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ABSTRACT. We study generalized V-filtrations, defined by Sabbah, on D-modules under-
lying mixed Hodge modules on X x A". Using cyclic covers, we compare these filtrations
to the usual V-filtration, which is better understood. The main result shows that these
filtrations can be used to compute o', where o: X x {0} — X x A" is the inclusion of the
zero section.

As an application, we use the restriction result to study singularities of complete inter-
section subvarieties. These filtrations can be used to study the local cohomology mixed
Hodge module. In particular, we classify when weighted homogeneous isolated complete
intersection singularities in A™ are k-Du Bois and k-rational.

1. INTRODUCTION

Over the complex numbers, singularities of local complete intersection subvarieties have re-
cently been studied using Saito’s theory of mixed Hodge modules [MP22, CDMO24, CDM22].
One of the cornerstones of these applications is the extension, beyond the hypersurface case,
of the relation between the Hodge module structure on local cohomology with V-filtrations
and Bernstein-Sato polynomials.

A key technical tool in extending this relationship is an understanding of the V-filtration
of mixed Hodge modules along higher codimension smooth subvarieties. This V-filtration
and its relation to Bernstein-Sato polynomials was first introduced in [BMS06]. The Hodge
module theoretic properties were further studied in [CD23, CDS23]. For a brief review of
V-filtrations and mixed Hodge modules, see Section 2 below.

For a smooth complex algebraic variety X, we consider 7' = X x A} with coordinates
t1,...,t, on A7. Kashiwara and Malgrange showed that any Dr-module M underlying a
mixed Hodge module M on T admits a V-filtration (VA*M)eq by Dx (not Dr)-submodules.

Three important properties of this filtration are that it is discretely indexed, we have
tVAMC VMM, 9, VAIM CVATIM,

and the shifted Euler operator Y"'_, #;0;, — A + r is nilpotent on Grg,(M).

We can define Koszul-like complexes

AM) = [VIM S PVIIM D B VETM

i=1
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and

BMM) = ) 4, @ G (M) 55 By G (M)

placed in degree 0,1,...,r.

It is not hard to see (as shown in Proposition 2.10 below) that most of these complexes are
acyclic. The most important one (and essentially the only one) that is not necessarily acyclic
is the complex for A = 0. In fact, the cohomologies of this complex are shown to compute
the D-module theoretic restriction of the module M to the zero section X x {0} C X x AJ.

The main results of [CD23, CDS23] are extensions of the acyclicity and restriction results
to the setting of mixed Hodge modules. Careful statements of these results are found in
Theorem 2.11 below.

The main objective of this paper is to extend these results to more general V-filtrations,
defined by Sabbah [Sab87]. The proper definition is given in Section 2 below. For now, we
just mention that associated to a tuple (a1, az,...,a,) € Z>o, we can define a linear form
L =>"7_, a;s;, which is called a slope. Such a slope is non-degenerate if a; > 0 for all i. We
set |L| =37 1 a; and L(t0;) = >i_, a;t;Oy,.

Sabbah defines the unique “V-filtration on a Dy-module M by similar properties to the V-
filtration described above, except one requires L(t0;) — A + | L| to be nilpotent on Gr%v(/\/l),
which for the remainder of the paper we will write as Grz(M). This imposes the other
conditions t;“*VAM C LV M and 9, *VAM C LVA=% M. This filtration heavily depends
on the ordered choice of coordinates t1,...,t,: for example, even reordering the coordinates
gives a different filtration, corresponding to the slope with permuted coefficients.

If L = Y0 s, then LV*M = V°*M from above. In fact, if L = Y icr Si for some
I C{1,...,r}, the filtration “V*M is the V-filtration along {t; | i € I}.

In analogy with the above, we can define Koszul-like complexes

AAM) = [FVIMm S PEviem B S LV’\+LM] ,
i=1
B} (M) = |Gr} (M —> GBGeraZ L Gr )‘+L|(M)]

placed in degree 0,1,...r.

Proposition 3.9 below shows that, at the D-module level, we have the acyclicity and re-
striction results for these complexes. The main result of this note is the extension to the
mixed Hodge module setting.

If (M, F,W) is a bi-filtered Dp-module underlying a mixed Hodge module M on T, we
define filtrations

Fp A (M) =

.

t; . t; t;

Fpre ' VIM S P FppVATEM S Fp+rLV’\+|L|M] :
i=1

ti

FpprGrp (M) L5 @FHTGW‘M M) L Ly FWGW'L'(M)] .

=1

FpB%(M) =
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Moreover, the nilpotent operator L(td;) — A 4 |L| on Gr} (M) and the induced filtration
M,Gr} (M) = Gr} (W, M) give rise to the relative monodromy filtration WeGr} (M). This is
recalled in more detail in Section 2 below. The complex BY (M) admits a filtration We B? (M)
by taking the relative monodromy filtration on each piece.

With this notation in place, we have the following:

Theorem A. Let L =), _, a;s; be a non-degenerate slope and let (M, F, W) be a bi-filtered
Dr-module underlying a mized Hodge module. The complezes

AY (M, F) and BY (M, F) are filtered acyclic for all x > 0.
Moreover, we have filtered quasi-isomorphisms
o' (M, F) =2 AY (M, F) = B} (M, F),
and the latter two complexes are strictly filtered.
Finally, the filtration WeH'BY (M, F) induced by WeB? (M, F) satisfies
Gy H'BY(M, F) = Gt} Hio' (M, F),
as filtered Dx-modules underlying polarizable Hodge modules of weight k + i.

Remark 1.1. The old ideas in [CD23] are not sufficient to prove Theorem A because the
LY/ filtration depends on the choice of coordinates.

The ideas in [CDS23] are used below; however, they do not automatically give us the
strictness of the complex B%(M, F). Indeed, the same problem arises in this situation: the
Ly filtration depends on the choice of coordinates ti,...,t,, and to prove strictness as in
[CDS23], one takes ¢, to be a general linear combination of t1,. .., t,.

Remark 1.2. A few results from [CD23] are missing in this paper. Namely, we would like to
understand the Koszul-like complexes

o, . o, o,
CrM) = |Gy vy 25 @ ary T M) S5 LSS Gy (M)
=1

in degree —r,...,—1,0.

It is not hard to see that, at the D-module level, C¥(M) is acyclic for all y # 0. For
L =>3""_, s;, however, we know that C°(M) is quasi-isomorphic to o*(M). At the moment,
we do not see a way to prove this even in the D-module setting. Naturally, one would also
want to study the corresponding filtered complexes and compute o* for mixed Hodge modules
using the complex C (M, F).

Another missing result is the understanding of the Fourier-Laplace transform of an L-
monodromic mixed Hodge module. The notion of L-monodromic modules is reviewed below.
If one had an understanding of the Fourier-Laplace transform of such a module, then applying
it to Spy (M) (as constructed below), and using Theorem A, one would obtain the results
concerning the complex CX(M) mentioned at the beginning of this remark.

The paper ends with an application of Theorem A to the study of singularities of local
complete intersection subvarieties. If Z C X is defined by a regular sequence fi,..., f, in
Ox(X), we can define a pure Hodge module By on T' of weight n = dim(X). Its underlying

Dr-module is
By = P 0x07sy,
aeNT”
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whose D-module structure is explained in Section 5 below.
If 0: X x {0} — T is the inclusion of the zero section, we have a natural isomorphism
H'o'By = (Hy(Ox), F, W),
where the right hand side is the bi-filtered local cohomology Dx-module along Z, which is
traditionally computed using the Cech complex for fi,..., fr.

By [MP22,CDMO24,CDM22], the Hodge module structure of H7,(Ox) is related to higher
classes of singularities. These are the classes of k-Du Bois and k-rational singularities, where
k € Z>o, whose definitions are reviewed in Section 5 below. For k = 0, these agree with the
classical notions of Du Bois and rational singularities, hence the terminology.

