&1el�a(k),m&�|(k)&1 &Gx(k)�1f ,m&. (II.25)

Proof. We proceed in the spirit of the virial theorem. Commuting an
annihilation operator a(k) through Hm , we see that

1el�a(k) Hm&(Hm+|(k)) 1el�a(k)=Gx(k)�1f . (II.26)

Using that Hm,m=Em,m and Eq. (II.26), we obtain

(Hm&Em+|(k)) 1el�a(k),m=&Gx(k)�1f ,m .

Since Hm&Em�0 this, in turn, implies (II.25). K

II.5. Overlap with the Vacuum

Let P, stand for the rank-one orthogonal projection on ,, i.e.,
P,= |,)(,|. Our results in Section II.4 imply the following lemma.

Lemma II.7 (Lower Bound on the Overlap). Let (E0+7)�2�*<7
and Pel=/Hel�* . Let ,m be a normalized ground state of Hm , m>0. Suppose
that 0�=�(7&E0&g2 � |Gx | 2�|)1�2 and assume that (I.47) holds, with M=

given in Corollary II.4. Then, for all 0<m, the ground state ,m of Hm obeys

(,m | (Pel�P0),m)�1&$=>0. (II.27)

Proof. Note that (II.27) is equivalent to (,m , (P=
el �P0+1el�P=

0),m)
�$= , where we use the notation P==1&P for a projection P. Since P=

0�N,
it is sufficient to show that

(,m | (P=
el �P0+1el�N ),m) �$= , (II.28)

in order to establish (II.27). Now we observe that

(P=
el �P0)Hm=P=

el Hel�P0+(P=
el �P0) a(Gx),
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which implies

0=(P=
el �P0)(Hm&Em),m

=[P=
el(Hel&Em)�P0],m+(P=

el �P0) a(Gx),m .

But, Hel P=
el �*P=

el and E0�Em . Using these estimates and the Schwarz
inequality, as in Lemma I.6, we obtain that

(P=
el �P0) ,m

�(*&E0)&1 ( (Hel&Em) P=
el �P0) ,m

=&(*&E0)&1 ( (P=
el �P0) a(Gx)) ,m

�(*&E0)&1 (P=
el �P0) 1�2

,m
(a-(Gx) a(Gx)) 1�2

,m
.

Define :2 :=g2 sup x � |Gx |2 and ;2 :=g2 � &Gx(k)�1f ,m&2 |(k)&2 dk.
Next, we use that

(a-(Gx) a(Gx)) ,m
�:2(1el�N) ,m

and that, due to Theorem II.5,

(1el�N) ,m
�;2.

The last three inequalities imply

(P=
el �P0) ,m

�(*&E0)&2 :2;2.

The last two inequalities together with Corollary II.4 yield (II.28), and
(II.28) implies (II.27). K

We remark that, assuming the ground state �0 of Hel to be unique, the
last two inequalities in the proof of Lemma II.7 imply that

&,m&,0&2�2(1&|(,m , ,0) |2)�2;2(1+:2(*&E0)&2),

where ,0 :=�0 �0, upon choosing *<min[E1 , 7].

II.6. Existence of the Ground State

In this section we prove the existence of ground states of H. The result
below sums up the analysis of the last three chapters.

Theorem II.8. Suppose that Hypothesis 1 holds with 0�=�(7&E0&
g2 � |Gx | 2�|)1�2 and assume (I.47). Then, the Hamiltonian H has a ground
state ,. As g � 0, the ground state energy and the ground state subspace of
H converge to the unperturbed ground state energy (=the ground state energy
of the atom) and the ground state subspace. If Hel=L2(R3N) and Gx(k)=
Gx(&k), then this ground state is unique. Finally, (Pel�P0) ,�1&$=>0,
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where Pel :=/2Hel�7+E0
the ( finite dimensional) projection onto the bound

states of Hel with energy below 1
27+ 1

2E0 .

Proof. Let Hm and ,m be the same as in the previous three sections.
Since the unit ball about 0 in Hel�F is weakly compact, [,m] is weakly
compact in Hel�F. Therefore it contains a convergent subsequence which
we again denote [,m]. Let ,=w-lim ,m . By (II.27),

(, | (Pel�P0),) �1&$=>0. (II.29)

Thus ,{0.
Let � be an arbitrary vector in D(H ). Then

(H� | ,)= lim
m � 0

(H� | ,m)= lim
m � 0

(� | H,m)

= lim
m � 0

Em(� | ,m) + lim
m � 0

(� | (H&Hm),m), (II.30)

Using H&Hm=g(W&Wm) in conjunction with (I.59) in Corollary I.7, we
find that

|(� | (H&Hm),m) |�g } sup
x {||(k)�m

(1+|(k)&1) |Gx(k)|2 dk=
1�2

} &1el� (Hf+1)1�2 �& &,m&, (II.31)

which converges to 0, as m � 0, by Lebesgue dominated convergence.
Next, we note that

Em(� | ,m)=(� | Hm,m)=(H� | ,m)+(� | (Hm&H),m). (II.32)

Since, for � # D(H ), limm � 0(H� | ,m)=(H� | ,), and since
|(� | (Hm&H ) ,m) | � 0, as m � 0, we conclude that the sequence [Em]
has a limit, E, and thus

lim
m � 0

Em(� | ,m) =E(� | ,). (II.33)

Now, it follows from (II.30) that

(H� | ,)=E(� | ,) , (II.34)

for arbitrary � # D(H ). Since D(H ) is dense, it follows that , # D(H*)=D(H )
and that H,=E,. This proves the existence of the ground state for H. Passing
in (II.27) to the limit as m � 0, we conclude that (Pel�P0) ,�1&$= .

Finally, as in the proof of Theorem II.2, H#Hg is resolvent norm
continuous in g, by Corollary I.7. Hence general perturbation theory
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implies that the ground state energy E0(g) of Hg (=inf _(Hg)) is con-
tinuous in g and, in particular, converges to E0 , the ground state energy of
Hg=0. Let Pg denote the projection onto the ground states of Hg . The
norm convergence of Pg to Pg=0=/Hel=E0

�P0 (the projection onto
groundstates of Hel times P0) follows from our estimates in Section II.5
which proves the second statement of Theorem II.8.

Again if Hel=L2(R3N) then as in the proof of Theorem II.2 (see the end
of the proof), the Perron�Frobenius argument implies that the ground state
of H is unique, provided Gx(k)=Gx(&k). K

Theorem II.8 (, :=w-lim ,m) together with Theorem II.1 implies

Corollary II.9. The ground state, ,, of H verifies the exponential bound
&e: |x| �1f ,&�const $&1�2 &,&, provided $#7&E0&g2 � |Gx |2�|)1�2&:2>0.

Note that the exponential bound for the ground state can also be proved
directly. Also, we remark that the assumption $=<1 in Theorem II.8 can be
weakened, at the expense of making a more involved argument necessary.

III. POSITIVE COMMUTATORS

In this chapter we begin the study of the continuous spectrum of Hg . To
this end, we estimate from below the commutator of Hg with an anti-self-
adjoint operator A=&A*. This method, known as the ``positive commutator
method'' originates from [28, 30, 36], with a crucial step in [32] (see [12, 35]
for further developments). We refer the reader to [10, 37] for a textbook
exposition and remark that the method has been applied to the Spin�Boson
model with a positive photon mass, which is related to the model treated here,
in [15, 18, 20]. In a forthcoming paper [6], we will present a refined version
of the material in this chapter.

Our first choice below for A is A1 :=1el�Af , where Af is the second
quantization of the dilatation generator on the one-photon space, L2(R3).
The estimate of [A1 , Hg ] from below allows us to conclude that the
spectrum of Hg is absolutely continuous, with no point spectrum, outside
a neighbourhood of _(Hel ).

The second choice for A is A2 :=A1+Ael�1f , where Ael is the dilatation
generator on the particle Hilbert space, L2(R3N). Then we estimate [A2 , Hg]
from below in terms of [Ael , Hel], for small values of g. Our estimate is such
that if [Ael , Hel] is positive, then so is [A2 , Hg]. Since, typically, [Ael , Hel]
is positive away from Tel , the set of eigenvalues and thresholds of Hel ,
this estimate allows us to conclude that the spectrum of Hg is absolutely
continuous, with no point spectrum, outside a small neighbourhood of Tel .
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In contrast to what we present in Chapter IV, the real axis away from Tel

covers parts of the half-axis (7, �). In Chapter IV, we establish absolute
continuity of the spectrum of Hg in the interval [E0 , 7&Cg], for some
constant, C, assuming that the interaction is analytic with respect to dilatation
of the photon momenta.

We come to the assumptions and notation used in this chapter. To begin
with, we assume Hypothesis 1. Recall that this means that Hg=H0+gWx

with coupling functions Gx(k) in the interaction Wx=a-(Gx)+a(Gx) that
obey

41 := sup
x # R3N {| _1+

1
|(k)& |Gx(k)|2 dk=

1�2

<�. (III.1)

Next, we make the definitions of A1 and A2 precise. We set

A1#1el�Af :=| a-(k) 1
2(k } {k+{k } k) a(k) dk, (III.2)

which is the second quantization, d1(d ), of the dilatation generator in the
one-photon space, d := 1

2 (k } {k+{k } k). Furthermore,

A2=A1+Ael�1f , (III.3)

where Ael is the dilatation generator on the atomic Hilbert space Hel .
Finally, we recall that E0 , E1 ,..., EM denote the eigenvalues of Hel (possibly
M=�), and we set EM+1 :=7 provided M<� and, furthermore,
E&1 :=&�.

Theorem III.1. Fix j�&1 and pick Es and E l such that Ej<Es<E l

<Ej+1 . Assume Hypothesis 1 and, additionally, that

31, : := sup
x # R3N {e: |x| |

|k } {k Gx(k)|2

|(k)2 dk=
1�2

<� (III.4)

holds, where :�0 is the same as in (II.1). Denote 2 :=[Es , E l ], and assume
that

$ :=dist[2, _(Hel )]=min[Es&Ej , Ej+1&El]�g2�5. (III.5)

Then, for g>0 sufficiently small,

/2(Hg)[A1 , Hg ] /2(Hg)�$[1&O( g4�5)] /2(Hg)2. (III.6)

Proof. During the proof, we will not display trivial factors in the tensor
product Hel�F and simply write Hf instead of 1el�Hf and Hel instead of
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Hel�1f , etc. We begin the proof with the remark that the second quantization
respects commutators, i.e., for given operators Q, Q$ on the one-photon space
L2(R3) and given f # L2(R3), the following relations for their second quantiza-
tion holds,

[d1(Q), d1(Q$)]=d1([Q, Q$]), (III.7)

[d1(Q), a-( f )]=a-(Qf ), (III.8)

as quadratic forms on a suitably chosen domain. Thus, we find by computation,

[A1, Hg ]=Hf+gW� x , (III.9)

where W� x=a-(G� x)+a(G� x), with G� x=k } {k Gx+ 3
2Gx . By (I.60), we have

that

\gWx�bHf+
g242

1

b
, (III.10)

for any b>0. The last two equations show that we have to estimate Hf

from below on an appropriate set of vectors. We proceed to do this: Writing
Hg=Hel+Hf+gWx and using (III.10), we obtain

Hg�Hel+(1+b) Hf+
g242

1

b
,

which implies that

(Hf ) ,�(1+b)&1 �Hg&Hel&
g2 42

1

b �,
.

From now on we assume that , # Ran /2(Hg). For such vectors we estimate
the r.h.s. of the last inequality from below. The key idea of the forthcoming
estimate is to use estimates originating in a quantum version of the classical
energy conservation law. We have that

(Hf ) ,�(1+b)&1 �Es&
g2 42

1

b
&Hel�,

,

where Es=inf 2. Next, we note that

1=/Hel�Ej
+/Hel�Ej+1

,
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and, using this decomposition, we obtain the bound

(Hf ) ,�(1+b)&1 \Es&Ej&
g242

1

b + &,&2&(1+b)&1 ( f (Hel)
2) , ,

(III.11)

where f (+)=(+&Ej )
1�2 /+�Ej+1

.
We claim that

|( f (Hel)
2) , |�

Cg242
1

$
. (III.12)

To demonstrate (III.12), we point out that it suffices to prove (III.6) for a
smooth function, /~ 2 instead of /2 , which obeys /~ 2#1 on 2 and such that

supp[/~ 2]/\Ej+Es

2
,

El+Ej+1

2 + . (III.13)

We may require without loss of generality that |�n/~ 2 |�Cn$&n. For
notational convenience, we simply assume /2 to have these properties,
henceforth. Then, a standard operator calculus estimate using almost
analytic functions as in (II.4) (see, e.g., [23]) yields

&(Hg+i )[ f (Hel), /2(Hg)]&�
Cg
$

&[ f (Hel), Wx ](Hg+i)&1&

�
Cg
$2 (& f (Hel) Wx(Hg+i)&1&

+&Wx f (Hel)(Hg+i)&1&). (III.14)

Moreover, since both f (Hel) and Hg are clearly relatively H0 -bounded, the
two norms on the right side of (III.14) are bounded by a constant and we
obtain

&(Hg+i )[ f (Hel), /2(Hg)]&�
Cg41

$
. (III.15)

Next, we denote E� := 1
2 (El+Ej+1) and observe that (III.13) implies that

/2(Hg) /Hg�E� =0. (III.16)

These two relations, (III.15) and (III.16), show that

( f (Hel ) /Hg�E� f (Hel)) ,=O( g$&141), (III.17)

( f (Hel) /Hg�E� Hg f (Hel)) ,=O( g$&141), (III.18)
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which, in turn, implies that

( f (Hel) /Hg�E� f (Hel)) ,=( f (Hel)
2) ,+O( g$&141), (III.19)

( f (Hel) /Hg�E� Hg f (Hel)) ,=( f (Hel) Hg f (Hel)) ,+O( g$&141), (III.20)

Using these two equations, we estimate

E� ( f (Hel)
2) ,=E� ( f (Hel) /Hg�E� f (Hel)) ,+O( g$&141)

�( f (Hel) /Hg�E� Hg f (Hel )) ,+O( g$&141)

=( f (Hel) Hg f (Hel )) ,+O( g$&141).