In [CDMO24], the authors and Mustata define a numerical invariant of Z, the minimal
exponent a(Z), in terms of V*By. The minimal exponent satisfies the following implications:

a(Z) > r+k <= Z has k-Du Bois singularities,
a(Z) >r+k <= Z has k-rational singularities.

From this, we see that Z has k-rational singularities if it has (k + 1)-Du Bois singularities,
and it has k-Du Bois singularities if it has k-rational singularities. We say Z has k-liminal
(or strictly k-Du Bois) singularities if a(Z) = r + k.

Our first main result in the study of singularities is the following description of the mixed
Hodge module structure on local cohomology:

Theorem B. Let Z =V (f1,...,fr) C X be a complete intersection of pure codimension r.
Let L be a non-degenerate slope. Then for all p,{ € Z>o, we have
Fp+rWn+r+ffH%(OX)
alh
= Z Ocl-‘rl—aar—l-l ‘ u = Z haa?(gf € LV‘Lle,L(tat)Z+1U € LV>|L‘Bf
loj<p 7L AT || <p

An immediate corollary of this computation is the following:

Corollary C. Let Z =V (f1,...,fr) € X be a complete intersection of pure codimension .
Let L be a non-degenerate slope. Then

Fy By C LV|L|Bf <= Z has k-Du Bois singularities,
L(t0y) FpyrBy C LV>|L|Bf <= Z has k-rational singularities.

Finally, the corollary allows us to prove the following, which is a generalization of the
main result of [CDM?24]. Note that, here, we do not give an exact formula for the minimal
exponent, but what we show is enough for the singularity classification.

Let fi,...,fr € Clx1,...,2,] be weighted homogeneous of (integer) degrees d; < --- < d,
with weights (w1, ..., w,) € Z%,. Assume Z =V (f1,..., f;) C A} is a complete intersection
of pure codimension r with an isolated singularity at 0.

Corollary D. The complete intersection Z has Du Bois (hence, log canonical) singularities
if and only if |w| =31 w; > di + -+ 4+ dr. In this case, let

’w|—2r—1di
k= | ——=—==—"|.
e
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Then

|w| — Z;:l di
d, ’

and in fact, ao(Z) = r + k if and only if d. | (Jw| — >°1_; ;).

In particular, for this value of k, we see

r+k<ao(Z)<r-+

T
Z has k-liminal singularities near 0 <= d, | <|w| - Z dz-)
i=1

Z has k-rational singularities near 0 <= d, { <]w| - Zdz> .
i=1

We expect that the equality ap(Z) =r + % holds in the setting of Corollary D.

Qutline. Section 2 contains the background needed for the proofs of the main results.
In Subsection 2.1, we provide a review of the theory of mixed Hodge modules, including a
review of hypersurface V-filtrations. Subsection 2.3 reviews the results for higher codimension
V-filtrations. The definition and properties of the filtration “V*M are given in Section 3.
The Verdier specialization process is used in Subsection 3.1 to study *“V-filtrations on mixed
Hodge modules, using the properties of hypersurface V-filtrations.

Section 4 contains the proof of Theorem A. It begins with an analysis of mixed Hodge

modules under cyclic coverings X x A7 — X x A} defined by
(T, wi,. . wye) = (z,w]t o wer).

The main point is that the usual V-filtration on 7'(M) can be related to the “V-filtration
on M. Two difficulties are that 7r!(—) need not preserve pure modules (though we give a
criterion for when a pure Hodge module pulls back to a pure module, in a special case) and
the Hodge filtration is not easy to understand. We work around this by using the fact that,
on restriction to the étale locus, things behave nicely.

The final Section 5 contains the proof of Theorem B, Corollary C and the example of
weighted homogeneous complete intersections with isolated singularities. In particular, The
proof of Corollary D is a combination of results in Section 5.1. Though we cannot give an
exact computation of the minimal exponent in the latter example (except in special cases),
we give an easy criterion to check whether such a subvariety has k-Du Bois or k-rational
singularities.

Acknowledgments The authors would like to thank Mircea Mustata for his thoughtful
advice. We would also like to thank Lei Wu for many helpful discussions on the topic of
the paper. The second author would like to thank Christian Schnell and Claude Sabbah for
many enlightening conversations about ideas occurring in this work.

2. PRELIMINARIES

We do not provide a review of the theory of D-modules in this paper, though we will review
the necessary notions as they arise. For reference, see [HTTO08].
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2.1. Mixed Hodge modules and V-filtrations of hypersurfaces. In this subsection, we
discuss the relevant aspects of the theory of mixed Hodge modules. For details, one should
consult Saito’s papers [Sai88,Sai90] or Schnell’s survey article [Sch14].

Let X be a smooth algebraic variety over C with dim(X) = n. Saito associates to X an
abelian category MHM(X), the category of mized Hodge modules on X. A mixed Hodge
module on X consists of the following data: a filtered regular holonomic Dx-module (M, F),
with a finite filtration WM by sub-Dx-modules, a finite filtered Q-perverse sheaf (I, W),
and a comparison morphism

a: (K, W) ®q C — DRx (M, W)

which is a filtered quasi-isomorphism. These data are subject to various conditions which
we will not fully explain here. Some of the conditions are the following, which concern the
interaction between the Hodge filtration Fe M and the V-filtration V*M on M along any
(locally defined) function f € Ox.

First, we recall the definition the V-filtration of Dy, s1-modules along ¢, which is the
coordinate on Al. The Dy, A%—module if+(M) admits a V-filtration along t, which, following
Saito, is a decreasing, discrete' and left continuous®, Q-indexed filtration V*M satisfying the
following conditions:

(1) VM is coherent over V0D a1 = Dx|t, 0],
(2) tVeM C VM for all a € Q, with equality for o > 0,
(3) VM C VY IM for all a € Q,
(4) the operator td; — « + 1 is nilpotent on Gr{y(M) = VXM /V>*M, where VZ*M =
Ussa VM.
Remark 2.1. Below, we will also use the operator s = —0;t. This is more natural in the study
of singularities and b-functions. We clearly have

s=—(toy + 1),
so condition 4 can be restated as requiring s + a to be nilpotent on Gr{;(M).

Example 2.2. Let M be supported in {¢t = 0}. Then Kashiwara’s equivalence (see [HTT08,
Sect. 1.6]) tells us that M = i, Mo where My = ker(t) C M is a Dy, qp-module and
it X x {0} = X x A} is the closed embedding. Thus,

M = P Mooy,
k>0
and it is not hard to check that
VM=vPMm= B Mo}
k<—[A]
is a V-filtration of M along t.

If a V-filtration on M along ¢ exists, then it is unique. Hence, existence is an intrinsic
property of the D-module M. The uniqueness implies the following:

IThis means that there is an increasing sequence a; € Q with lim; , o a; = —oo and lim; . a; = 00,
such that VXM for x € (o, aj+1) only depends on j.
Meaning VXM = Np<y VP M. In other words, VXM is constant for x € (a;, j+1].
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Lemma 2.3. Let 0 - My — My = M3 — 0 be a short exact sequence of Dy, o1-modules
such that M; admits a V -filtration along t for i =1,2,3. Then, for all A\ € Q, the sequence
0=V My = VMo - VM3 =0

18 exact.

From this and Example 2.2, we see that positive pieces of the V-filtration only depend on
the restriction to {t # 0}.

Lemma 2.4. Let ¢: M — N be a morphism of Dy x ar-modules such that @lgez0y 1s an
isomorphism.
Then for all A > 0, ¢ induces an isomorphism
©: VM= VAN,

For f € Ox(X), let iy: X — X x A} be the graph embedding along f. We say that the
V-filtration of a Dx-module M along f exists if the V-filtration of is_ (M) along ¢ exists.
For Dx-modules underlying mixed Hodge modules, the V-filtration exists for any locally
defined function f € Ox.