Due to (III.10) with b=1, we have that Hf+gWx�&g242
1 . Using this

fact, (III.19), (III.20), and that f (+){0 only for +�Ej+1 , we derive the
bound

E� ( f (Hel)
2) ,=E� ( f (Hel) /Hg�E� f (Hel)) ,+O( g$&141)

�( f (Hel) Hg/Hg�E� f (Hel)) ,+O( g$&141)

=( f (Hel) Hg f (Hel)) ,+O( g$&141)

�( f (Hel)(Hel&g241) f (Hel)) ,+O( g$&141)

�(Ej+1&g241)( f (Hel)
2),+O( g$&141). (III.21)

Choosing g sufficiently small such that 4g242
1�Cg�$, we obtain Ej+1&

E� &g241>$�4, which implies (III.12). Together with (III.11), (III.12)
yields that

(Hf ) ,�\ 1
1+b+\$&

g242
1

b
&

Cg242
1

$2 + &,&2. (III.22)

Recalling the definition of W� x (see the line after Eq. (III.9)) and using
(I.60), we obtain

|( gW� x) , |�b� (Hf ) ,+
g2

b�
(31, :)2 &,&2, (III.23)

for any b� >0. Adding up (III.22) and (III.23) according to (III.9), we arrive
at

(Hf+gW� x) ,

&,&2 �\1&b�
1+b+\$&

g242
1

b
&

Cg242
1

$2 +&
g2

b�
(31, :)2

=$ _1+O \g2

b$
+

g2

b� $
+

g2

$3+b+& . (III.24)
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The claim (III.6) follows now from choosing b :=b� :=g4�5, since we
assumed in (III.5) that $�g2�5. K

Note that estimate (III.6) is more elementary than what is known as
Mourre estimate; (the energy intervals are not shrunk in order to handle
the contribution of the interaction) It is closer to estimates derived in [28, 30].

In order to derive the desired results from Theorem III.1, we use Mourre
theory. We verify the applicability of this theory: Eqs. (III.9) and (III.23)
imply that [A1 , Hg ] is Hg-bounded. Next, we iterate (III.9) and obtain the
second commutator,

[A1 , [A1 , Hg]]=Hf+a-((k } {k+3�2)2 Gx)+a((k } {k+3�2)2 Gx).

(III.25)

An analogue of (III.23) now implies the Hg-boundedness of this second
commutator. Note that only for this estimate, we need

sup
x

|(k } {k)2 Gx(k)| |(k)&1�2 # L2(R3).

Also, the relative boundedness of [A1 , Hg ] only requires supx |k } {k Gx(k)|
|(k)&1�2 # L2(R3), and for Theorem III.1, it would actually suffice to
assume supx[e&: |x| |k } {kGx(k)| |(k)&1�2] # L2(R3), for some :>0 suffi-
ciently small.

The relative Hg-boundedness of [A1 , Hg] and [A1 , [A1 , Hg ]] and
Theorem III.1 yield (see e.g. [23]).

Lemma III.2. Assume that Hypothesis 1 and Condition (III.4) hold and,
additionally, that, for n=1, 2,

3n := sup
x # R 3N {|

|(k } {k)n Gx(k)|2

|(k)2 dk=
1�2

<�. (III.26)

Then, for sufficiently small g>0, the spectrum of Hg in 0 :=[* # R |
dist[*, _(Hel)]>g2�5] is absolutely continuous. Moreover, for any 2/0,
the limiting absorption principle holds: (H&z)&1 /2(Hg), as a map from
(A1) &+ H to (A1) + H, +> 1

2 , is bounded and norm continuous, as z
approaches the real axis.

Next, we consider _cont(Hel). Recall that Ael is the dilatation generator in
the atomic Hilbert space Hel . We require Hypothesis 1 and assume that the
Mourre estimate holds for Hel and Ael . Specifically, we assume that, given
+ # _cont(Hel)"Tel , and given =>0, there is some $>0 such that

/� 2(Hel )[Ael , Hel] /� 2(Hel)�(%el&=) /� 2(Hel)
2, (III.27)
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provided 2=++[&$, $]. Here,

%el :=dist[2, T2], T2 :=Tel & (&�, sup 2), (III.28)

where Tel are the thresholds and eigenvalues of Hel , and

/� 2(Hel) :=/2 & [7, �)(Hel)=/2(Hel)Pcont
el .

Note that, by passing from $ to $�2, we may assume that

/� 2&&(Hel)[Ael , Hel] /� 2&&(Hel)�(%el&=) /� 2&&(Hel)
2, (III.29)

for any &$�2&�$.

Theorem III.3. Assume that Hypothesis 1 holds and, additionally, that

3� 1 := sup
x # R 3N {|

|(k } {k&x } {x) Gx(k)|2

|(k)2 dk=
1�2

<�. (III.30)

Let +, =, 2, and %el be as specified in (III.29). Set 2$ :=++ 1
2 [&$, $]. Then

/2$(Hg)[A2 , Hg] /2$(Hg)�%$/2$(Hg)2, (III.31)

where

%$=min {%el ,
$
4=&=&Cg2&

Cg
$

. (III.32)

Proof. Using (III.7) and (III.8), we find that

[A2 , Hg]=[Ael , Hel ]+Hf+gW� x , (III.33)

where

W� x=W� x+[Ael , Wx]=a-(Fx)+a(Fx) (III.34)

with

Fx=k } {k Gx&x } {xGx+ 3
2 Gx . (III.35)

Using (III.10), we obtain

[A2 , Hg]�[Ael , Hel]+ 1
2Hf&2g2(41+3� 1 )2.
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By multiplying this inequality from the left and the right by /2(H0), where
H0=Hel+Hf , and using the direct integral representation of the r.h.s., we
obtain

/2(H0)[A2 , Hg] /2(H0)�|
�

&�0
/2&&(Hel ) \[Ael , Hel ]+

&
2+ /2&&(Hel) d&

&2g2(41+3� 1)2 /2(H0)2. (III.36)

Now, we break up the integral on the r.h.s. of (III.36) into one over [0, $]
and one over [$, �]. Due to (III.29), the first integral is bounded from
below by

|
�

0�&�$
/2&&(Hel) \[Ael , Hel]+

&
2+ /2&&(Hel) d&

�(%el&=) |
�

0�&�$
/2

2&&(Hel) d&, (III.37)

while the second one is bounded by

|
�

&�$
/2&&(Hel\ ([Ael , Hel]+

&
2+ /2&&(Hel) d&

�\$
4

&=+ |
�

0�&�$
/2

2&&(Hel) d. (III.38)

Thus, we obtain

/2(H0)[A2 , Hg] /2(H0)

�\min {%el ,
$
4=&=&2g2(41+3� 1)2+ /2(H0)2. (III.39)

Let 2$ :=++ 1
2[&$, $] such that dist[2$, R"2]=$�2. Using operator

calculus (see, e.g., [23]), we find that

&/2$(Hg)(1&/2(H0))&�
Cg41

$
.
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This, together with (III.39), yields

/2$(Hg)[A2 , Hg ] /2$(Hg)

�/2$(Hg) /2(H0)[A2 , Hg] /2(H0) /2$(Hg)&
Cg41

$
/2

2$(Hg)

�\min {%el ,
$
4=&=&2g2(41+3� 1)2+ /2$(Hg) /2(H0)2 /2$(Hg)

&
Cg41

$
/2

2$(Hg)

�\min {%el ,
$
4=&=&2g2(41+3� 1)2&

Cg41

$ + /2
2$(Hg). (III.40)

This inequality implies (III.31) upon replacing $ by $�2. K

As in the discussion of Lemma III.2 above, A2 maps a core of Hg into
itself, and [A2 , Hg] and [A2 , [A2 , Hg]] are Hg-bounded, provided 3� n

(defined below) is finite, for n=1, 2. Thus, Theorem III.3 implies (see [23])

Theorem III.4. Assume that Hypothesis 1 holds and, additionally, that,
for n=1, 2,

3� n := sup
x # R 3N {|

|(k } {k&x } {x)n Gx(k)|2

|(k)2 dk=
1�2

<�. (III.41)

Pick + # [_, �) away from the thresholds of Hel and =>0. Let $, 2, and %el

be as specified in (III.29). Set 2$ :=++ 1
2 [&$, $]. Then, for g } max[1, $&2]

>0 sufficiently small, the spectrum of Hg in 2$ is absolutely continuous.
Moreover, the limiting absorption principle holds: (Hg&z)&1 /2$(Hg), as a
map from (A2) &+ H to (A2) + H, +> 1

2 , is bounded and norm continuous
as z approaches the real axis.

Additionally assuming that $�c%el for some small constant, c>0,
independent of + and =, we obtain the following corollary

Corollary III.5. Assume that Hypothesis 1 and (III.41) hold. Pick =>0
and suppose there exists a small contant, c>0, such that (III.27)�(III.28) holds
for any interval, 2, with |2|�c%el . Then there exists a constant, C, such that the
spectrum of Hg in Ag :=R"(Tel+[&Cg, Cg]) is absolutely continuous.

For more precise results along the same lines see [6].
Theorem III.4 above completes our study of the spectrum of Hg outside

a small neighbourhood of the eigenvalues and thresholds of Hel . We
proceed now to investigating the nature of the spectrum of Hg in
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(E0 , 7&O( g)). This part is harder and makes use of some elements of the
renormalization group construction. In the next chapter, we begin with
developing some basic technical tools.

IV. THE FESHBACH MAP AND INSTABILITY OF EXITED STATES

In this section we define (in an abstract context) the Feshbach map and
establish a key ``isospectral property''. This map will provide a tool for
studying the spectrum of the Hamiltonian H near the atomic energies Ej .

IV.1. The Feshbach Map

Let H be a separable Hilbert space, and let P be a bounded, but not
necessarily orthogonal projection on H (i.e., P2=P, but possibly P*{P).
We set P� =1&P. For any densely defined, closed operator H on H, whose
domain contains the range of P, we define

HP :=PHP and HP� :=P� HP� . (IV.1)

For an operator A, let \(A) denote its resolvent set, i.e., the set of complex
numbers z such that A&z1 has a bounded inverse. We view HP� as an
operator on P� H and assume that 0 # \(HP� ), i.e.,

(HP� )
&1 exists on P� H and is bounded, (IV.2)

and, furthermore,

&P� (HP� )
&1 P� HP&<�, and &PHP� (HP� )

&1 P� &<�. (IV.3)

We define the Feshbach map, fP(H), by

fP(H)=(PHP&PHP� (HP� )
&1 P� HP)|Ran P , (IV.4)

provided 0 # \(HP� ) .
Next we define

SP=P&P� (HP� )
&1 P� HP. (IV.5)

Then

Ker[SP]=Ker[P] (IV.6)

Indeed, we have the identity

P.=[1+P� (HP� )
&1 P� HP]SP .. (IV.7)
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Hence, SP.=0 if and only if P.=0. Shifting H [ H&z by a spectral
parameter, z # C, we have

Theorem IV.1. Under Assumption (IV.3), and for z # \(HP� ), we have
that

z # _*(H) � 0 # _*(H&z) � 0 # _*[ fP(H&z)], (IV.8)

where _*=_ or _*=_pp . Moreover, eigenfunctions of H&z and fP(H&z)
are related by

Ker[(H&z) SP(z)]=Ker[ fP(H&z)], (IV.9)

where SP(z) :=P&P� (HP� &z)&1 P� HP, and

P Ker(H&z)=Ker[ fP(H&z)]. (IV.10)

These relations imply, in particular, that

dimKer[H&z]=dimKer[ fP(H&z)]. (IV.11)

Proof. Statements (IV.8) and (IV.9) follow from the following identities:

(H&z) SP(z)=fP(H&z)P, (IV.12)

P(H&z)&1 P=[ fP(H&z)]&1, (IV.13)

on Ran[P], and

(H&z)&1=[ fP(H&z)]&1 P&[ fP(H&z)]&1 PHP� (HP� &z)&1 P�

&P� (HP� &z)&1 P� HP( fP(H)&z)&1+P� (HP� &z)&1 P�

+P� (HP� &z)&1 P� HP( fP(H)&z)&1 PHP� (HP� &z)&1 P� .
(IV.14)

These identities are proved by elementary algebraic manipulations based
on the second resolvent identify and on the representation

H=HP+HP� +PHP� +P� HP.

Identity (IV.12) implies (IV.9) and identities (IV.13) and (IV.14) imply (IV.8).
In the latter case, the argument proceeds as follows: Let z # \(H) & \(HP� ).
Then one shows that the l.h.s. of (IV.13) defines the inverse of fP(H&z)
and therefore 0 # \[ fP(H&z)]. Next, suppose that 0 # \[ fP(H&z)] and
z # \(HP� ). Then the r.h.s. of (IV.14) defines the inverse of H&z, so z # \(H). It
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remains to prove (IV.10). Let z # _pp(H) and 0{� # Ker[H&z]. Projecting
the equation (H&z) �=0 on Ran P and on Ran P� , we obtain

(HP&z) P�&PHP� �=0, (HP� &z) P� �=&P� HP�.

Solving the second equation for P� �, we obtain that

P� �=&P� (HP� &z)&1 P� HP�.

Substituting this identity into the first equation, we find that fP(H&z) P�=0
and hence

P Ker[H&z]�Ker[ fP(H&z)].

Conversely, if 0{.=P. # Ker[ fP(H&z)] then SP(z). # Ker[H&z], by
(IV.12). Thus P.=PSP(z) . # P Ker[H&z]. K

Theorem IV.1 establishes the basic properties of the Feshbach map
crucial for the methods we develop in subsequent sections. We summarize
Theorem IV.1 by saying that the map fP is isospectral.

Let us mention a further important property of the Feshbach map which
follows directly from (IV.13):

fP1
b fP2

=fP1 P2
, (IV.15)

provided [P1 , P2]=0. In Chapter V, we use Identity (IV.15) with P1P2=
P2P1=P2 , in which case it may be interpreted as a semigroup property.