Returning to a Dy a1-module M, it is not hard to see using Condition 4 that the maps
t: GIf (M) — GrEtt (M),

Op: GrEtt (M) — Gr (M)
are isomorphisms for all o # 0. In fact, Condition 2 shows that ¢: VoM — VeTIM is an
isomorphism for all a > 0.

If (M, F) is a filtered Dx-module, then if (M) is also a filtered Dy, p1-module. Indeed,

we can write iy (M) = D> MOFSs, and we have
Fyig (M) = @ Fpok 1 MO Sy,
k>0

where the shift by 1 is a normalizing convention due to the relative dimension of iy: X —
X x A}

Saito imposes the following conditions on the filtration Fe M: for any f € Ox(X), we have
(1) t: FV%p (M) — E,V*ti, (M) is an isomorphism for all a > 0,

(2) O FpGrdti(iy 1 (M)) — Fpy1Gr$i(is 4 (M)) is an isomorphism for all a < 0.

Remark 2.5. Another property imposed on filtered D-modules underlying mixed Hodge mod-
ules is the following: for (M, F) underlying a mixed Hodge module on X x A}, the filtration
induced by FoM on Gr{y(M) is a good filtration.

In fact, we have the following (see [Sai88, Cor. 3.4.7] and [SS, Prop. 10.7.3]): for any
A€ Q,let Rp(VAM) = D, ez F,VAM_zP. This is a module over RF(VODXXA%), and in fact
is coherent over that ring. It is even coherent over the subring Rp(Dxy a1/a1) = Rr(Dx[t]).

For i: H = V(f) — X the inclusion of the hypersurface defined by f into X, we can
restrict a mixed Hodge module M on X along i to get i,i'M € D*(MHM(X)). In fact, for
underlying filtered D-modules, this restriction is given by the morphism

t: Grl(ip (M, F)) = Gri(if+ (M, F)),
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which is the motivation for Theorem A.

In the remainder of this section, we will work with M a mixed Hodge module on X x A}.

The following lemma comes immediately from conditions (1) and (2), respectively.
Lemma 2.6. Let (M, F) underlie a mized Hodge module on X x A}. Let j: {t # 0} —
X x A}. Then

E,VAM = VAM N §u(Fpj* M)
and
F,M = 0f(FpyVOM).
k>0

A mixed Hodge module M is pure of weight d if Gr!¥ (M) = 0 for all i # d. By definition,
any pure Hodge module of weight d decomposes into its strict support decomposition. This

means
M= & My
ZCX x Al
where My is a pure Hodge module of weight d with strict support Z C X x A}. Here Z is an
irreducible closed subset of X x A} and strict support means that the D-module underlying

Mz admits no non-zero quotient or sub-object with support contained in a proper closed
subset of Z. Equivalently, the underlying perverse sheaf is an intersection complex.

Lemma 2.7. A Dx war-module M admits no non-zero sub-objects supported in {t = 0} if
and only if the map
t: Gry (M) — Gri, (M) is injective.

It admits no non-zero quotient object supported in {t = 0} if and only if the map
Op: Gri;(M) — G (M) is surjective,
which holds if and only if M = Dx, a1 - V>OM.

If (M, F) underlies a Hodge module, then the morphisms in the previous lemma statement
are automatically strict with respect to the Hodge filtration. This gives the following:

Lemma 2.8. If (M, F) underlies a Hodge module with no sub-object supported on {t = 0},
then

E,VOM = VOM N ju(Epj*(M)).
If (M, F) underlies a Hodge module with no quotient supported on {t = 0}, then

FoM =" 0F(F,_ VM)
E>0

2.2. Relative Monodromy Filtration. An important construction in Hodge theory is the
monodromy filtration of a nilpotent operator N on an object A in an abelian category. Given
such an operator, there exists a unique increasing filtration W(N)sA such that NW(N),A C
W(N)e—2(A) and with the property that

Ni: Gr" ™ 4) = a" M (4)

is an isomorphism for all ¢ > 0.
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If instead A is itself already filtered by sub-objects LeA C A in the abelian category A,
there is the notion of relative monodromy filtration for any nilpotent operator N such that
NLq C L,.

The relative monodromy filtration W (N, L)eA is the unique, increasing filtration with the
property that NW (N, L)e C W(N, L)e—2 and so that, for all k € Z and i € Z~(, the map

N Grp M HGrk4) - arn P ark (4)

is an isomorphism.

Such a filtration need not always exist, though an inductive criterion for existence is given
in [SZ85] (see also [Sai90, Lem. 1.2] and [Kas86, Lem. 3.1.1}).

One of the most useful observations in the theory of relative monodromy filtrations is due
to Kashiwara [Kas86, Thm. 3.2.9], which allows one to obtain a canonical splitting of the

filtration induced by Lo on GrZV(N’L)(A) for any k € Z. This splitting (with an alternative
proof) is also given in [Sai90, Prop. 1.5]. In other words, there is a canonical isomorphism

(3) L;Gr) P (4) = @ Grkar N (a).
J<i
The above definitions and results hold in any exact category. This extension is important

when considering (bi)-filtered D-modules (M, F, W), though it makes the notation a bit
cumbersome. For the details on this extension, consult [Sai90, Ch. 1].

In the theory of mixed Hodge modules, another property required of any (M, F, W) which
underlies a mixed Hodge module is the following: for any A € [0, 1], the relative monodromy
filtration on Gr{y(M) with respect to the nilpotent operator td; — X + 1 for the filtration

Gr) (WeM) A=0
Gry(Wea M) X e (0,1]
should exist. The shift by 1 in the case A € (0, 1] is incredibly important to the theory. This

relative monodromy filtration is then the weight filtration on Gr{\/(M) as a mixed Hodge
module.

LoGri(M) = {

2.3. Higher codimension V-filtrations. In this subsection, we review the results of [CD23,
CDS23] concerning Koszul-like complexes of higher codimension V-filtrations. For ease, we
work always on T' = X x A} with coordinates t1,...,%, on Aj. By the graph embedding
trick, this is always the local situation.

If M is a Dx xar-module underlying a mixed Hodge module, then it admits a V-filtration
along t1,...,t,. For details on this V-filtration, see [BMS06, CD23].

The V-filtration is the unique decreasing, discretely and left continuously Q-indexed fil-
tration V*M such that

(1) VXM is finitely generated over VODXxAg =Dxlt1, ..., t]{t:i0; | 1,5 € {1,...,7}).
(2) (t1,...,t)VXM C VXTI M for all x € Q, with equality for x > 0.
(3) 0, VM C VX IMforallie{l,...,r} and x € Q.
(4) Let 6 =57, t;0;,. Then the operator § — x + r is nilpotent on
Griy (M) = VXM VXM,

where VXM = Jg., VM.
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Remark 2.9. As in the hypersurface case, we will also use the operator s = >\, s; where
si = —0yti. As s = —(6 + ), we can restate the last condition as requiring that s + x is
nilpotent on Gr{,(M).

As in the introduction, we define

AX(M) =

VIM &5 @PVaim &5 VX*TM] ,

i=1

BX(M) =

Gry (M) = PGyt M) 55 Gry”(M)] .
=1

Proposition 2.10. Let o: X x {0} — X x A} be the inclusion of the zero section. We have
quasi-isomorphisms o' (M) = Kosz(M, t) = AY(M) = BO(M).

In fact, for x # 0, the complex BX(M) is acyclic and for x > 0, the complex AX(M) is
acyclic.

Proof. As § — x — j+r is nilpotent on Gr{,(By), we see that § — j +r is an automorphism of
Gry” (M) for all x # 0. This allows us to define an automorphism of the complex BX(M).
But using the 0y, maps, it is easy to see that this automorphism is a null-homotopy, proving
that BX(M) is acyclic for x # 0.

The claim for AX(M) being acyclic is easy to show for x > 0 using a strict surjection (on
the Z-indexed part)

B (Dxwar, V[B]) = (M, V),
I

and using the fact that such acyclicity is trivial to check for the ring Dx«ar.

Finally, the definition of ¢'(M) is as the derived O-module pull-back of M along o: X x
{0} — X x AJ. Using the Koszul resolution of Ox g}, we see that o' (M) = Kosz(M, ).

Using what we have already shown, it is obvious that A°(M) — B%°(M) is a quasi-
isomorphism. By discreteness of the filtration V°*M, we can check that for all y < 0, the
inclusion A°(M) — AX(M) is a quasi-isomorphism. Taking the inductive limit as y — —oo
proves the claim. ]

The main results of [CD23, CDS23] are to extend the results of the previous lemma to
include the Hodge and weight filtrations.

For (M, F, W) a bi-filtered Dy xa7-module underlying a mixed Hodge module, we define
filtered complexes

FpAX(M) =

.
Fpir VM 25 @) Fpyy VIFIM 5 5 Fp+,VX+TM] :
=1
T
FpirGry(M) & @ Fpr GrH (M) 5 . 5 FpMGr"SH(M)] .
=1

F,BX(M) =

Using Verdier specialization (as in Subsection 3.1 below), we can easily see that the rel-
ative monodromy filtration for N = 6 — x 4+ r on Gr{;(M) for the filtration LeGr{i(M) =
Gryy (WeM) exists. We denote it by WeGr{(M).
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We have the sub-complexes Ly B°(M) = B (W, M) C B°(M), and since the morphisms
in BY(M) also commute with N (in the obvious way), we see that these morphisms preserve
the relative monodromy filtration. Thus, we get a weight filtration

WaBY (M) = |WeGrl (M) 5 @ WaGri (M) = ... = WoGrlr (M) ] .
=1

With these filtrations on the complexes, we have the following results:

Theorem 2.11. The complexes
AX(M, F) and BX(M, F) are filtered acyclic for all x > 0.
Moreover, we have filtered quasi-isomorphisms
o' (M, F) = A%M, F) = B"(M,F),

and the latter two complexes are strictly filtered.

Finally, the filtration WeH'B°(M, F) induced by WeB%(M, F) satisfies

Grf/ H'BO(M, F) = Gr}V Hio (M, F),

as filtered Dx-modules underlying polarizable Hodge modules of weight k + i.

We remark that the filtered complex W B°(M) need not be strict. However, the weight
spectral sequence degenerates at Fs, see, for example [Sai00, Prop. 2.3].

3. GENERALIZED V-FILTRATIONS

Throughout this section, we work on 7' = X x AJ, and let ¢;,...,%, be the coordinates on
A7

We call a linear form L(s) = Y. a;s; a slope if a; € Z> for all . It is non-degenerate if
a; # 0 for all 4. Given a slope L, we obtain a Z-indexed filtration on D by

"ViDr =) Py tP0] | Ps € Dx, L(B) > L(y) + j.
By

If M is a module over Dr, we say that a filtration U® M is compatible if
Lyipy - URM C UFI M,
for example, the filtration “V*Dy is compatible (in other words, it is a multiplicative filtra-
tion).

We define the Rees ring Ri(Dr) = @yez “V¥Dru=*. It is a Z-graded ring, by the
multiplicative property of the filtration. Given a module M with a compatible filtration
U*M, we define the Rees module Ry (M) = @jcq UFMuF. The filtration U*M is good if
Ry (M) is coherent over Rr(Dr). We will also say that (M, U) is a good filtered (Dr, *V)-
module in this case.

For a filtered module (M, U) and k € Z, we set (M, U[k]) for the filtration with U[k]* M =
U*~* M. The following is immediate.
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Lemma 3.1. An erhaustive filtration U* M is good if and only if there exist my, ..., my and
kD kW) € Z such that we have

N
UM = ZLV'—k(’)DT - m;.
=1

Equivalently, we have a strict surjection @fil(DT, Ly k®]) — (M, U).

From this, we get comparability of good filtrations:

Lemma 3.2. Let UL M, U3 M be two good filtrations of the Dr-module M. Then there exists
k € Z such that
Urt* M CUSM C UP* M.

The following can be thought of as the analogue of the Artin-Rees lemma:

Lemma 3.3. The ring Rp(Dr) is Noetherian. Thus, if (M,U) is a good filtered (Dr,"V)-
module and N C M is a sub Dp-module, the induced filtration

UN =NNU*M is good.

Proof. The second claim is immediate from the first. The first follows from Lemma 3.14
below, which we postpone until we discuss specialization constructions. ]

Definition 3.4. Let (M, U) be a good filtered (Dr, %V )-module. The b-function for U*M
is the monic polynomial p(w) € Clw] of least degree such that

(4) p(L(s) + kUM C UMM,
where L(s) = Y\ | —a;0t;.
We say (M, U) is specializable if it admits a b-function. For any subfield A C C, we say

(M, U) is A-specializable if the b-function splits into linear factors over A.

Lemma 3.2 can be used to show the following, which says that being A-specializable is a
property of the module, not the filtration:

Proposition 3.5. If (M, U) is a good filtered (Dr, ' V)-module which is A-specializable, then
any other good filtration is also A-specializable.

Lemma 3.3 shows that if A/ C M is a submodule and M is A-specializable, then N is,
too. This applies in particular to Dy - u C M for any element v € M, which leads to the
following definition.

Definition 3.6. Let M be A-specializable. For any u € M, the b-function of w is the monic
polynomial of least degree b(w) € C[w] such that

b(s)u € LVIDy - u,
which we denote by b,(w). Such a polynomial exists (and splits over A) for any section
u € M of an A-specializable module.
For the remainder, we assume M is Q-specializable, though the same constructions can

be made with A = R. Given u € M, let b,(w) be the b-function of u, which we factor as
bu(w) = (w+m) ... (w+N),
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with 71 <--+ < 4n. Then define the L-order of u to be ordy(u) = ;.

This leads to a Q-indexed filtration “V*M defined by

LYyAM = {u e M |ordp(u) > A},

whose Z-indexed part is characterized by the following proposition.
Proposition 3.7. Let M be Q-specializable. Then there exists a unique good filtration U® M
whose b-function satisfies the following: by(—v) =0 = ~ € [0,1).

Moreover, for all integers j € Z, this filtration satisfies

Lyim =vim.

Remark 3.8. The Z-indexed filtration in the proposition statement can be refined in the
following way to a Q-indexed filtration, which agrees with the Q-indexed filtration “V*M.
The main idea is to lift generalized eigenspaces of the operator L(s) on the associated graded

pieces Gr{;(M).
To be precise, let U*M be a good Z-indexed filtration whose b-function by (w) satisfies
buy(—~) = 0 implies v € [0,1). Write by(w) = (w + 7)™ ... (w4 yn)™ for 0 < 1 < 7 <
For any j € Z, define U'NTIM = {u € M | (L(s) +yn + 7)™ u € UL M}. Inductively,
we then define
UM = {ue M| (L(s) + i + §)™u € U+ M}

For any x € Q, set j = [x] and ¢ = x — j € [0, 1). First, if ¢ <y, let  be minimal such
that ¢ < 7; and set UXM = U7 M. Otherwise, if € > vy, set UXM = U+ M.

It is an easy exercise to see that, in this case, U* M is a decreasing, discrete and left-
continuous Q-indexed filtration.

We call £V * M “the (canonical) L'V-filtration” of M. For example, for any I C {1,...,7}, if
L =3, i, this filtration is the Kashiwara-Malgrange V-filtration of M along the subvariety
V(ti | 1€ I)

Define Koszul-like complexes

AYM) = [PV B @ Pvrte g by byt M]
=1
BY(M) = |Gr}(M) 5 @ Gy (M) 5 5 GrF_IL'(M)]
=1

placed in degree 0,1,...,7.