IV.2. Instability of Excited States from Fermi 's Golden Rule

Our first application of the Feshbach map to the operator Hg from (I.22)
is to eliminate the particle degrees of freedom. Simultaneously, we shall
eliminate the degree of freedom of the photon field corresponding to field
energies �\0 , for some \0>0 to be specified below. This reduces our
spectral problem on Hel�F to one on the Hilbert space CNj �[/Hf <\0

F],
where /Hf <\0

F=Ran[/Hf <\0
] and CNj=span[�j, l | 1�l�Nj] is the

subspace in Hel spanned by the eigenfunctions �j, l of Hel corresponding to
the energy Ej , i.e., Hel �j, l=Ej�j, l .

We recall from (I.22) that Hg is given by

Hg=Hel�1f+1el�Hf+Wg , (IV.16)
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where Wg=gW1+g2W2 , and

W1=| [G1, 0(k)�a-(k)+G0, 1(k)�a(k)] dk, (IV.17)

W2=| [G2, 0(k, k$)�a-(k) a-(k$)+G0, 2(k, k$)�a(k) a(k$)

+G1, 1(k, k$)�a-(k) a(k$)] dk. (IV.18)

Here, Gm, n are operator-valued functions whose specification we recall
below. Our purpose is to prove the following theorem.

Theorem IV.2. (a) For g>0 sufficiently small, the operator Hg has
absolutely continuous spectrum in each interval [ 2

3Ej&1+ 1
3 Ej ,

1
3 Ej+

2
3Ej+1],

where j�1 is such that the Nj _Nj selfadjoint matrix

(Aj)+& :=|
Ej&0

&�
| dk(G10(k) � j, + | d/Hel�E G10(k) �j, &) $[|(k)&E j+E]

(IV.19)

is strictly positive definite;

(b) for vectors u, v analytic for 1el� iAf , the matrix elements
(u | (Hg&z)&1 v) of the resolvent (Hg&z)&1 have an analytic continuation
from C+ into

Ij :=[ 2
3Ej&1+ 1

3Ej ,
1
3Ej+

2
3Ej+1]+i(R+&#j), (IV.20)

where #j :=g2a j , with aj being the smallest eigenvalue of Aj .

Clearly, Theorem IV.2(a) is a consequence of Theorem IV.2(b) which, in
turn, is a consequence of Theorem IV.3 below. In the proof, we use the
method of complex dilatations described in Section I.5. Then we apply the
Feshbach map to the operator Hg(%), in order to eliminate the particle
degrees of freedom. Simultaneously, we shall eliminate the degrees of
freedom of the photon field corresponding to field energies �\0 , for some
\0>0 to be specified below. This reduces our spectral problem to one on
the Hilbert space CNj �[/Hf <\0

F], where /Hf <\0
F=Ran[/Hf <\0

] and
CNj=span[�j, l | 1�l�Nj] is the subspace in Hel spanned by the eigen-
functions �j, l of Hel corresponding to the energy Ej , i.e., Hel �j, l=Ej�j, l .

IV.2.1. Complex dilations. We recall from (I.65) that a complex dilata-
tion Uf (%) transforms Hg into Hg(%)#Uf (%) HgUf (%)&1, given by

Hg(%)=Hel�1+e&% (1�Hf )+Wg(%), (IV.21)
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where Wg(%)=gW1(%)+g2W2(%) results from (IV.17), (IV.18) by the
replacement Gm, n(k

�
) � G (%)

m, n(k
�
) :=e&(3%�2)(m+n)Gm, n(e

&%k
�
) with 1�m+n�2

and k
�

# R3(m+n).
Throughout this chapter we require Hypothesis 2, i.e., for m+n=1 and

k # R3, we assume G (%)
m, n(k) to be analytic functions with values in the quad-

ratic forms defined on D[(&2x)1�4], and for m+n=2 and k
�

# R3_R3,
we assume G (%)

m, n(k
�
) to be analytic functions with values in the bounded

operators on Hel , obeying (I.35)�(I.39), for some ;>0.

Theorem IV.3. We require Hypothesis 2 and assume that Ej>E0 is an
isolated eigenvalue of Hel of degeneracy Nj<� with eigenvectors �j, 1 , ..., �j, Nj

.
Assume that Aj in (IV.19) is positive definite, i.e., Aj�aj1>0, and define
#j :=g2aj . Then, for g>0 sufficiently small and some constant C, the set

Ij :=[ 2
3Ej&1+ 1

3Ej ,
1
3Ej+

2
3Ej+1]&i(#j&Cg2+;�(2+;))+iR+ , (IV.22)

is contained in the resolvent set \[Hg(%)] of Hg(%).

Before we proceed to the proof of Theorem IV.3 (which we give in
Subsection IV.4.1), we introduce some more notation and derive some
preliminary lemmata which pave the way to Theorem IV.3.

IV.3. Elimination of Particle Degrees of Freedom

In this section, we verify the hypotheses of Theorem IV.1 which allow us
to apply the isospectral Feshbach map (see Corollary IV.5), after introduc-
ing some more notation and proving a preliminary technical estimate.

To begin with, we fix %=: i� to be some small, purely imaginary number
(in spite of the fact that the connection between Theorem IV.2(b) above
and Theorem IV.3 is given by the analytic continuation of matrix elements
of the resolvent as a function of %). Thus, we shall not display the %-dependence
of G (%)

m, n anymore and simply write Gm, n , instead. Moreover, our estimates
below do not reflect the dependence on �>0, either, although they are not
uniform as � � 0.

Let

$=min[ |Ej&Ej&1 |, |Ej+1&Ej |]>0, (IV.23)

where possibly Ej+1=7. Since V is bounded relative to &2, both operators

( |Hel&Ej |+1)(&2+1)&1 and (&2+1)&1 ( |Hel&Ej |+1),
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are bounded on Hel . Thus, by Hypothesis 2, there exists a function J such
that, for all k, k$ # R3 and m+n=1,

&( |Hel&Ej |+1)&1�4 Gm, n(k)( |Hel&Ej |+1)&1�4&�J(k), (IV.24)

and, for m+n=2,

&Gm, n(k, k$)&�J(k) J(k$). (IV.25)

Next, we choose some 0<{<1 and fix

\0 :=g2&2{, (IV.26)

such that, for g>0 sufficiently small,

\0�
$
2

- 1&cos �. (IV.27)

We define

P0 :=Pel, j �/Hf <\0
# :

Nj

l=1

|�j, l)(�j, l | �/Hf <\0
. (IV.28)

Then

P� 0 :=1&P0=P� (1)
0 +P� (2)

0 , (IV.29)

where

P� (1)
0 =Pel, j �/Hf �\0

, (IV.30)

P� (2)
0 =P� el, j �1f . (IV.31)

In order to control the spectrum of Hg(%) we appeal to Theorem IV.1:

z # _[Hg(%)] & D(Ej , \0 �2) � 0 # _[ fP0
(Hg(%)&z)] & D(Ej&z, \0�2),

(IV.32)

where fP0
is the Feshbach map defined in (IV.4). The equivalence (IV.32)

is valid provided z belongs to the resolvent set of P� 0Hg(%)P� 0 (see (IV.2))
and Inequalities (IV.3) hold. To verify this hypotheses, we require the
following lemma.

Lemma IV.4. Suppose that z # D(Ej , \0�2), i.e., that |Ej&z|�\0 �2, and
assume that 41+; , $<�, and 0<�<?�2. Then, for some constant
C0 #C0(41+; , $, �)<� and l=1, 2,
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&|H0&z|&1�2 P� 0WlP� 0 |H0&z| &1�2&�C0 } \&1�2
0 , (IV.33)

&|H0&z|&1�2 P� 0WlP0&�C0 , (IV.34)

&P0WlP� 0 |H0&z| &1�2&�C0 . (IV.35)

Proof. First, we introduce

K :=|Hel&Ej | �1f+1el �Hf+\0 (IV.36)

and observe that

"P� 0

K
H0&z"=max {"P� (1)

0

K
H0&z" , "P� (2)

0

K
H0&z"= ,

and

"P� (1)
0

K
H0&z"= sup

r>\0
} r+\0

e&i�r+Ej&z }� sup
r>\0

{ r+\0

r&|Ej&z|=�4, (IV.37)

"P� (2)
0

K
H0&z"� sup

r>0, |t|�$ {
|t|+r+\0

|t+e&i� r|&|Ej&z|= . (IV.38)

Now, |t+e&i�r|2=t2+r2&2tr cos ��(1&cos �)(t2+r2), and

|Ej&z|�
\0

2
�

$
4

- 1&cos ��
|t|
4

- 1&cos � . (IV.39)

Thus,

"P� (2)
0

K
H0&z"�

const

- 1&cos �
,

and hence, for some constant C$0 ,

"P� 0

K
H0&z"�C$0 . (IV.40)

By inserting (IV.40) into the l.s. of (IV.33)�(IV.35), we obtain the bounds

&|H0&z| &1�2 P� 0WlP� 0 |H0&z|&1�2&�C"0 &K&1�2WlK&1�2&, (IV.41)

&|H0&z| &1�2 P� 0WlP0 &�C"0\1�2
0 &K&1�2 Wl K&1�2&, (IV.42)

&P0WlP� 0 |H0&z| &1�2&�C"0\1�2
0 &K&1�2 WlK&1�2&, (IV.43)
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for some constant C"0<�. Thus, it remains to be shown that

&K&1�2WlK&1�2&�C0$$$ } \&1�2
0 , (IV.44)

for some constant C0$$$ because in this case we obtain (IV.33)�(IV.35) from
C0 :=C"0 } C0$$$. We demonstrate (IV.44) only for

W0, q :=| G0, q(k1 , ..., kq)�a(k1) } } } a(kq) dk1 } } } dkq, (IV.45)

where q=1 or q=2. To this end, we pick a normalized vector � # H

and estimate, using (k1 , ..., kq)=: k
�
, ,|(k

�
)=|(k1)+ } } } +|(kq), and the

Pull-Through Formulae (IV.63)�(IV.64),

&K&1�2W0, q K&1�2�&

="K&1�2 | (G0, q(k
�
)�1f )(K+|(k

�
))&1�2

_(1el�a(k1) } } } a(kq)) � dk1 } } } dkq"
�{| &K&1�2(G0, q(k

�
)�1f )(K+|(k

�
))&1�2 1el� (Hf+|(k

�
))q�2&2

_
dk1

|(k1)
} } }

dkq

|(kq)=
1�2

} B1�2
q (�), (IV.46)

where (see (V.51)�(V.52))

Bq(�) :=| &1el� (Hf+|(k
�
))&q�2 a(k1) } } } a(kq)�&2 |(k1) dk1 } } } |(kq) dkq

�&�&2=1. (IV.47)

Thus

&K&1�2W0, qK&1�2&�{| Mq(k�
)2 dk1

|(k1)
} } }

dkq

|(kq)=
1�2

, (IV.48)

where

Mq(k
�
) :=&K&1�2(G0, q(k

�
)�1f )(K+|(k

�
))&1�2 1el� (Hf+|(k

�
))q�2&

=sup
r>0

&( |Hel&Ej |+r+\0)&1�2 G0, q(k
�
)

_(|Hel&Ej |+r+|(k
�
)+\0)&1�2 (r+|(k

�
))q�2&Hel

. (IV.49)
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using the spectral theorem for Hf . In view of (IV.48), it suffices to prove
that

Mq(k
�
)�

const
\1�2

0

`
q

j=1

(1+|(kj ))1�2 J(kj). (IV.50)

Now, we distinguish the cases q=1 and q=2. For q=1, we insert (IV.24)
into (IV.49) and get

M1(k
�
)� sup

r, t, t$>0 {
J(k) (t+1)1�4 (t$+1)1�4 (r+|(k))1�2

[t+r+\0]1�2 [t$+r+\0+|(k)]1�2=
�sup

r>0 {
J(k)(r+\0+1)1�4 (r+\0+|(k)+1)1�4 (r+|(k))1�2

[r+\0]1�2 [r+\0+|(k)]1�2 =
�sup

r>0 {
J(k)(r+\0+1)1�4 (r+\0+|(k)+1)1�4

[r+\0]1�2 =
�(\0+1)1�4 (\0+|(k)+1)1�4 \&1�2

0 J(k)

�(\0+1)1�2 \&1�2
0 [1+|(k)]1�4 J(k), (IV.51)

by minimizing over t, t$, and r>0.
For q=2, we have

M2(k
�
)�sup

r>0 {
J(k1) J(k2)[r+|(k

�
)]

[r+\0]1�2 [r+\0+|(k
�
)]1�2=

�[\0+|(k
�
)]1�2 \&1�2

0 J(k1) J(k2)

�(\0+1)1�2 \&1�2
0 `

2

j=1

[1+|(kj)]1�4 J(k j) (IV.52)

and, hence, arrive at (IV.50) which, inserted into (IV.48), gives (IV.44) and
thus proves the claim (IV.33)�(IV.35). K

Corollary IV.5. Let z # D(Ej , \0 �2)#[Ej+` | |`|�\0 �2]. Then, for
g>0 sufficiently small, z # _[Hg ] if and only if 0 # _[ fP0

(Hg&z)], where

fP0
(Hg&z)=Pel, j�[/Hf �\0

(Ej&z+e&i�Hf )] +P0 WgP0

&P0 Wg P� 0(P� 0 HgP� 0&z)&1 P� 0WgP0 . (IV.53)

Proof. We assume z # D(Ej , \0 �2). We verify the hypotheses (IV.2) and
(IV.3) of Theorem IV.1. In order to prove that P� 0Hg P� 0&z is invertible on
Ran[P� 0], for |z&E j |�\0 �2, we establish absolute convergence of the
Neumann series expansion.
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(P� 0HgP� 0&z)&1 P� 0

=|H0&z| &1�2 P� 0 :
�

n=0

U*(&|H0&z|&1�2 P� 0WgP� 0 |H0&z|&1�2 U*)n

_P� 0 |H0&z| &1�2, (IV.54)

where U*=U&1=|H0&z| (H0&z)&1 P� 0 is the unitary on Ran[P� 0]
that results from the Polar decomposition of H0&z. The series (IV.54)
converges in norm, since by Lemma IV.4,

&|H0&z| &1�2 P� 0WgP� 0 |H0&z|&1�2&�
C0 g
\1�2

0

=C0 g{<
1
2

, (IV.55)

for g>0 sufficiently small, using the definition (IV.26) of \0=g2&2{.
Moreover, Lemma IV.4 establishes the boundedness of &RP� 0

(z) WgP0&
and &P0WgRP� 0

(z)&, as well. Thus the hypotheses of Theorem IV.1 are
satisfied. K

IV.4. The Spectrum of the Feshbach Hamiltonian, fP0
(Hg(%)&z)

As a consequence of Corollary IV.5 in the preceding section, _[Hg ] &
D(Ej , \0�2) is given by those z # D(Ej , \0 �2) for which 0 # _[ fP0

(Hg&z)],
where

fP0
(Hg&z)=Pel, j�[/Hf�\0

(Ej&z+e&i�Hf )]+P0WgP0

&P0Wg P� 0(P� 0 HgP� 0&z)&1 P� 0WgP0 . (IV.56)

Our goal is to show that if z # D(Ej , \0 �2) and 0 # _[ fP0
(Hg&z)] then

z # Ej&2Ej ( g)+e&i�R++O( g2+( ;�(2+;))), (IV.57)

where Im[2Ej ( g)]=&#j . (The definition of #j is given in Theorem IV.2).
This will imply Theorem IV.3. The proof of (IV.57) is accomplished in a
sequence of lemmata.