The following can be shown in the same way as Proposition 2.10 above, using the fact that
L(s) + X is nilpotent on Gr} (M).
Lemma 3.9. Let M admit an “V -filtration. Then B} (M) is acyclic for all x # 0. Moreover,
AY (M) is acyclic for all x > 0.

Let M admit an YV -filtration. Then

0! (M) = A} (M) = BL (M)

for any slope L.
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The following proposition gives the characterizing properties of the canonical “V-filtration,
as well as a useful test for containment. As above, instead of L(s) 4+ x being nilpotent on
Gr} (M), we could ask for 0, — x + [L| = >°7_, a;t;0;, — x + |L| to be nilpotent.

Proposition 3.10. Let M be a Dr-module. Assume UM is a discrete, left-continuous
Q-indezed filtration such that the following conditions hold:

(1) FVFDr - UXM C Uktx M,
(2) for x > 0 we have equality UXM =37, t;UX"% M,
(3) for any x € Q, the operator L(s) + x is nilpotent on Gryy(M).

Then LVXM C UXM for all x € Q. If, moreover, we assume that UXM is coherent over
LYODy for all x € Q, then equality holds.

Proof. The claim follows from the observation that if U7 M is a filtration satisfying all con-
ditions in the proposition statement and U3 M is another filtration satisfying just the first
three conditions, then Uf M C Us M. This can be shown similarly to [CDM24, Prop. 3.14]
and we leave the checking of details to the reader.

To see why this observation implies the desired result, it suffices to note that “V*M
satisfies all the conditions in the proposition statement. Indeed, by construction, L(s) + x is
nilpotent on Gr}(M). By definition of “VXM in Remark 3.8, it is easy to see that the Q-
indexed filtration VXM is compatible, using the fact that Pt?9) L(s) = L(s + 3 — ) Pt50]
for P € Dx. By the goodness of the Z-indexed filtration “V*M and Noetherianity of the
ring “VODyr (which holds because it is the Oth graded piece of a Noetherian Z-graded ring),
we see that each LVXM is LVODp-coherent.

From this, using the acyclicity of Lemma 3.9, we see that the Koszul-like complex

T
ALM) = [FVIMm S P Evitanm B 5 byt g
i=1
is acyclic for all v > 0, where |[L| = )", a;. In particular, by the vanishing of the rightmost
cohomology, we see that for all x > |L|, we have the equality

Pvxm =S vt

=1

Example 3.11. Let M be supported on V(¢y,...,t,) € T. Then we can write M =
D oenr Modf o where t;(ndg) = 0 for all n € My. In particular,

T

L(S)néb = Z —aiatiti(ndg) =0.

=1

It is not hard to check that M is Q-specializable. Using that L(s)0f'ndy = 05 L(s+a)ndy =
L(a)0gndp, we see in fact that

WVAM=PVRM= B Mdpd,
L(@)<~X]

which has b-function equal to b(w) = w.



RESTRICTIONS OF MIXED HODGE MODULES USING GENERALIZED V-FILTRATIONS 15

Example 3.12. Let M be a regular holonomic Dp-module supported on V(t;) CT. Then
we have M = @, N9;,do where tj(nd) = 0 for all n € N. In particular, we have
L(s)(ndo) = (£(s)n)do, where if L = 371 a;s; then £ =3, a;s;. More generally,

L(s)(nd,00) = (£(s) + aif) ()], 60.
From this it is easy to see
LvAM = @ VAIND .
Jj=0
The following lemma applies in particular to the case when M is O-coherent, or when

M =NKOp; for N a Dx-module.

Lemma 3.13. Let M be a coherent Dr-module. Then the “V -filtration is “t-adic”, in the

sense that
< |L
Lv)\M: Mr N >\—||
Zi:l t; VATEGM A > |L’,

if and only if M is coherent over “VDrp.

Proof. If the filtration is t-adic, then “VIEIM = M is, by definition, coherent over “VODy.
Note that another way to write the t-adic filtration is

LM = (¢ | L(B+1) > \) - M.

For the converse, note that if M is coherent over “VOD; and we define
UM = (7 | L(B+1) > \) - M,
then each UMM is coherent over ZVODy. Then we need to check the remaining properties of
the LV-filtration to conclude.
Assume L(S +1) > . Then L(B 4 ¢e; +1) > X+ a;, so we see that t,U M C UM% M.
Let L(B+1) > . Then for t*m € UM, when we apply 0y, , there are two options. Either
B; = 0, in which case
Oy, (tPm) = t°(0y,m) € UM C UM% M,
or 3; > 0, in which case
Oy, (t°m) = tP(dy,m) + BitP~cim,
and so since L(3 — e; +1) > X\ — a;, this shows that 9, UM C UA~% M.

Each UMM is clearly stable by Dy, so we only need to prove the nilpotency of L(s) + A
on Grjy M. Note that Gr; M # 0 if and only if there exists § € N” with L(8 +1) = A. Take
such a 3 and consider an element t*m. Then

(L(s) + \)(t?m) = L(s + B+ 1)(t"m) = P L(s + 1)m,
and s+1=(s1+1,...,8+1)=(—-t104,...,—t,:0;.). Hence,

L(s+1)ym=— Z a;tiO, (m),
i=1

and we have that a;t?+¢(9;,m) € U>* M, proving the claim. d
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3.1. Specialization Constructions. In this section, we use deformation to the normal
bundle to allow us to use established tools to study “V-filtrations. The idea goes back at
least to Verdier. The papers [BMS06] and [CD23] use these ideas to study the V-filtration
when L = >0, s;, and Wu'’s article [Wu22] discusses the case of arbitrary slopes L.

As above, consider T = X x Aj. Let L = ), a;s; be a non-degenerate slope. For
T =X x A}, define

Th =X x A0 x Ay,

where the coordinates on the A" term are t; /u®, ..., t,/u®. This is naturally a deformation
to the normal bundle of X x {0} C T.

This carries a map TF — T sending (x,t/u u) to (z,t). Over {u # 0}, this is isomorphic

to the projection T x G, — T. Let jr: {u # 0} — T* be the open embedding.

The projection L - Al is clearly smooth, so we can consider the ring of relative differ-

ential operators Dz, AL

We have an identification of the relative differential operators with the Rees ring of Dr for
the LV-filtration. As relative differential operator rings are Noetherian, this proves the first
claim of Lemma 3.3.

Lemma 3.14. We have a filtered isomorphism of rings

(D7, /a1 F) = (Ru(Dr), F).

Hence, we also have an isomorphism

RF(DTL/A}L) = Rpr(Dr) = @FkLVjDTzkufj.
k7j

Proof. As the coefficients in Dx are unimportant in this proof, we assume X is a point.

For ease of notation, write z; = utéz

In this case, we have Djp a1 = Clu, 21y, 27]{02, ..., 0z.). Define a Clul-linear mor-
phism
DTL/A}L — RL(DT),

Zi > %, 0z, — O, u.
For the inverse, we want it to satisfy
Porut =) — 2Po7,
and so for arbitrary elements
tﬁa?u—j — o I—L(-8) (tﬁa;/uL(v—ﬁ)) € Ry(Dr),

we simply have to note that, by definition, tﬁag € LViDr, so that L(B — ) > j. Thus,
uI—LO=0) ¢ Clu], and so we can define the map by sending tﬁaguL(V_ﬁ) — 2897 and
extending Clul-linearly.

It is clear that this isomorphism preserves the order filtration on both sides. O
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Let M be a Dp-module with Z-indexed filtrations Fy M, U® M such that Fe M is compat-
ible with FyD7 and U*M is compatible with “V*Dz. We can define

.
F,AX(M,U) = | Fpy y UXM Li, @Fp_HUx-i-aiM i, 4y Fp-i—rUX—HL'M _
i=1
The Noetherianity of the ring Rp 1 (Dr) allows us to prove acyclity of AX(M, U, F) for
x > 0.

Lemma 3.15. Let (M,U,F) be a bi-filtered Dp-module as above such that Rpy(M) =
@k,jez FLUI MzFu=7 is coherent over Rp1.(Dr). Then there exists ko € Z such that k > ko

implies A¥(M, U, F) is F-filtered acyclic.

Proof. Tt is a simple computation to see that A* (Dr, Ly F ) is filtered acyclic for all £ > 0.
Indeed, by taking Grl’, this boils down to the claim that variables in a polynomial ring form
a regular sequence, hence the corresponding Koszul complex is acyclic (except at the right).
For the vanishing of the right-most cohomology, use that £ > 0.

Now, by coherence of Rp /(M) over R 1, (Dr), we have a finite indexing set I and a strict
surjection

P(Dr, “Vbi], Flei) — (M, U, F) - 0.
el

By Noetherianity of Rp 1, (Dr), the kernel K with its induced filtrations FoiC and U*K also
satisfies Rp 7 (K) is coherent over Rp(Dr). We have the F-strict short exact sequence of
complexes

0— A¥K, U, F) — @@ A "(Dr, "V, Flei]) — A¥(M, U, F) -0,
i€l
and so for k > kg = max{b;}, the middle term is filtered acyclic. Hence, we get the vanishing
of FpHTAk(M, U) for all p and filtered isomorphisms

HI(AF(M,U), F) =2 1 (AR K, U), F).

Repeating the argument with (K, F, U) in place of (M, F,U), and possibly increasing ko,
we get H' L (AF(M,U), F) = H"(AK(KC,U), F) = 0 for all k > ky. Repeating again r — 1

more times, this completes the proof. ]

Given a system of coordinates z1,...,x, on X, the variety TL has local coordinates
Tlyeeey, Ty, 2l = utTll,...,zr = ut;’r,u. The open subset T' x G,, has the simpler system
of coordinates x1,...,2n,t1,...,t, u, and the change of variables formula yields (using (—)
to denote the functions x1, ..., x,,u viewed in the second system of coordinates):

Oz, = Oy,
1
8ti - Eaziu

T T t 1
O = 0w+ Y 05(2))0z; = O — ZajuTQlazj = Oy, — —L(t0)).
j=1

J=1
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For M a mixed Hodge module on 7', consider M, = Jr«(M X ng[l]) a mixed Hodge
module on Ty,. The underlying D-module M 1, is the O-module

@Muk,

kEZ
on which, thanks to the computation of the coordinate change above, the action is given by
zi(ma®) = (tm)uF=%,
D, (mu®) =y, (m)ur+e,
Dy (mu®) = (k + L(tdy))(m)u*~t.
We have the following:
Proposition 3.16. Let VoM, be the V -filtration along u. Then
V’\ML _ @LV/\—HL\—k—lMuk'
keZ
For any A > 0, we have
va,\MVL _ @FPLV)\HLlfkflMuk
keZ

Proof. The second claim follows from the first using the fact that for all p € Z and A > 0, we
have by Lemma 2.8 equality

E,V My, = VA My N jr(Fy (MR Og,,)).
For the first claim, define

U)\ML — @LVA—HLl_k_IMUk.
kEZ

We show that UMM 1, satisfies the properties of the V-filtration along u. A simple compu-
tation shows
WU = UM 9,U> C UL

As
udy (muf) = (k 4+ L(tdy))(m)u”
it is easy to see that ud, — A + 1 is nilpotent on Gré,(ﬂL). By Proposition 3.10, this proves
the containment VAM C UMM,

For the other containment, for any fixed k, define a filtration
UMM = {m € M | mu* € VAFH=ILIAL )
Let mu® € V)‘+k+1_‘L|MVL. Then by applying u®iz;, we see that
(tim)uF € yAtatktl=ILl pg,
so that t;U* C U . Applying 0., we get that 0y, (m)u*+? € VAaitkt =L pg

As u acts invertibly on M L, we knolv/ that u: VXM L — VXH A L is an isomggphism.
Thus, having 9, (m)u*+® € VAEH1=ILIAM implies that 9y, (m)uF € VA=atk+1=ILIAL
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By definition of the V-filtration, we know that VAFRHI=ILI A 1, is coherent over VODTL =
Dx|z,u](0.,ud,). For some fixed A, choose generators mu'l, ..., mqute for VAtE+1=ILIAL,
over V0. As u: VXM — VXH M is an isomorphism for all x¥ € Q, we see then that

mautI L mgubet

are generators of V(’\+j)+k+1_|L|//\>l/L for all j € Z.

Let £ = min{/,...,4,}. Note that the only operators in VV? which decrease the power of
u are zi,..., 2. Thus, we see that for any b < £ + j, we have

maub c V(/\+j)+k+1—|L\ML — mub c (21, o ,ZT)V()\+j)+k+1_|L|ML,

and so for all j with j > k — £, we have

,
meUTM = me ) tUMI"M.
=1

Finally, it is clear that L(td;) — X + |L| is nilpotent on Gr3},(M). By Proposition 3.10, this
shows

Lvemcu M,
which finishes the proof of the claim. O
Lemma 3.17. Consider the Z-indexed L'V -filtration LV*M on M. Then Rp (M) is co-
herent over Rp,1,(Dr).

In particular, for integer k > 0, the complex Alz(/\/l, F) is filtered acyclic.

Proof. The second claim follows immediately from the first using Lemma 3.15.
The first claim follows from the observation that, up to a shift of grading, we have
Rpp(M) = Rp(VOMy) and the isomorphism RF(DfL/A1> = Rpr(Dr) from Lemma 3.14.

We know by Remark 2.5 that RF(VOM L) is coherent over Rp(Dg, /AL ), proving the claim.
’ O

Define Spy (M) = wu(ML), which is a mixed Hodge module on X x A’ where we use
2 = 4 as above. Its underlying filtered D-module is given by

FySp(M) = €P F,Grf(M).
X€Q

This is an example of an L-monodromic mixed Hodge module, i.e., one whose underlying
D-module is L-monodromic. Recall that this means that every local section m is annihilated
by some polynomial in L(z0,) = Y a;z0s,.

Such modules decompose into generalized eigenspaces for the operator L(z0,): we write
N = @A
X€Q

where NX = J;5 ker((L(20;) — x + |L|)7). Any L-monodromic module carries a nilpotent
D-linear endomorphism N which acts on NX by L(z0,) — x + |L|.

We record the following useful fact about pure L-monodromic mixed Hodge modules.
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Lemma 3.18. Assume M is pure and L-monodromic on X x AL. Then N =0 on M, i.e.,
L(20.) acts semi-simply on M.

Proof. As the D-module underlying M is semi-simple (see [CD23, Pf. of Prop. 5.7]) it suffices
to assume that the D-module underlying M is simple, as any sub-module of an L-monodromic
module is also L-monodromic. But then because N is nilpotent, the claim is obvious. (Il

We use the fact that the complex BY(M) computes the D-module theoretic restriction.
This shows that Sp; (M) can be used to compute the restriction. The proposition below is
shown following the proof for the usual V-filtration [Sai90, Pg. 269]:

Proposition 3.19. Let M be a mized Hodge module on T. There is a canonical quasi-
isomorphism
o'(M) = o'Spy (M).

Proof. The claim follows for underlying D-modules by Lemma 3.9. Indeed,
U!(M) = B%(-M) = B%(SPL(M)) = U!SPL(M)'
Kashiwara’s equivalence shows that Spy o o, = 04, i.e., that specialization is the identity

on modules supported on X x {0}.