Lemma IV.6.

&P0WgP� 0[(P� 0HgP� 0&z)&1&(P� 0H0P� 0&z)&1] P� 0WgP0 &=O( g2+{).

(IV.58)

Proof. By the 2nd resolvent equation, the left side of (IV.58) is bounded
by

355QUANTUM ELECTRODYNAMICS



:
2

l1 , l2 , l3=1

gl1+l2+l3 &P0Wl1
P� 0 |H0&z|&1�2 &

_&|H0&z|&1�2 P� 0Wl2
P� 0 |H0&z| &1�2& &|H0&z|&1�2 P� 0 Wl3

P0&

_&|H0&z|1�2 P� 0(P� 0 Hg P� 0&z)&1 P� 0 |H0&z| 1�2 &

�16C 3
0 g3\&1�2

0 , (IV.59)

using Lemma IV.4 and (IV.54), (IV.55). K

Lemma IV.7. Let

Rem1(g, \0) :=P0 Wg P� 0(P� 0 Hg P� 0&z)&1 P� 0 WgP0

&g2P0W1 \ P� 0

H0&z+ W1P0 . (IV.60)

Then

&Rem1( g, \0)&=O( g2+{). (IV.61)

Proof. By Lemma IV.6, it suffices to show that

" :
l+l $�3

gl+l $ P0Wl \ P� 0

H0&z+ W l $P0"�O( g3), (IV.62)

which follows directly from (IV.34), (IV.35) in Lemma IV.4. K

Next, we use the following Pull-Through formula.

Lemma IV.8 (Pull-Through Formulae). Let F: R+ � C be a Borel
function with F[r]=O(r+1). Then F[Hf ], defined by the spectral theorem
for Hf , is defined on the domain of Hf , and it obeys the following inter-
twining relations:

F[Hf ] a-(k)=a-(k) F[Hf+|(k)], (IV.63)

a(k) F[Hf ]=F[Hf+|(k)] a(k). (IV.64)

Equations (IV.63) and (IV.64) follow immediately from

F[Hf ] `
N

i=1

a-(ki )0=F _ :
N

i=1

|(ki)& `
N

i=1

a-(ki)0. (IV.65)
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We apply the Pull-Through formulae (IV.63)�(IV.64) and rewrite

P0W1 \ P� 0

H0&z+ W1P0

=Q+| P0[G1, 0(k)�a-(k) a-(k$)]

__ P� 0(|(k$))
H0+e&i�|(k$)&z& [G1, 0(k$)�1f ] P0 dk dk$

+| P0[G0, 1(k)�1f ] _ P� 0(|(k))
H0+e&i�|(k)&z&

_[G0, 1(k$)�a(k) a(k$)] P0 dk dk$

+| P0[G1, 0(k)�a-(k)] _ P� 0

H0&z& [G0, 1(k$)�a(k$)] P0 dk dk$

+| P0[G0, 1(k)�a-(k$)] _ P� 0(|(k)+|(k$))
H0+e&i�(|(k)+|(k$))&z&

_[G1, 0(k$)�a(k)] P0 dk dk$, (IV.66)

where

Q :=| P0[G0, 1(k)�1f ] _ P� 0(|(k))
H0+e&i� |(k)&z& [G1, 0(k)�1f ] P0 dk,

(IV.67)

and P� 0(|) :=1&P0(|) with P0(|) :=Pel, j �/Hf+|<\0
.

Lemma IV.9. For \0 as in (IV.26)�(IV.27),

Rem2( g, \0) :=g2P0 W1 _ P� 0

H0&z& W1 P0&g2Q (IV.68)

is a bounded operator from P0(Hel�F) to itself, with

&Rem2( g, \0)&=O( g2+2;(1&{)). (IV.69)

Proof. The operator Rem2( g, \0) is given by the last four terms on the
right side of (IV.66). Obviously all these terms map the subspace P0(Hel�F)
to itself. We estimate the norms of all four terms separately. The estimates on
the norms of the operators proportional to a-(k) a-(k$) and to a(k) a(k$),
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respectively, are analogous; we only examine the one proportional to
a(k) a(k$). Condition (IV.24) states that

&( |Hel&Ej |+1)&1�4 Gm, n(k)( |Hel&Ej |+1)&1�4&�J(k),

for m+n=1. Thus, for an arbitrary vector �,

"| P0[G0, 1(k)�1f ] _ P� 0(|(k))
H0+e&i�|(k)&z&

_[G0, 1(k$)�a(k) a(k$)] P0� dk dk$"
�| J(k) J(k$) " P� 0(|(k))( |Hel&Ej |+1)1�2

Hel�1f+e&i�1el� (Hf +|(k))&z"
} &1el�a(k) a(k$) /Hf <\0

�& dk dk$. (IV.70)

We recall from Eqs. (IV.30) and (IV.31) that

P� 0(|)=P� (1)
0 (|)+P� (2)

0 ,

where

P� (1)
0 (|)=Pel, j �/Hf+|�\0

, (IV.71)

P� (2)
0 =P� el, j �1f . (IV.72)

Since |Ej&z|�\0�2, we have that

" P� (1)
0 (|(k))( |Hel&Ej |+1)1�2

Hel�1f+e&i�1el� (Hf +|(k)))&z"
="

/Hf +|(k)�\0

e&i�(Hf +|(k))+Ej&z"F

� sup
r�max[0, \0&|(k)] {

1
r+|(k)&|Ej&z|=�

4
|(k)+\0

. (IV.73)

Furthermore, using that |Ej&z|�\0 �2�$ - 1&cos ��4, by (IV.27), we
find that
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" P� (2)
0 ( |Hel&Ej |+1)1�2

Hel�1f+e&i� 1el� (Hf +|(k))&z"
� sup

t�$, r>0 }
4(t+1)1�2

4 |t+e&i�(r+|(k))|&$ - 1&cos � }
�sup

t�$ {
8 - 2 [2t+2+|(k)]1�2

3 - 1&cos � [t+|(k)]=�
4 [1+$]1�2

- 1&cos � [$+|(k)]
.

(IV.74)

Combining (IV.73) and (IV.74), we obtain the bound

" P� 0(|(k))( |Hel&Ej |+1)1�2

Hel�1f+e&i�1el� (Hf+|(k))&z"�
C1

|(k)+\0

, (IV.75)

where C1 :=4(1+$)1�2 (1&cos �)&1�2. We may now complete our bound
on the right side of (IV.70): Using (IV.75) we find that

R.S. of (IV.70)�C1 |
J(k) J(k$)
|(k)+\0

&1el�a(k) a(k$) /Hf <\0
�& dk dk$

�C1 \;&1
0 \| |k|�\0

J(k)2

|(k)1+; dk+ &1el �Hf /Hf <\0
�&

�C142
1+;\;

0 &�&. (IV.76)

The estimates on the remaining two terms in Rem2( g, \0) are carried out
in the same fashion; the resulting bounds are similar to (IV.76). This
completes the proof of Lemma IV.9. K

Lemma IV.10. Let Rem3( g, \0) :=g2P0W2P0 . Then

&Rem3( g, \0)&�3g2+2(1+;)(1&{) 42
1+; . (IV.77)

Proof. By Eq. (IV.18), P0W2P0 is the sum of three terms. We estimate
them separately, but all three estimates have the same structure. As an
example we estimate the term proportional to G1, 1(k, k$)�a-(k) a(k$): For
arbitary vectors , and � in Hel �F,

}| (P0, | G11(k, k$)�a-(k) a(k$) P0�) dk dk$ }
�| J(k) J(k$) &a(k) P0 ,& } &a(k$) P0�& dk dk$

�\ ;
0 42

1+; } &1el�H 1�2
f P0,& } &1el�H 1�2

f P0�&,

�\1+;
0 42

1+; } &,& } &�&. K (IV.78)
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The results in Lemmata IV.6 through IV.10 may be summarized as follows.
If fP0

(Hg&z) denotes the effective Hamiltonian (Feshbach map of Hg&z)
at a photon energy scale \0 , as defined in Eq. (IV.53), then

fP0
(Hg&z)=P01el� (Ej&z+e&i�Hf ) P0

+gP0W1P0+g2 Q+ :
3

+=1

Rem+( g, \0), (IV.79)

with

&Rem1( g, \0)&=O( g2+{), (IV.80)

by Lemma IV.7, and

&Rem2( g, \0)&=O( g2+2;(1&{)), (IV.81)

by Lemma IV.9, where Rem1( g, \0) is given by (IV.60), and Rem2( g, \0)
is given by (IV.68). Furthermore,

&Rem3( g, \0)&=O( g2+2(1+;)(1&{))42
1+; , (IV.82)

by Lemma IV.10. All O-symbols in (IV.81)�(IV.82) represent explicitly
computable constants which possibly depend on �, $, and ;.

Our next task is to analyze the term Q on the right side of (IV.79). We
observe that, by (IV.67),

g2 Q=g2(Zd
j +Zod

j )�/Hf<\0
+Rem4( g, \0)+Rem5( g, \0), (IV.83)

where

Zd
j :=| Pel, jG0, 1(k) Pel, j G1, 0(k) Pel, j

dk
e&i�|(k)

, (IV.84)

Zod
j :=| Pel, jG (%)

0, 1(k)[P� el, jHel&Ej+e&i�|(k)]&1 G (%)
1, 0(k) Pel, j dk, (IV.85)

and, furthermore,

Rem4( g, \0) :=g2 | Pel, j (G0, 1(k)�1f )

_[P� el, j (Hel�1f )+e&i�(Hf+|(k))&z]&1

__
e&i�1el �Hf /Hf <\0

+Ej&z

P� el, jHel�1f&Ej+e&i�|(k)&
_(G1, 0(k)�1f ) Pel, j �/Hf <\0

dk, (IV.86)
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Rem5( g, \0) :=g2 {| G(k)�[e&i�(Hf +|(k))+Ej&z]&1

_/Hf +|(k)�\0
dk&Zd

j = 1el �/Hf <\0
, (IV.87)

with

G(k) :=Pel, j G0, 1(k) Pel, jG1, 0(k) Pel, j . (IV.88)

Lemma IV.11. For |z&Ej |�\0�2,

&Rem4( g, \0)&=O( g4&2{). (IV.89)

Proof. Since

"
( |P� el, jHel&E0 |+1el)

1�4

P� el, jHel�1f+e&i�1el� (Hf +|(k))&z"�C2$&1,

uniformly in |z&Ej |�\0 �2, we may bound the norm of Rem4( g, \0) by

C 2
2$&2 &e&i�1el�Hf /Hf<\0

+Ej&z& | J(k)2 dk�\3C 2
242

1+;

$2 + \0. K

Next, we note that in the first term on the right side of (IV.85) we may
rotate the k-integration to the subspace ei�R3, so as to find that

Zod
j =| Pel, jG (%)

0, 1(k)[P� el, jHel&Ej+e&i�|(k)]&1 G (%)
1, 0(k) Pel, j dk

=| Pel, jG (0)
0, 1(k)[P� el, jHel&Ej+|(k)&i0]&1 G (0)

1, 0(k) Pel, j dk,

(IV.90)

and hence

Im[Zod
j ]=&Aj , (IV.91)

where the Nj _Nj matrix Aj has been defined in Eq. (IV.19). Here we use
the notation

Re[Z]=
1
2

(Z+Z*) and Im[Z]=
1
2i

(Z&Z*), (IV.92)

where Z is a matrix.
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Next, we deal with the third term in Q on the right side of Eq. (IV.83).
Our bound is contained in the following lemma.

Lemma IV.12. For |z&Ej |�\0�2,

&Rem5( g, \0)&�742
1+; g2+2;(1&{). (IV.93)

Proof. First, we observe that

| G(k)�{[e&i�(Hf +|(k))+Ej&z]&1 /Hf +|(k)�\0
&

1
e&i�|(k)= dk /Hf <\0

={| G(k)�
&(e&i�Hf +Ej&z)

(e&i�(Hf +|(k))+E j&z) e&i�|(k)
/Hf +|(k)�\0

dk

+| G(k)�[/Hf+|(k)�\0
&1]

dk
e&i�|(k)= /Hf <\0

(IV.94)

Using (IV.88), (IV.24) and the definition of Pel, j , we find that the norm of
the right side is bounded by

| J(k)2 { 6\0

[\0+|(k)] |(k)
+

/|(k)<\0

|(k) = dk�7$2
j \;

0 42
1+; . K

IV.4.1. Proof of Theorem IV.3. To begin the proof of Theorem IV.3,
we recall from Corollary IV.5 in Section IV.3 that _[Hg] & D(Ej , \0 �2) is
given by those z # D(Ej , \0 �2) for which 0 # _[ fP0

(Hg&z)], where

fP0
(Hg&z)=Pel, j �[/Hf <\0

(Ej&z+e&i�Hf )]+P0WgP0

&P0Wg P� 0(P� 0HgP� 0&z)&1 P� 0WgP0 . (IV.95)

We prove Theorem IV.3 in two steps. First, we show that

[z| 0 # _[ fP0
(Hg&z)] & D(Ej , \0 �2)]�Ej&2Ej ( g)

+e&i�R++O( g2+(;�(2+;))), (IV.96)

where Im[2Ej ( g)]=&#j . (The definition of #j is given in Theorem IV.2).
This implies that

I (1)
j :=[z # D(Ej , \0 �2) | Im[z]>&aj g2+C4 g2+(;�(2+;))]

�\[Hg ], (IV.97)
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where \[Hg ] is the resolvent set of Hg=Hg(%). Secondly, we show that

I (2)
j :=I j"I (1)

j �\[Hg ], (IV.98)

where Ij was defined in (IV.22) to be the set

Ij :=[ 2
3E j&1+ 1

3Ej ,
1
3Ej+

2
3Ej+1 ]&i#j+O( g2+(;�(2+;)))+iR+ .