Let j: T\ (X x {0}) — T be the inclusion of the complement of the zero section. We have
morphisms

Jx3*SpL (M) — jej*Sp(j.j*(M))
The cones of these morphisms vanish because their underlying complexes of D-modules
do. Thus, these morphisms are quasi-isomorphisms.
Thus, starting with
o0 (M) = M — 5% (M) 5,
when we apply Spy(—), we get

.0} (M) — Spp (M) — j.j*Spy (M) 5,

which gives a canonical isomorphism
0.0 (M) = 0,0'Spy (M),
by, for example, [Dir24, Lem. 4.4]. O
We end this section by mentioning the existence of the relative monodromy filtration on
Gr} (M) for the nilpotent operator L(td;) — A + |L| and for the induced filtration
M,Gr} (M) = G} (WeM).
We denote this filtration W,Gr} (M).

As above, this allows us to define WoB? (M), which will be the weight filtration on the
complex BY(M).

The following can be shown exactly as in the proof of [CD23, Lem. 6.2]. It says that there
exists a splitting of M, on Gr}) Gr} (M) which is functorial in a certain sense.
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Lemma 3.20. There exists a splitting of M.GrkWGrf(M) which is functorial with respect to
the morphisms

ti: Gr}l Gr} (M) — Grl¥ Gr ™ (M),
In particular, the complex GrkWBg(M) splits into its associated graded pieces.

This lemma will be the key to allow us to reduce to the pure case. Indeed, we have that
GrMGr)Y BY(M) = Gr})V BY (Gr]Y M).

4. Cycric COVERINGS

Let (a1,...,a,) € Z%,. We consider the map 7: X x A}, — X x A} which sends (z,w)
to (z,w?®). For any (by,...,b.) € Z%,, we define the slope ¢ = >7i_, b;s; and consider
L={*xa= Z:Zl(aibi)si.

Given M a regular holonomic Dy« Ar-module, the pull-back M agrees with the O-
module pull-back, and is given by

oM = @ MuwP,

0<B<a—1
where f <a—1means §; <a; —1forall 1 <i<r.
The D-module action is given by [HTTO08, Sect. 1.3]

P(mw”) = P(m)w® for all P € Dy,

T
! - timwﬁ_(ai_l)ei ﬁz =a; —1 ’

O, (mw?) = {(ﬂi +aitid, ) (m)w’~ ;>0

a;0p, (m)wPtai—De Bi=0"
Thus, w; 0y, (mw?) = (8; + a;t;0,)(m)w? and so

(wdy)(mw?) = ((8) + L(td,)) (m)w’.
The first main result of this section is the following:

Theorem 4.1. Let M be a reqular holonomic DXXA{—module. For any slope £ = 22:1 b;s;,
write L = £ x a. Then, for all A € Q, we have

ZV)\T(_!M — @ LV>\+|L|_€(’8)_|Z|MU)'B.
0<p<a-1

Remark 4.2. We will only apply this in the case where M is L-monodromic, where it becomes
essentially trivial.

Before proving this, we study cyclic coverings of the corresponding deformations to the
normal bundle. Let T'= X x A} and W = X x AJ. We consider

L 1

T = X x A:/uab x A,

w=Xx X AL b X Al
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By Lemma 3.14 above, we have isomorphisms

We/AL

We have a finite morphism II: Wt — TL over X x Al defined by the map AT Jub A} Jab

which sends
t; Jubi® s (w; /ub)%.
The functor IT' for relative D-modules agrees with the (derived) O-module pull-back. By
flatness, it is the usual pull-back of O-modules.

The functor II' need not preserve coherence of relative D-modules. Indeed, even imposing
relative holonomicity, coherence is not preserved, see [MFS17, Example 2.4].

However, [MFS17, Thm. 2] shows that the pull-back of a regular relative holonomic D-
module is regular relative holonomic, in particular, coherent.

Lemma 4.3. Let M be a regular holonomic Dr-module. Then Riy, (M) is a relative reqular
holonomic DTL/Al -module.

Proof. For A € C, let iy: {\} — Al be the inclusion of the point A\. We have

M A£0

(R (M) = {sm M) Al

where we use that “VF M /LVEHIM = D et i) Gr} (M) for all k € Z.
As M and Spy (M) are regular holonomic, this proves the claim. O

Proof of Theorem /.1. We will show that
U'?T!M — @ LV'HL‘*e(B)imeﬁ

0<p<a-1
satisfies the defining properties of the ‘V-filtration.
It is trivial to see that w;U® C U*TL 9, U® C U*~!, and that (£(wdy)—A+]|¢|) is nilpotent
on Grgy (7' M). The last claim follows from
(E(wdhy) = A+ [€]) (mw?) = (L(t0;) — A+ €(B) + [¢]) (mw?).
The last remaining claim is coherence of U® over VODx Ar,- We prove this for the under-
lying Z-indexed filtration.

By Lemma 4.3, the module Ry, (M) is regular relative holonomic on TE. Hence, IT' applied
to it remains regular relative holonomic, in particular, coherent. It is a simple computation
to see that this pull-back is isomorphic to Ry (7' M), proving the claim. O

Remark 4.4. Let ¢ = e;, so that ‘V*1' M is the V-filtration along w;.
Then L = a;e;, and it is not hard to check that

A
LM =v" M,
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where the right hand side is the canonical V-filtration along ¢;. Thus, Theorem 4.1 gives the

formula
A—B;—1

1
wrm= @ v Ml

0<B<a—1

For now, we let » = 1. We will apply this case later with X x A}f—l in place of X. Let
Jwi{w #0} = W = X x Al and j;: {t # 0} = T = X x A} be the open embeddings.
Define the restriction 7|,y to be p: {w # 0} — {t # 0}, which is finite étale.

Let M be a pure Hodge module of weight d on X x A} with strict support not contained
in {t = 0}. In general, 7'M need not remain pure, but we know that Wy ;7'M = 0.

Lemma 4.5. In the situation above, we have that Q = w'(M)/Wan'(M) is supported on
{w = 0}.

Moreover, Wyr' (M) has no non-zero sub-module or quotient module supported in {w = 0}.

Proof. The first claim is obvious by restricting 7'(M) to {w # 0}, which gives p'(M l¢t£01)-
As p is étale, this module is pure of weight d.

Note that Wyr'(M) C 7'(M), and 7'(M) has no sub-modules supported in {w = 0} by
adjunction, using the fact that M has no sub-modules supported on {t = 0}.

Thus, Wyr'(M) has no sub-modules supported in {w = 0}. By polarizability, it also
admits no quotient objects supported in {w = 0}, proving the claim. O

Thus, we have Wyr'(M) = Dy - V>0Wyr' (M) by Lemma 2.7, where V* is the V-filtration
along w. Note that

b+1

VW (M) =V M) = v Mu,
0<b<a—1
where the second equality comes from Remark 4.4. The first one comes from Lemma 2.4.

We see from the Dy -module action that Wyr'(M) is a graded sub-module of 7'(M).
Throughout, we let

Wdﬂ'!<M)b Cr (./\/l)b
denote the bth graded piece, i.e., the coefficient of w®.

Lemma 4.6. We have

b+1

V(]Wdﬂ_!(M) — @ <N(b) . VI—TM + V>1—%M> wb @ Vona_l,
0<b<a—1

b+1

where N® = (t0; — (1 — L) 4 1) s the nilpotent endomorphism of Gr%,ﬁ “ (M).
Proof. This follows from VoWt (M) = 9, V7 (M) + V=07 (M), which holds by the last
claim of Lemma 4.5 and the surjectivity

O Gry,(Wyr' (M) = Grl (Wyr' (M)

which holds by Lemma 2.7. To identify the coefficient of w® !, we use the similar formula
VOIM = 0,VIM 4 V> M which also follows by Lemma 2.7. O
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Lemma 4.7. The inclusion
Wy (M) — 7' (M)
induces an equality for all p € Z and A > 0,

EV W (M) = BV (M) = @ BV (M),
0<b<a—1

and for A =0, we get equality for all p € Z:
E VW (M)t = B VO (M) = BV (M)w L.