Theorem IV.3 then follows by putting together (IV.97) and (IV.98).
In order to establish (IV.96), we first remark that Zd

j in (IV.84) is
hermitian, i.e., Zd

j =Re[Zd
j ]. We find this by deforming the k-integration

on the right side of (IV.84) into the complex domain. Returning to expression
(IV.79) for the effective Hamiltonian fP0

[Hg&z] at photon energy scale \0

and using (IV.81)�(IV.82), Lemma IV.11 and Lemma IV.12, we conclude
that

fP0
(Hg&z)=P0(Ej&z+g2[Zd+Zod ]�1f+e&i�1el�Hf )P0

+gP0W1P0+ :
5

+=1

Rem+( g, \0), (IV.99)

where g2Zd
j and g2Zod

j are O( g2), and

" :
5

+=1

Rem+( g, \0)"=O( g4&2{+g2+{+g2+2(1+;)(1&{)). (IV.100)

Furthermore, it is easy to show that

&gP0 W1 P0&�C3 g\ (1+;)�2
0 =O( g1+(1&{)(1+;)). (IV.101)

Given ;>0 such that 41+;<�, we choose

{ :=
;

2+;
and hence \0=g2&(2;�2+;) (IV.102)

in (IV.26). The coupling constant g�0 has to be so small that both
Condition (IV.27) and (IV.55) are satisfied. Adding up the error terms in
(IV.100) and (IV.101), we obtain

"gP0W1P0+ :
5

+=1

Rem+( g, \0)"=O( g2+(;�(2+;))). (IV.103)

Assuming that (IV.19) in Theorem IV.2(a) is valid, i.e.,

g2Aj�g2aj1>0, (IV.104)
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we conclude from (IV.99), (IV.103) and (IV.104) that, for g small enough
and a sufficiently large constant, C4#C4(�, $, ;), the operator fP0

(Hg&z)
has a bounded inverse whenever

|z&Ej |�
\0

2
and Im[z]>&aj g2+C4 g2+(;�(2+;)), (IV.105)

which is equivalent to (IV.97).
To prove (IV.98), we first note that all z # I (2)

j obey ?+��2�
arg[z&Ej]�&��2, provided that

#j=aj g2�
\0

6
sin(��2). (IV.106)

Thus, for any z # I (2)
j ,

"K(Pel, j �1)
H0&z "=sup

r>0 {
r+\0

|Ej&z+e&i�r|=
�sup

r>0 {
r+\0

|(\0 �2)+e&i��2 r|=�
- 8

- 1&cos(��2)
, (IV.107)

where K is defined in (IV.36). On the other hand, for any z # I (2)
j ,

"K(P� el, j�1)
H0&z "= sup

r>0, |t|�$ {
|t|+r+\0

|t+Ej&z+e&i�r|=
�

16

- 1&cos �
, (IV.108)

as is easily verified by separately examining the cases r>|t|�6 and r�|t|�6,
using (IV.106) and the fact that sin ��1&cos �. From (IV.107) and
(IV.108) we conclude that

sup
z # I j

(2) "
K

H0&z"�
16

- 1&cos �
. (IV.109)

So, finally, we obtain the invertibility of Hg&z and thus (IV.98) from an
expansion in a Neumann series as in (IV.54). This series is norm convergent
since, by (IV.109) and (IV.44),
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&|H0&z|&1�2 Wg |H0&z|&1�2&�" K
H0&z" } &K&1�2WgK&1�2 &

�
16 C0 g\&1�2

0

- 1&cos �
=

16C0 g;�(2+;)

- 1&cos �
<1,

(IV.110)

for g>0 sufficiently small. This completes the proof of Theorem IV.3. K

V. EFFECTIVE HAMILTONIAN AND
RENORMALIZATION GROUP

The purpose of this chapter is to analyze the flow of effective Hamiltonians
under renormalization transformations, lowering the photon energy scale. Our
analysis exhibits the infrared asymptotic freedom of QED as described by the
Hamiltonian Hg , defined in (I.22). As an application of our methods, we shall
prove the existence of a ground state, with an estimate on its multiplicity, and
the existence of resonances as eigenvalues of the complex dilated Hamiltonian,
Hg(%) in (IV.21)).

This chapter is organized as follows. In Section V.1 we describe the general
strategy of our renormalization group analysis. In Section V.2 we eliminate the
electron degrees of freedom with the help of the isospectral Feshbach map. In
Section V.3 we outline the proof of the fact that the renormalization map,
applied to the effective model derived in Section V.2, is a contraction. From
this we obtain information on the spectrum of Hg(%). As we demonstrate in
Section V.5, the fixed point of the renormalization map gives rise to an eigen-
value of Hg(%), the resonance sought for.

V.1. The General Strategy of the Renormalization Group Construction

In this section, we describe the key ideas underlying our renormalization
group construction of resonances. Recall that the latter are defined as
complex eigenvalues of the Hamiltonian Hg(%) considered in Eq. (IV.21).
Hypotheses 2 and 3 of Section I.3 are required throughout this chapter.
Technical estimates will be supplied in subsequent sections.

V.1.1. Passing from a single operator to a Banach space op operators.
We start from the effective Hamiltonian

e&i� [ fP0
(Hg(%)&z)&(Ej&z)P0 ], (V.1)

defined in (IV.53). Recall that

P0=Pel, j �/Hf <\0
, (V.2)
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where Pel, j is the orthogonal projection onto the eigenspace of the atomic
Hamiltonian Hel corresponding to the eigenvalue Ej , and /Hf <\0

is the
spectral projection of Hf onto the subspace of vectors in Fock space with
field energy <\0 ; furthermore z belongs to the disk D(Ej , \0 �2), i.e.,
|z&Ej |�\0�2. For simplicity we assume that the eigenvalue Ej is simple,
so that Pel, j is a one-dimensional projection. Then we can view the
operator in (V.1) as acting on the Hilbert space /Hf <\0

F.
First, we rescale the photon momenta by means of the unitary dilatation

U\0
:=Uf (&ln \0),

k � \0k, (V.3)

passing from the operator in (V.1) to a unitarily equivalent Hamiltonian,
\0 Heff [`], which is defined by

Heff [`]=
e&i�

\0

U\0
[ fP0

(Hg(%)&z)&(Ej&`) /Hf <\0
]U*\0

, (V.4)

for all ` # D(Ej , \0 �2), on the Hilbert space

Hred :=/Hf <1F#Ran /Hf <1 . (V.5)

Following the photon momenta, we map the spectral parameter, z, as
well. We introduce the bijection

Z(0) : D(Ej , \0�2) � D1�2 , ` [
ei�

\0

(`&Ej ) (V.6)

(see Fig. V.1), and we define

H(0) [Z(0)(`)] :=Heff [`], (V.7)

for all ` # D(Ej , \0 �2). Composing these two operations, we explicitly have

H(0)[z]=
e&i�

\0

U\0
[ fP0

(Hg(%)&Z&1
(0) [z])&(Ej&Z&1

(0) [z]) /Hf <\0
]U*\0

,

(V.8)

on Hred , for all z # D1�2 :=[ |z|�1�2].
After rescaling of the photon momenta and the spectral parameter, we

expand the resolvent P� 0(P� 0Hg(%) P� 0&`)&1 P� 0 , where P� 0=1&P0 , entering
fP0

(Hg(%)&`) in (V.8), in P� 0WgP� 0 . Using a straightforward generalization of
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FIG. V.1. First rescaling of the spectral parameter.

Wick's theorem, we show that the operator H(0)[z] can be represented in
the form

H(0)[z] :=/Hf <1 \E(0)[z] } 1+T(0) [z; Hf ]+ :
M+N�1

W (0)
M, N+ /Hf <1

(V.9)

where E(0)[z] # C is a number, T(0)[z; Hf ] is a spectral function of Hf , and
W(0)

M, N are ``Wick monomials'' of the form

W (0)
M, N[z]=| dk(M) dk� (N) a-(k(M)) w(0)

M, N[Hf ; z; k(M), k� (N)] a(k� (N)),

(V.10)

for M+N�1. Here, we use the notation introduced in Section I.3, i.e.,

k(m) :=(k1 , ..., km) # R3m, dk(m) := `
m

i=1

d 3 ki , (V.11)

a-(k(m)) := `
m

i=1

a-(ki ), |(k(m)) := :
m

i=1

|(ki ). (V.12)

In Subsection V.2.2, we will show that, for each z # D1�2 , H (0)[z] belongs
to a certain Banach space, W$2 , of Hamiltonians on H[red]=/Hf <1F,
which we define below.

The Banach space W$2 , defined as

W$2 :=C�T� �
M+N�1

W2(M, N), (V.13)

depends on three parameters 0<\<1�16, 0<!<1, and +>0 (the scaling
parameter in Hypothesis 3), which we collect in the triple

2=(+, \, !). (V.14)
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on Hred , where W=�M+N�1 WM, N , with

WM, N=| dk(M) dk� (N) a-(k(M)) wM, N [Hf ; k(M), k� (N)] a(k� (N)). (V.23)

Clearly, H in (V.22) uniquely determines an element (E, T, W
�

) # W$2 , and
we identify H#(E, T, W

�
) # W$2 whenever this appears to be convenient.

Furthermore, operators of the form (V.23) will be called (M, N)-mononials
and the functions wM, N entering to their definition, the coupling functions
of WM, N . Since the correspondence between W=�M+N�1 WM, N and
W
�

# �M+N�1 W2(M, N) is one-to-one, as well, we also write W instead of
W
�

whenever this appears to be convenient.
To control the z-dependence of the operators H[z] # W$2 , we introduce

the Banach space, W2 , of analytic families of bounded operators,
H: D1�2 � B[Hred], parametrized by elements H[z]#(E[z], T[z], W[z])
# W$2 with the property that

&H[ } ]&2 := sup
z # D1�2

&(E[z], T[z; Hf ], W[z])&$2<�. (V.24)

V.1.2. (Unprojected ) renormalization map on W2 . In order to elucidate
general features of the infrared renormalization problem studied in this
chapter, we first introduce a formal renormalization map, R� \ , defined on
a subset of the Banach space W2 and then sketch some properties of orbits
under iterations of the map R� \ by identifying the fixed points of R� \ and the
stable and instable manifolds through these fixed points. We define a
cylinder C� �W$2 by

C� :=[H[z] # W$2 | |arg E[z]|<%0 , |�r T[z]&*|�$, |arg *|<%0 ,

|*|>0, &W[z]&$2�=, |arg z|�4%0 ], (V.25)

where $ and = are small constants (depending on *), and %0>0 is suf-
ficiently large.

The map R� \ is defined by

R� \(H )[z] :=\&1U\[ f/Hf
<\ (H[z]&z)+z/Hf <\0

]U\*, (V.26)

for H[z] # C� . The renormalization map R� \ has the following properties:

(1) The fixed points of R� \ are the operators in

FP :=[*Hf | |arg *|<%0 ]. (V.27)

369QUANTUM ELECTRODYNAMICS



(2) The tangent space at a point *Hf # FP (*{0, |arg *|<%0) can
be split into a direct sum, R�M�I, of a one-dimensional subspace, R,
of relevant perturbations, defined by

R :=[E[z] } 1 | |arg E[z]|<%0], (V.28)

a one-dimensional subspace of marginal perturbations,

M :=[+Hf | + # C], (V.29)

and a co-dimension-2 subspace, I, of irrelevant perturbations, defined by

I :=[W
�

| &W
�

&2<�]. (V.30)

(3) The expansion rate of R� \ in the direction of R is given by \&1,
in the direction of M it is =0, and the contraction rate of R� \ in the
direction of I is \+�2. An orbit of an operator in C� is sketched in Fig. V.2.

The interest in the renormalization map R� \ lies in the circumstance that
it is isospectral in the sense of Theorem IV.1. Thus, in order to study, e.g.,
the resolvent set of a family H[z] # C� , we may study the resolvent set of
R� n

\(H)[z]. Since the perturbation W=�M+N�1 WM, N becomes small
under iterations of R� \ , the operators R� n

\(H)[z] are simpler to analyze than
the original operator H[z].

A difficulty in analyzing orbits of families of operators in C� under itera-
tions of R� \ is the divergence of such orbits in the direction of the relevant
perturbations, R. This difficulty can be avoided by projecting orbits along
R onto the stable manifold of R� \ and by successive fine-tunig of the initial

FIG. V.2. Orbit under R starting at H0
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value of the spectral parameter, z. Some details of our construction of such
a modified renormalization map, R\ , are described in the next subsection.

V.1.3. Projected renormalization map on W2 . We define a polydisc,
B($, =), of operators in W2 by

B($, =) :=[(E, T, W) # W2 | |�rT&1|�$, &W&2+|E |�=]. (V.31)

Next, we pick H # B( 1
8 , \�8) and define

Z: U(in) � D1�2 , ` [
1
\

(`&E[`]), (V.32)

where

U(in) :=[` # D1�2 | |`&E[`]|�\�2] (V.33)

(see Fig. V.3). We observe that ` # U(in), H # B( 1
8 , ( \�8)), and 0<\�1�16

imply that |`|�|E[`]|+|`&E[`]|�1�4. Thus,

U(in)�D1�4 . (V.34)

Then, Cauchy's estimate with contour on �D1�2 yields that

|�` Z(`)&1|�4 sup
` # D1�2

[ |E[`]|]< 1
2. (V.35)

This proves that Z: U(in) � D1�2 is a bijection.

FIG. V.3. Rescaling of the spectral parameter.
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with Z(0)(`)=e i�\&1
0 (`&Ej) on D(Ej , \0�2), and, for n�1,

Z(n) : U (in)
(n) � D1�2 , ` [

1
\

(`&E(n&1)[`]), (V.45)

where

U (in)
(n) :=[` # D1�2 | |`&E(n&1)[`]|�\�2]. (V.46)

V.2. The Family of Initial Operators, H(0)[z]

In this section, we investigate the family of operators H(0)[z] defined
in (V.7)�(V.8). We show that this operator family H(0)[z] belongs to
B( 1

16 , \�16), i.e., that (V.40) holds true.

V.2.1. Bounds on the interaction. The purpose of this subsection, is to
estimate the operator norms of (M, N)-monomials WM, N (see Eq. (V.23)),
with coupling functions wM, N in the Banach space W2(M, N).

Lemma V.1. Let M+N�1, and let WM, N be an (M, N)-monomial with
coupling function wM, N # W2(M, N) (see Eq. (V.23)). Then, for all 0<\,
\~ <1 and +>&1,

&(Hf+\)&1�2 /Hf <1WM, N/Hf <1(Hf+\~ )&1�2&

�
2:\&(1�2) $M0 \~ &(1�2) $N0 C M+N

+ &wM, N & (�)
2

1[(++1) M+1]1�2 1[(++1) N+1]1�2 , (V.47)

where 1(x+1)=x1(x) is the Gamma function, and C+ :=- 4?1[1++]�3.

Proof. We pick ,=/Hf <1,, �=/Hf <1� # /Hf <1F and consider

A2(,, �) :=|(, | /Hf <1WM, N/Hf <1�) |2

= }| dk(M) dk� (N) (a(k(M)), | wM, N [Hf ; k(M) ; k� (N)] a(k� (N))�) }
2

.

(V.48)

Remembering a(k(M))#>M
j=1 a(kj) and |(k(M))#�M

j=1 |(kj ), the Pull-
Through formulae (IV.63)�(IV.64) imply that

a(k(M))/Hf <1=/[Hf +|(k (M))<1] a(k(M))/Hf <1

=/[|(k(M))<1] a(k(M))/Hf <1 , (V.49)
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which, together with Schwarz' inequality and /r<1=: /1[r], yields

A2(,, �)�B(M)(,) } B(N)(�) } | /1[|(k(M))] /1[|(k� (N))]

_[ sup
0<r<1

|wM, N[r; k(M); k� (N)]|2] `
M

j=1

dkj

|(kj)
`
N

j=1

dk� j

|(k� j)
, (V.50)

where B(0)(,) :=&,&2 and

B(M)(,) :=| &a(k(M)) /1,&2 `
M

j=1

|(kj) dk j . (V.51)

Another application of the Pull-Through formulae (IV.63)�(IV.64) then gives

B(M)(,)=| � `
M&1

j=1

a(kj) /1, }Hf `
M&1

j=1

a(kj) /1,� `
M&1

j=1

|(kj) dkj

�| � `
M&1

j=1

a(kj) /1, } (Hf +|(k(M&1))) `
M&1

j=1

a(kj) /1,� `
M&1

j=1

|(kj) dkj

=| &a(k(M&1)) /1H 1�2
f ,&2 `

M&1

j=1

|(kj) dkj=B(M&1)(H 1�2
f ,)

�B(M&2)(Hf ,)� } } } �B(0)(H M�2
f /Hf <1,)=&H M�2

f /Hf <1,&2,

(V.52)

denoting /1, :=/Hf <1,. Inserting the assumption on wM, N , we estimate
the integral on the right side of (V.50) by

| /1[|(k(M))] /1[|(k� (N))][ sup
0<r<1

|wM, N[r; k(M) ; k� (N)]|2]

_ `
M

j=1

dk j

|(kj)
`
N

j=1

dk� j

|(k� j)

�(&wM, N& (�)
2 )2 \| /1[|(k(M))] `

M

j=1

dkj

|(kj)
2&++

_\| /1[|(k� (N))] `
N

j=1

dk� j

|(k� j)
2&++

�(&wM, N& (�)
2 )2 \4?

3 +
M+N

} \| /[|1+ } } } +|M<1] `
M

j=1

d|j

|&+
j +

} \| /[|1+ } } } +|N<1] `
N

j=1

d| j

|&+
j + (V.53)

=
(&wM, N& (�)

2 )2 ((4?�3) 1[++1])M+N

1[(++1) M+1] 1[(++1) N+1]
. (V.54)
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Here, 1[x] denotes the Gamma function for x>0 and the last equality is
derived in [5]. From inserting (V.53) and (V.52) into (V.50), we obtain

&(Hf +\)&M�2 /Hf <1WM, N/Hf <1(Hf +\)&N�2 &

�
(&wM, N& (�)

2 )2 ((4?�3) 1[++1]) (M+N)�2

1[(++1) M+1]1�2 1[(++1) N+1]1�2 .

From here, the assertion follows trivially from

" [Hf +\]1�2

[Hf +\]M�2 /Hf <1"= sup
0�r<1

[(r+\) (1&M)�2]�- 2 \&$M0 �2. K

(V.55)

V.2.2. The initial Hamiltonian H(0) . Now we proceed to showing that the
operator family H(0)[z] belongs to B( 1

16 , \�16), i.e., that (V.40) holds true.
The main result of this section is

Theorem V.2. Assume Hypotheses 2 and 3 hold. Then, for any 0<=(0)

�1�16, 0<\<1, and any \0 , there is g0>0 such that, for all | g|�g0 ,

H(0) # B(=(0) , \=(0)). (V.56)

Proof. In what follows, we fix %=i� with �>0 and do not display the
dependence on this parameter. We also generally suppress the parameter z
from the formulae. On the other hand, we explicitly display the functional
dependence on the operator Hf as in

R� 0[Hf ]=(Hel �1f+e&i�1el�Hf&z)&1 P0[Hf ], (V.57)

where (compare to (V.2))

P0[Hf ]#P0=Pel, j �/Hf <\0
, (V.58)

and Pel, j=|�j )(�j | is the projection onto the eigenspace of Hel corre-
sponding to Ej . We project an operator A on Hel �F onto an operator,
(A) el, j :=(�j , A�j) Hel

on F by means of Pel, j �1f as

Pel, j �(A) el, j=(Pel, j �1f ) A(Pel, j �1f ). (V.59)

In what follows we will also omit the trivial factor Pel, j from the formulae.
First, for |Ej&z|� 1

2\0 and %=i�, �>0, we introduce the intermediate
Hamiltonian H� eff[z] by

Pel, j �H� eff [z] :=e&i� [ fP0
(Hg(%)&z)&Ej+z]P0 , (V.60)
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as in Eq. (V.1). Our task is to put this operator-family into the generalized
normal form (V.9)�(V.10). To this end, we write

H� eff [z]=: /\0
(E� eff [z]+T� eff [z; Hf ]+W� eff [z])/\0

, (V.61)

where /s :=/Hf <s , E� [z] # C, and T[z; Hf ] is a spectral function of Hf .
They are given by

E� eff [z] :=w~ eff
0, 0[z; 0], (V.62)

T� eff [Hf ; z] :=Hf+w~ eff
0, 0 [z; Hf ]&w~ eff

0, 0 [z; 0], (V.63)

w~ eff
0, 0 [s; z] :=ei�( f/\

(Hg+e&i�s&z)&Ej+z)0 , (V.64)

where ( } ) 0 denotes the expectation value in the Fock vacuum state, 0.
Furthermore,

W� eff [z] := :
M+N�1

W� eff
M, N [z], (V.65)

is a sum of (M, N)-monomials of the form

W� eff
M, N[z] :=| dk(M) dk� (N) a-(k(M)) w~ eff

M, N [z; Hf ; k(M), k� (N)]a(k� (N)).

(V.66)

Note that we have not rescaled the photon momenta by U\0
, yet, and thus

the coupling functions w~ eff
M, N are maps

w~ eff
M, N : D(Ej , \0�2)_[0, \0]_B3M

\0
_B3N

\0
� C. (V.67)

Next, we determine the exact form of w~ eff
M, N by a Wick-ordering procedure.

Lemma V.3. For g\1�2
0 >0 sufficiently small, the coefficients, w~ M, N , defined

through (V.61)�(V.66) are given by

w~ M, N[r; z; k(M) ; k� (N)]

= :
�

L=1

(&1)L&1 :

l=1, ..., L
ml+pl+nl+ql=1, 2;

$�L
l=1 ml ,M

$� L
l=1 nl ,N

_ `
L

l=1
{\ml+pl

p l +\nl+ql

ql += [D� L[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1]]symm

M, N ,

(V.68)
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where

D� L [r; [W ml
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1]

:=e i� `
L

l=1

(&*)ml+pl+nl+ql } (.el�0 | W m1 , n1
p1 , q1

[k (m1)
1 ; k� (n1 )

1
] R� 0[Hf++1]

} } } R� 0[Hf++L&1] W mL , nL
pL , qL

[k (mL)
L ; k� (nL )

L ] .el�0) , (V.69)

W ml , nl
pl , ql

[k (ml )
l ; k� (nl )

l ] :=| dx ( pl )
l dx~ (ql )

l Gml+pl , nl+ql
[k (ml )

l , x( pl )
l ; k� (nl )

l , x~ (ql )
l ]

�a-(x ( pl )
l ) a(x~ (ql )

l ), (V.70)

+l :=r+ :
l

j=1

|(k� (nj )
j )+ :

L

j=l+1

|(k (mj )
j ), (V.71)

R� 0 is defined in (V.57), and

[A[k(M) ; k� (N)]] symm
M, N

:=
1

M! N!
:

? # Sm

:
_ # SN

A[k?(1�) , ..., k?(M) , k� _(1) , ..., k� _(N)]. (V.72)

Proof. We use definition (IV.4) of the Feshbach map fP0
and expand

the resolvent (P� \0
Hg(%) P� \0

&z)&1=(H0P� \0
+P� \0

Wg P� \0
&z)&1, entering

fP\0
(Hg(%)&z), in a Neumann series in the operator P� \0

WgP� \0
:

H� [z]=Hf& :
�

L=1

(&e&i�)L /Hf<\0
(Wg(R� 0 [Hf ] Wg )L&1) el, j /Hf�\0

(V.73)

where we used the notation introduced in (V.57)�(V.59). Since, for
|z&E0 |�\0 �2,

|H0&z|�|H0&Ej |&
\0

2
�min {1

2
,

$
\0

sin �= (Hf +\0), (V.74)

on /Hf<\0
F, where $ is the distance from Ej to the rest of the spectrum of

Hel , Estimate (V.47) implies that the sum on the r.h.s. of (V.73) converges
in norm, provided | g| \&1�2

0 is sufficiently small. Next we use the identity

WM1 , N1
R� 0 [Hf ] WM2 , N2

R� 0 [Hf ] } } } R� 0[Hf ]WML , NL

= :
M1

m1=0

:
N1

n0=0

} } } :
ML

mL=0

:
NL

nL=0
| `

L

l=1
{dk (Ml&ml )

l dk� (Nl&nl )
l \Ml

ml+\
N l

nl +=
(V.75)
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which follows from the Pull-Through formula

f [Hf ] a-(k)=a-(k) f [Hf +|(k)], (V.76)

a(k) f [Hf ]=f [Hf +|(k)]a(k), (V.77)

and the following standard Wick's Theorem

`
N

j=1

a_j (kj )= :
Q�[1, ..., N] � `

j # [1, ..., N]"Q

a_j (kj )�0
: `

j # Q

a_j (k j ) : , (V.78)

where a+ :=a-, a& :=a, and

: `
N

j=1

a_j (kj ): := `
N

j=1,
_j=+

a-(k j ) `
N

j=1,
_j=&

a(k j ) (V.79)

In fact, Eqs. (V.76)�(V.79) imply a generalization of Wick's theorem, for
operators of the form (V.23), which can be used to derive (V.75) (see [5]
for details). From (V.75) we can directly read off the coefficients w~ M, N . K

Lemma V.4. Assume that Hypotheses 2 and 3 hold, i.e., the function J
obeys the bound

J(k)�|k| (+&1)�2 . (V.80)

Then, for sufficiently small g\&1�2
0 >0 and M+N�0,

|w~ M, N [z; r; k(M); k� (N)]|

�\ Cg
\1�2

0 +
M+N+2$M+N, 0

\1&(1�2)(M+N)
0 } `

M

j=1

|k j |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 .

(V.81)

and

| |�rw~ M, N [z; r; k(M); k� (N)]| `
M

i=1

dki

|ki |
(3++)�2 `

N

i=1

dk� i

|k� i |
(3++)�2

�\ Cg
\1�2

0 +
M+N+2$M+N, 0

\1&(1�2)(M+N)
0 . (V.82)

Proof. We only give the proof of (V.81). The proof of (V.82) is given
in [5]. To show (V.81), we need the following slight generalization of
(IV.44) in Lemma IV.4:
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&K&1�2 W m, n
m+p, n+q(k(m) ; k� (n)) K&1�2 &

�C0 gm+n+p+q \&(1�2)(1+$p+q, 0)
0 } `

m

j=1

J(kj ) } `
n

j=1

J(k� j), (V.83)

where K=|Hel&Ej | �1f+1el �Hf+\0 is defined in (IV.36) and

Wm, n
m+p, n+q(k(m) ; k� (n))

:=gm+n+p+q | dx( p) dx(q) G (%)
m+p, n+q(k(m), x ( p); k� (n), x~ (q))�a-(x( p)) a(x~ (q)),

(V.84)

for m+p+n+q=1 or =2 (see (IV.17) and (IV.18)). The proof goes
along the same lines as the one of Lemma IV.4.

Using the fact that �j �0=\1�2
0 K&1�2�j �0, we estimate

|D� L [r; [W ml , nl
ml+pl , nl+ql

; k (ml )
l ; k� (nl )

l ]L
l=1]|

=\0 |(.j �0 | (K&1�2W1(K&1�2++1)&1�2)(R� 0 [Hf ++1 ](K++1))

} } } (R� 0[Hf ++L&1](K++L&1)) } ((K++L&1)&1�2 WL(K&1�2)) .j �0)

�\0 } `
L

l=1

&(K++ l&1)&1�2 Wl (K++l )
&1�2& } `

L&1

l=1

&R� 0[Hf++ l](K++l )&

�\0 `
L

l=1
\ (Cg)ml+pl+nl+ql

\ (1�2)+(1�2) $pl+ql ,0
0

+ } `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 , (V.85)

where we set +0=+L=0, and in the last inequality we make use of (V.83),
(V.80) and (V.6). Now, we observe that ml+nl+pl+ql�1 implies that
1+$( pl+ql), 0�2(ml+nl )+pl+ql and hence

gml+nl+pl+ql

\ (1�2)+(1�2) $pl+ql ,0
0

�\ g
\1�2

0 +
ml+nl+pl+ql

} \&(ml+nl )�2
0 . (V.86)

Thus, for any a>0 and g sufficiently small such that 2Ca2g�\1�2
0 ,

|D� L[r; [W ml , nl
ml+pl , nl+ql

; k (ml )
l ; k� (nl)

l ]L
l=1]|

�&\2Ca2g
\1�2

0 +
max[M+N, L]

\1&(M+N)�2
0 a&L(2a)&ml&nl&pl&ql

_ `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 . (V.87)
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We insert this estimate into (V.68) and observe that max[M+N, L]�
M+N+2$(M+N), 0 , since L�2, for M+N=0. Additionally estimating the
binomial coefficients in (V.68) by 2ml+pl+nl+ql, we can sum up the series

|w~ M, N[r; z; k(M) ; k� (N)]| \2Ca2g
\1�2

0 +
&M&N&2$(M+N), 0

_\ (1�2)(M+N)&1
0 `

M

j=1

|kj |
(1&+)�2 `

N

j=1

|k� j |
(1&+)�2

� :
�

L=1

a&L :

l=1, ..., L
ml+pl+nl+ql=1, 2;

`
L

l=1
{\ml+pl

pl +\n l+ql

q l += (2a)&ml&nl&pl&ql

� :
�

L=1 \
a4

(a&1)5+
&L

, (V.88)

arriving at (V.81), upon the choice a :=5. K

Now, we return to the Hamiltonian H(0)[z]. Using its definition (V.8),
we find that

H(0)[z]&z=
1
\0

U\0
fP0

(H� eff [Z&1
(0) (z)]&Z&1

(0) (z)) /Hf<\0
U*\0

, (V.89)

where, recall,

Z(0) : D(Ej , \0�2) � D1�2 , ` [
ei�

\0

(`&Ej). (V.90)

This relation implies that H(0)[z] is of the form (V.9)�(V.10) with coupling
functions w(0)

M, N given by

w (0)
M, N[z; r; k(M) ; k� (N)]=\ (3�2)(M+N)&1

0 w~ eff
M, N [Z&1

(0) (z); \0r ; \0k(M) ; \0k� (N)].

(V.91)

By insertion of (V.81)�(V.82) into (V.91) and taking the definitions
(V.19)�(V.20) into account, we obtain the following corollary of Lemma V.4.

Corollary V.5. We require Hypothesis 2 and 3. Then, for sufficiently
small g\&1�2

0 >0 and M+N�0,

&w (0)
M, N [z]& (�)

2 �\ Cg
\1�2

0 +
(M+N+1)�2

} (Cg\+
0)M+N, (V.92)
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and, for M+N�1,

&�rw (0)
M, N[z]& (1)

2 �\ Cg
\1�2

0 +
(M+N+1)�2

} (Cg\+
0)M+N. (V.93)

Taking into account that \0 is bounded above by the distance of E j to
_(Hel)"[E j], we observe that a sufficiently small choice of g\&1�2

0 , together
with (V.92)�(V.93), implies (V.56). This completes the proof of Theorem V.2.

K

We point out that our analysis in Chapter IV, in particular (IV.96), gives
us control over all z # D(Ej , \0 �2), provided \0>>g2.

Corollary V.5 and Lemma V.1 imply that, for M+N�1 and 0<\<1,

&(Hf +\)&1�2 /Hf<1W (0)
M, N/Hf <1(Hf +\)&1�2&

�\ Cg
\1�2

0 +
(M+N+1)�2

\\1++
0

\ +
(M+N)�2

. (V.94)

Here, to pass from (V.47) and (V.92) to (V.94), we additionally used that
M+N�1 implies $M0+$N0�1 and that 1[++1]m�1[(++1) m+1].
This last estimate appears to be rather rough, as we do not make use of the
superexponential growth of the Gamma function. Indeed, in the renormali-
zation scheme we present in the next section, this superexponential growth
becomes important, but for our present consideration the weaker estimate
(V.94) is sufficient. Since W(0)=�M+N�1 W (0)

M, N , we obtain from (V.94)

Lemma V.6. Assume Hypotheses 2 and 3, suppose that g\&1�2
0 is sufficiently

small and that 0<\1++
0 �\1<\0�1. Then

&(Hf +\1)&1�2 /Hf<1W(0)/Hf<1 (Hf+\1)&1�2&�
Cg\+�2

0

\1�2
1

. (V.95)

Note the fact that + must be strictly positive to ensure that \1<\0 . This
makes the heuristic discussion given in the introduction precise.

V.3. Properties of the Renormalization Map R\

In this section, we study the renormalization map R\ , defined in
Eqs. (V.36)�(V.38).

V.3.1. The domain of definition of R\ . The purpose of this subsection is
to prove that R\ is defined on B( 1

8 , \�16).

Lemma V.7. The Feshbach Map f/\
and thus R\ is defined on B( 1

16 , \�16).
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Proof. Let H#(E, T, W ) # B( 1
16 , \�16). Then, for Hf �\0 ,

|T[z; Hf ]+E[z]&z|�|T[z; Hf ] | &
\
8

�
3
4

(Hf+\). (V.96)

On the other hand, by Lemma V.1,

&(Hf +\)&1�2 /Hf<1W/Hf<1 (Hf +\)&1�2&�
32(?�3)1�2 !=

\1�2 . (V.97)

Hence, if =\&1�2< 1
4 (?�3)&1�2, then the operator /� \(H[z]&z)/� \ is invertible

on Hred=/� \F. Indeed, this follows by expanding /� \(H[z]&z)/� \ into a
Neumann series in /� \W/� \ . The invertibility of /� \(H[z]&z)/� \ and the defini-
tion (IV.4) of f/\

imply the statement of the lemma. K

V.3.2. The contraction property of the renormalization map R\ . In this
subsection we prove that R\ is a contraction on small balls B( 1

16 , \�16)
around the fixed point Hf # FP. As before, we identify an operator family
(E, T, W

�
) # W2 with its generalized normal form H=/1(E+T+W)/1 .

Denote H0 :=(E+T )/1 . The desired contraction property will be derived
from the following

Theorem V.8. Let +>0 and pick \ and ! satisfying 0<\+� 1
16 and

0<2 - ? !�min[1�12, \(3++)�4]. Assume furthermore that 0<$�1�8 and
=\&1�2�1�12800. Then, for H # B($, =), we have

&R\(H)&R\(H0)&2�' &H&H0&2 , (V.98)

where

'=8\+�2. (V.99)

Proof. Here we only sketch some key ideas of the proof. The complete
proof, including the precise determination of the parameters +, \, !, =, $,
and ' can be found in [5]. Denote H� :=D\(H) and H� :=R\(H), so that
H� [z]=S\(H� [Z&1(z)]). Write H� in the generalized normal form: H� =
/\(E� +T� +W� )/\ . Then the coupling functions, w~ M, N , entering W� can be
represented, for (k(M), k� (N)) # BM

\ _BN
\ , as

w~ M, N[z; r; k(M), k� (N)]=w~ T
M, N[z; r; k(M), k� (N)]+2w~ M, N[z; r; k (M), k� (N)],

(V.100)
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where w~ T
M, N :=wM, N and 2w~ M, N is given by

2w~ M, N[z; r; k(M); k� (N)]

= :
�

L=2

(&1)L&1 :

l=1, ..., L
ml+pl+nl+ql=1, 2;

$� L
l=1 ml , M$� L

l=1 nl , N

_ `
L

l=1 {\
ml+q l

p l +\nl+q l

ql += [D� L [r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl )

l ]L
l=1]]symm

M, N ,

(V.101)

in analogy to (V.69). We remark that the representation (V.101) is valid
for 2w0, 0 , as well. We obtain, for M+N�1, that

|wM, N[z; r; k(M) ; k� (N)]|�=!M+N `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 , (V.102)

and we estimate |D� L[ } } } ]| in a similar way as in the proof of Lemma V.4,
using that !�1�4:

|D� L[r; [W ml , nl
pl , ql

; k (ml )
l ; k� (nl)

l ]L
l=1; [R� 0]L&1

l=1 ]|

�\ `
L

l=1

C=!ml+nl+pl+ql

\(1�2)+(1�2) $pl+ql ,0
`
M

j=1

|k j |
(+&1)�2 `

N

j=1

|k� j|
(+&1)�2

�\ } \4C=
\ +

L

} \ 4!
\1�2+

M+N

} `
L

l=1
\1

4+
ml+nl+pl+ql

} `
m

j=1

|kj|
(+&)�2 `

N

j=1

|k� j |
(+&1)�2. (V.103)

Moreover,

:

l=1, ..., L
ml+ } } } +ql�1

`
L

l=1
{\ml+pl

pl +\nl+ql

ql +\1
4+

m1+nl+pl+ql

=
�\ :

�

m=0

2&m+
4L

=(16)L. (V.104)

Thus, putting together (V.103) and (V.104) and summing over L�2 with
16C=<\1�2, we obtain

|(w~ M, N&wM, N )[z; r; k(M) ; k� (N)]|

�C=2 \ 4!
\1�2+

M+N

} `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2.
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We define, in accordance with the equation H� [z]=S\(H� [Z&1(z)]),

ŵT
M, N[z; r; k(M), k� (N)] :=\(3�2)(M+N)&1w~ T

M, N[Z&1(z); \r; \k (M), \k� (N)],

(V.105)

2ŵT
M, N [z; r; k(M), k� (N)] :=\(3�2)(M+N)&12w~ M, N[Z&1(z); \r; \k (M), \k� (N)],

(V.106)

so that ŵM, N=ŵT
M, N+2ŵM, N , and we obtain from (V.102)

|ŵT
M, N[z; r; k(M), k� (N)]|

�
=
\

(!\1+(+�2))M+N } `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 . (V.107)

From (V.104), we get

|2ŵM, N[z; r; k(M); k� (N)]|

�C=2(4!\(1�2)+(+�2))M+N `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 . (V.108)

Since \+�2<1�16 (actually, \(1++)�2�1�4 would suffice here, but not for the
estimate on �r ŵM, N), by assumption, Estimate (V.108) yields, for M+N�1,

|ŵM, N[z; r; k(M) ; k� (N)]|

�\+�2 =[1+C=] } !M+N `
M

j=1

|kj |
(+&1)�2 `

N

j=1

|k� j |
(+&1)�2 . (V.109)

We observe that the requirement +>0 is forced upon us by the behaviour
of ŵT

0, 1 and ŵT
1, 0 under renormalization��all other terms renormalize to 0

with a higher power of \. Separately, we note that (V.108) with M=N=0,
the inequality =2�\1�2 =, and the relation w (0)

0, 0[z; 0] :=\&1w0, 0[Z&1(z); 0]
yield, for z # D1�2

|2ŵ0, 0[z; r]|�C=2�C\1�2 =. (V.110)

Thus, for z # D1�2

|E� [z]|, |T� [z; r]|�C\1�2=, (V.111)

which, by Cauchy's estimate, implies

|�z E� [z]|, |�zT� [z; r]|�4C\1�2=<1�6, (V.112)

for all z # U(in)�D1�4 and a sufficiently small choice of =\1�2.
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Now we turn to the estimate of |�rT� &1|. Let us return to (V.96). At a
first glance, it seems that all that is required to prove (V.96) is a bound on
|r&1T� [z; r]&1|. Indeed, for r�\, we may estimate,

|T� [z; r]&E� [z]&z|�r(1& sup
[0, 1]

|r&1T� [z; r]&1|)&
\
2

�r \1
2

& sup
[0, 1]

|r&1T� [z; r]&1|+>0,

provided |r&1T� [z; r]&1| is sufficiently small. However, a bound on
|r&1T� [z; r]&1| requires control of |�rT[z; r]&1| and of |�r wM, N[z, ...]|
for arbitary values of r in the interval [0, 1], as we show in an example
below. Thus to ensure that R maps a space of Hamiltonians into itself, this
space has to be equipped with a norm that yields control over the derivatives
|�rT&1| and |�rwM, N |. This is reflected in our choice of the norms & }&(�) and
& }&(1), defined in (V.19) and (V.20). To illustrate the key idea of the proof we
study one contribution to 2w~ 0, 0 given by (surpressing the z-dependence in
our notation)

S(r) :=(W 0, 0
0, 1R� 0[Hf +r] W 0, 0

1, 0) 0

=| w0, 1[r; x]
/[r+|(x)�\]
T[r+|(x)]&Z

w1, 0[r; x] dx. (V.113)

First, we observe that the derivative of S at r=0 depends on the derivative
of T at an arbitrary point, |(x) # [0, 1]. Next, we compute the derivative
of S:

�rS(r)=| w0, 1[r; x] \$(r+|(x)&\)
T[\]+E&z + w1, 0 [r; x] dx

&| w0, 1[r; x] \�rT[r+|(x)] /[r+|(x)�\]
(T[r+|(x)]+E&z)2 + w1, 0[r; x] dx

+| �rw0, 1[r; x] \ /[r+|(x)�\]
T[r+|(x)]+E&z+ w1, 0[r; x] dx

+| w0, 1[r; x] \ /[r+|(x)�\]
T[r+|(x)]+E&z+ �rw1, 0[r; x] dx. (V.114)
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From (V.114), we draw the following conclusions:

(a) The first term on the right side of (V.114) is given by

|
S2=[ |n| =1]

w0, 1[r; (\&r)n] w1, 0[r; (\&r)n]
(\&r)2 d 2n

T[\]+E&z
(V.115)

and is bounded by C=2!2 \+, for all 0�r�\.

(b) The second term is bounded by C=2!2\&1.

(c) We bound the third term of (V.114) as follows:

}| �rw0, 1[r; x] \ /[r+|(x)�\]
T[r+|(x)]+E&z+ w1, 0 [r; x] dx }

�&w1, 0& (�) } \&1 } |
|�rw0, 1[r; x]| dx

|x| (+&1)�2

�\&1 } &w1, 0 &(�) } &�rw0, 1 &(1)�C=2!\&1(4?!\1�2). (V.116)

The fourth term is bounded similarly.

From summing the terms in (a)�(c) we obtain

|�rS|�C \ =
\1�2+

2

!2, (V.117)

for all 0�r�\. To bound a general contribution

�r(W m1 , m1
p1 , q1

R� 0[Hf ++1] } } } R� 0[Hf ++L&1] W mL , nL
pL , qL

) 0 (V.118)

to 2w~ M, N , we evaluate the derivative using Leibniz' rule and estimate the
resulting terms as in (a)�(c) above. Here, an additional problem arises
from the large number of terms generated by writing each contribution to
(V.118) of the form

( (W1R� 0[Hf ++1] } } } R� 0[Hf ++l&2] Wl&1 R� 0[Hf ++l&1])

_�Hf
(WlR� 0[Hf ++l ])(Wl+1R� 0[Hf ++l+1]

} } } R� 0[Hf ++L&1]WL)) 0 | r=Hf
, (V.119)

with Wj :=W mj , nj
pj , qj

, as a sum of Wick-contractions between the factor to
the left of �Hf

(WlR� 0[Hf ++ l]) and the factor to its right. This problem is
solved by using (V.47): If n! terms are generated by n contracted creation
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and annihilation operators, then each term is bounded by 1[(++1) n+1]&1

�(n!)&1. At this point, we also need to make use of the assumption \+�2�1�8
which illustrates that our method does not yield uniform control over R as
+� 0. Further details on this estimate can be found in [5]. Similarly, one proves
the bound on &�rwM, N& (1)

2 . This completes the proof of Theorem V.8. K

Theorem V.8 implies that,

R\ : B($, =) � B($+'=, '=), (V.120)

provided that $�1�8, =\&1�2 is sufficiently small, and '=8\+�2�1�2, as
specified in (V.99). Applying this relation iteratively, we arrive at

Theorem V.9. Let +>0 and pick \ and ! satisfying 0<\+� 1
16 and

0<2 - ? !�min[1�12, \(3++)�4]. Assume furthermore that 0<$�1�8 and
=\&1�2�1�12800. Then, for all n�1, we have

Rn
\ : B($, =) � B($(n) , 'n=), (V.121)

where $(n)=$+= �n
k=1 'k.

Let us define \0 :=g2&2{�min[1, 1
2 - 1&cos � $] as in Chapter IV,

Eq. (IV.27), for some 0<{<1. We note that Hypothesis 3 implies that
Hypothesis 2 holds for any 0�;�1. Our initial condition for the iteration
of R is given by H(0)=(E(0) , T(0) , W

�
(0)). Upon the choice

\0�g3�2, =(0) :=Cg1�2,
(V.122)

\ :=min[4?, 2&16�+], and 2 - ? ! :=min[1�12, \ (3++)�4],

it is ensured that H(0) # B(=(0) , \=(0)) (see Theorem V.8 and further details
in [5]).

V.4. Spectrum of Hg(%)

In this section, we locate the spectrum of Hg(%) by means of the isospectral
property of R\ .

V.4.1. Cuspidal domains of spectrum. First, we investigate the convergence
of the composition of the maps Z(n) , for n�0. Recall from (V.42) that the
iterated application of R\ onto H(0)[z] is defined as H(n)[z]#(E(n)[z],
T(n)[z], W(n)[z])=Rn

\(H(0))[z]. The isospectral property of R\ guarantees
that

Z&1
(n) [z] # _*(Hg(%)) � 0 # _*(H(n)[z]&z), (V.123)

where

Z&1
(n) =Z&1

(0) b Z&1
(1) b } } } b Z&1

(n) : D1�2 � U (in)
(n) , (V.124)
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with Z(0)(`)=ei�\&1
0 (`&Ej) on U (in)

(0) :=D(Ej , \0 �2), and, for n�1,

Z(n) : U (in)
(n) � D1�2 , ` [

1
\

(`&E(n&1)[`]), (V.125)

where

U (in)
(n) =[` # D1�2 | |`&E(n&1)[`]|�\�2] (V.126)

(cf. Eqs. (V.43)�(V.46)). We define

S(n)=Z&1
(n) (D1�4). (V.127)

For A�C, the inner and outer radius of A are defined by

inner rad(A) :=sup
z, r

[r | D(z, r)�A] and (V.128)

outer rad(A) :=inf
z, r

[r | D(z, r)$A]. (V.129)

Lemma V.10. For all n=1, 2, ...

S(0)$S(1)$S(2)$ } } } $S(n) , (V.130)

\0 \2\
5 +

n

�inner rad(S(n))�outer rad(S(n))�\0 \4\
3 +

n

. (V.131)

where the number Ej ( g) # C defined by [Ej ( g)]=�n # N S(n) , is uniquely
determined by the sequence

Ej ( g)= lim
n � �

Z&1
(n) (0). (V.132)

Proof. Since, U (in)
(n) �D1�4 , for n=N0 , we clearly have

S(n+1)=Z&1
(n+1)(D1�4)�Z&1

(n+1)(D1�2))�Z&1
(n) (D1�4)=S(n) , (V.133)

and thus (V.130). By the same argument, Z&1
(n) (U(in)

(n) )�Z&1
(n&1)(U

(in)
(n&1))� } } }

�Z&1
(0) (U(in)

(0) ), and |�zE(n) |�4='n�1�4, by Theorem V.9. Thus, for z # U (in)
(n) ,

3
4\

|z|�|Z(n)(z)|=\&1 |z&E(z)|�
5

4\
|z|, (V.134)

which implies that

4\
5

|z|�|Z&1
(n) (z)|�

4\
3

|z|, (V.135)
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for z # D1�2 . Iterating this estimate, we obtain

outer rad[Z&1
(n) (D1�4)]�

\0

4
} \4\

3 +
n

, (V.136)

proving the right inequality in (V.131). Next, using |�zE(n) |�1�4 again, we
infer that, for z # D"[0],

|arg[Z&1
(n) (z)]&arg[z]|�?�4, (V.137)

and hence

inner rad[Z&1
(n) (D1�4)]�

\0

4 \2\
5 +

n

. K (V.138)

Having found Ej ( g), the number in C& that we later identify to be the
resonance we sought for, we also wish to determine a deformed line segment,
i.e., a function,

Tj ( g, } )#T(�) : [0, 1] � C& , (V.139)

that represents the ``continuous spectrum'' for the perturbed operator
Hg(%). We put ``continuous spectrum'' in quotation marks because we do
not prove the existence of continuous spectrum for Hg(%), but we rather
show that any spectrum of Hg(%) in U (in)

(0) =E0+D\0 �2 is contained in a
cuspidal domain about Ej ( g)+[T(�)(r) | r # [0, 1]]. In fact, since Hg(%) is
not self-adjoint, the notion of a spectral measure may not make sense for
Hg(%) at all.

We outline the construction of T(�) , and we refer the reader to [5] for
details. First, we define functions

`(n) : [0, 5�16] � D3�8 , (V.140)

for each n # N0 , by the requirement that |`(n)(r)&r|�1�16 and that

`(n)(r)=T(n) [`(n)(r); r], (V.141)

where T(n) is defined in (V.42). To see that Eq. (V.141) has a unique solu-
tion for every r # [0, 5�16], we set `(n)(r) :=r+$ and 2T({) :=
T(n)[r+{; r]&r. Then (V.141) reads

$=2T($). (V.142)

By Cauchy's estimate and =�1�16, we have that

|�z2T(`)|�= } ( 1
2& 5

16&|`| )&1� 1
2 , (V.143)
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for |`|�1�16, and the existence of $ in (V.142) follows from a fix point
argument, indeed.

Secondly, we pick , # C�(R+0) such that ,$�0, ,#1 on [0, 1�4], and
,#0 on [5�16, �]. We use , to define, for n=0, 1, 2, 3...

`(av)
(n) (r) :=,(r) } `(n)(r)+(1&,(r)) } Z(n) [`(n&1)(\r)], (V.144)

where `(&1)(r) :=r and 0�r<1.
Next, we set

Ej ( g)+T(�)(r) := :
�

n=0

/[\n+1�r<\n] } Z&1
(n) [` (av)

(n) (\&nr)], (V.145)

for all r # [0, 1]. Although this is not obvious, T(�) , as defined in (V.145),
is Lipshitz continuous.

Finally, we define a cuspidal domain, for {>0,

K(�)({) :=[T(�)(r)+b | 0�r<1, |b|�{ } r1+(+�4)], (V.146)

and we claim that the following inclusion holds true.

Theorem V.11. Assume that (V.122) holds and let g\&1�2
0 be sufficiently

small. Then, there exists a constant, C, such that the spectrum of Hg(%)
obeys

_(Hg(%)) & U (in)
(0) �Ej ( g)+K(�)(C=(0)\&9�2). (V.147)

We remark that Theorem V.11 implies (I.51) in Theorem I.3.
We sketch some key ideas in the proof of TheoremV.11. First, we use the

functions ` (av)
(n) from (V.144) to define, for any $$>0,

U(out)
(n) ($$) :=[z # D1�2"U (in)

(n) | \r: |z&` (av)
(n) (r)|�$$ } |z&E(n)(z)|] (V.148)

(see Fig. V.4).
Then we show that a sufficiently large choice of $$ ensures that U (out)

(n) ($$)
is contained in the resolvent set of H(n) . More precisely, we have

Theorem V.12. Then there is a constant C�0 such that, for all n�1,
H(n)(z)&z is invertible, for all z # U (out)

(n) (C=\&2'n&1).

Using the isospectral property of the Feshbach map, we conclude from
Theorem V.12 that the resolvent set, \(Hg(%)), of the dilated Hamiltonian
contains

U (in)
(0) & \(Hg(%))$ .

�

n=0

Z&1
(n) [U (out)

(n+1)(C=\&2'n)]. (V.149)
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FIG. V.4. Identifying the resolvent set by means of U (out)
(n) .

Choosing $$n :=108=\&2(8\+�2)n&1, we obtain from (V.149) that

_(Hg(%)) & U (in)
(0) �U (in)

(0) > .
�

n=0

Z&1
(n) [U (out)

(n+1)($$n+1)]

=\ .
�

n=0

Z&1
(n) [D1�2"U (in)

(n+1)]+>\ .
�

n=0

Z&1
(n) [U (out)

(n+1)($$n+1)]+
= .

�

n=1

Z&1
(n&1) [D1�2"(U (in)

(n) _ U (out)
(n) ($$n))], (V.150)

additionally using the fact that U (out)
(n) ($$n)�D1�2 "U (in)

(n) and the pairwise
disjointness of Z&1

(n) [D1�2 "U (in)
(n+1)]�U (in)

(0) , for different values of n # N.
Then, we obtain Theorem V.11 from (V.150) by showing that, for every
n # N,

Z&1
(n&1) [D1�2 "(U (in)

(n) _ U (out)
(n) ($$n))]�Ej ( g)+K(�)(C= (0)\&9�2). (V.151)

V.5. Existence of Resonances

Our last topic is the proof of the existence of a resonance in the vicinity
of Ej . More precisely, we now prove

Theorem V.13. Let Ej ( g) be the number constructed in Lemma V.10
and assume that g is sufficiently small. Then Ej ( g) is an eigenvalue of Hg(%)
with normalized eigenvector, �g(%) # Hel�F, that has a non-vanishing overlap
with .el, j �0.

Proof. The key element of our proof consists in estimating the overlap
of �g(%) with .el, j �0. We obtain �g(%) as a limit of a sequence, [�m]m>0 ,
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where *m
(n&1) :=(Z� m

(n))
&1 [*m

(n)] and

�� m
(n&1)=(/\+/� \[/� \ H m

(n&1)(*
m
(n&1)) /� \&*m

(n&1)]
&1 /� \W m

(n&1) /\)

_Uf [&ln \]* �� m
(n) , (V.161)

where �� m
(n)=0. By Theorem V.9 and Lemma V.1, we have that

&/� \[/� \H m
(n&1) /� \&*m

(n&1)]
&1 /� \W m

(n&1) /\&�'n =(0) \&1�2. (V.162)

Thus

&�� m
(n&1) &�(1+=(0) \&1�2 'n&1) } &�� m

(n) &. (V.163)

Proceeding recursively, we obtain from (V.161) and (V.163) an eigenvector
�� m of Hm, corresponding to the eigenvalue *m :=(Zm

(n))
&1 [*m

(n)], whose
norm is bounded by

&�� m&� `
n

j=0

(1+=(0) \&1�2'n&1)�exp _C= (0)

\1�2 \ 1
1&'+&<�. (V.164)

Moreover, |(�� m | .el, j�0) |=1. Passing to �m :=&�� m &&1 �� m, we
conclude that Hm has the eigenvalue *m with normalized eigenvector �m.
This eigenvector has a non-vanishing overlap

|(�m | .el, j �0) |�exp _&C=(0)

\1+(+�2) \ 1
1&'+&>0, (V.165)

uniformly in m � 0. Now, we proceed in analogy to Section II.6. Indeed, we
appeal to the proof of Theorem II.8 to establish the analogues of (II.30)�(II.34).
Essentially, it remains to show that m [ Hm is a norm-resolvent continuous
family of operators for m # [0, m0] and m0>0 sufficiently small. We define
�g(%) :=w&limm � 0 �m for a suitable subsequence [�m]m>0 , noting that
�g(%){0, by (V.165). Thus, �g(%){0 is the desired eigenvector of Hg(%)=
Hm=0 since, by norm-resolvent continuity, Hg(%) �g(%)=Ej ( g) �g(%), for
Ej ( g) :=limm � 0 *m, indeed. K
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