Proof. We already saw the equality
E, VAW (M) = B,V (M) for all A > 0

above, using the fact that both restrict to p' (Mz01) on {w # 0}.
For A = 0, we have by Lemmas 4.5 and 2.8 the equality

E, VW (M) = 0y, (Fpt VIWyr' (M) + F,V>OWar' (M)
and by what we mentioned at the beginning of this proof, the right hand side is equal to
O, (Fpr Vi (M) + E, V01 (M).

Using the fact that 7'(M) has no w,-torsion, we know by Lemma 2.8 that for all A > 0
that we have

A—b—1

FVATH (M) = VAT (M) 0 o (Fpp' (M, 20))) = @ B,V (M)wb,

0<b<a—1

Finally, using that M has strict support not contained in {t, = 0}, we get by Lemma 2.8
E,VOM = 0y(Fy—1VI M) + F,V>° M, which is the coefficient of w*~! in F,V'W,r'(M). O

By Kashiwara’s equivalence and Lemma 4.5, we have Q) = i,Qo where i: {w =0} — W is
the closed embedding and the underlying D-module of Qg is Qp = ker(w) C Q. Note that
by Example 2.2, we have V'Q = Q.

Corollary 4.8. Let Q = 7'(M)/Wyr' (M) with underlying D-module Q. Then

_b+1 _b+1
Qy=V'0= @ coker (N(b): Gr%/ o (M) — Gr%/ o (M)) .

0<b<a—1

In particular, ™ (M) is pure if and only if the V-filtration of M along t has no jumping
numbers in 1Z\ Z, i.e., Gr}, (M) # 0 implies X ¢ 12\ Z.

Proof. We have V°Q = VOr'(M)/VOWyr' (M), so the formula is obvious by the previous
lemma and Lemma 2.3.

The last claim follows because 7' (M) is pure if and only if Q = 0 if and only if N® is
bt
surjective on Gr%/ * (M) for all 0 < b < a—1, but since N () is nilpotent, this is equivalent
1

_ b+t
to the vanishing of Gr%/ “ (M). O
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4.1. Proof of Theorem A. By induction on r, we have the claims of Theorem A for any
mixed Hodge modules on X x Az_l with coordinates t1,...,¢._1 on A,’;_l.

For any M a mixed Hodge module on X x A}, by Proposition 3.19 we can replace M by
Spr (M) to assume that M is L-monodromic. Indeed, we have Bf (M, F) = B} (Sp;, (M), F)
for all x > 0.

Moreover, by the functorial splitting of the relative monodromy filtration, we can assume M
is L-monodromic and pure of weight d. By the strict support decomposition, we can assume
M has strict support not contained in {¢, = 0}. Indeed, if M is supported in {t, = 0}, the
result follows by induction on r using Example 3.12.

Lemma 4.9. Let V> M be the V -filtration along t, = 0. The complex V," B%(M, F) is filtered
quasi-isomorphic to Bf (M, F) for o > 0.

Proof. The idea is essentially the same as the one in [CDS23]. We include a detailed proof
for the reader’s convenience. We argue inductively on r for Theorem A. Let L' = L — a,t,0,.
Denote by 6, = t,0,, 0, = >_._; a;t;0; and 0, = 0, — a,0,. As 01, and 6, commute, we have
a decomposition
VM =P VM, where VIM® = VM0 M.
aceQ

Recall that M® is the component annihilated by some large power of 67, — o + |L|. Hence,
there is a decomposition

Gry, (M) = P G, (M?).
acQ
This implies that Gr% (M) is an I/-monodromic mixed Hodge module on X x A7~!. Indeed,
a local section m of Gr’f/r (M%) is annihilated by a sufficiently large power of

(00 — (0~ arB) + L)) = (0 — a+ |LI) — ar(0, — B+ 1)

In particular, the L'-graded piece (Gr@ (M))aiarﬁ is exactly Gr@r (M®). Tt follows that we

have an isomorphism between complexes Gr% B{(M, F) and the shifted mapping cone
Cone[By, " (Gry, (M, F)) = By, P Grg ™ (M, F)][-1].

Therefore, if 3 > 0, Gr%BE‘(M, F) is acyclic because t,: (VP M, F) = (VT M, F) is an iso-
morphism; and if «—a,.8 > 0, the inductive hypothesis on r implies that again Gr@r B¢(M, F)
is acyclic. By the distinguished triangle

V2P BE (M, F) = VPBE (M, F) = Gry, Bf(M,F) =%

if @ > 0and 8 < 0, the natural inclusion V;"?B%(M, F) — Vi’B$(M, F) is a filtered
quasi-isomorphism. Hence, taking the direct limit gives the filtered quasi-isomorphism

o

VB (M, F) = Bf(M, F)
for a > 0. ]

Note that by Lemma 3.17, in order to prove filtered acyclity of A% (M, F) for all x > 0, it
suffices to prove it for BY (M, F) for all x > 0.
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We will prove the claims by induction on |I7| where I, = {i | a; > 1}. The case |Ir| =0
is [CD23, Thm. 1, 2]. So assume by induction that we can compute restriction functors and
we have filtered acyclicity for any ¢ = Y, b;s; with |I;| < |Ir|. Without loss of generality,
we can assume a, = a > 1 in L.

Let m: W =X x Al' - X x A] =T be the map (z,w) — (z, w1, ws,...,w*). We can use
the results of the above sub-section for this cyclic cover, as only one variable is being raised
to a power.

Let 0,: X — W and o0;: X — T be the inclusion of the zero section. Then 7 o o, = 0y.
Thus, we have an isomorphism

o, (m' M) = o} (M).

Note that 7' (M ) is f-monodromic, where ¢ = s, + Z::_ll a;s;, as we can easily see from the
definition of the D-module action.

Let V.* M and V*7'(M) be the V-filtration along t, (resp. w,). By Lemma 4.9, for any
x > 0, we have filtered quasi-isomorphisms

VOAX(M, F) = AX(M,F), and VOAX (7' (M), F) = AX (7' (M), F).

The latter two complexes are Z/aZ-graded because the morphisms wy, ..., w, preserve the
grading up to a shift. We normalize the grading so that the bth graded piece of the complex
is the sub-complex which starts on the left at the bth graded piece of the corresponding term.

By the right-most equalities in Lemma 4.7 and the definition of the D-module action, we
have equality

VOAS(mH (M), F)*~! = VPAY (M, F).

Proof of Theorem A, Filtered Acyclicity. Let x > 0, then we have the chain of filtered quasi-
isomorphisms

AL(M,F) = VOAY (M, F) = VAN (M), )™ 2 AX (' (M), ).
By the inductive hypothesis, the last complex is filtered acyclic, proving the claim. O

Proof of Theorem A, Restriction Functor. We begin by proving the claim for the Hodge fil-
tration.

By the inductive hypothesis, we know A%(7'(M), F) = o} (7' (M, F)) = ¢'(M, F). More-
over, the graded pieces which are not the (a — 1)th are filtered acyclic. Indeed, for b < a — 1,
the map w, from the w’ term to the w’*! term is an isomorphism. Thus, we have

A (M), F)* =gl (7'M, F)) = ' (M, F).

To prove the claim for the Hodge filtration, note that we have the chain of filtered quasi-
isomorphisms

AD (M, F) = VI A (M, F) = V2 AY(x' (M), F)*!
~ A (' (M), F)* L =o' (M, F).

For the weight filtration, as M is pure L-monodromic, we know that the nilpotent endo-
morphism N: M — M is 0 by Lemma 3.18. Thus, the same is true for 7'(M), though 7' (M)
need not be pure.
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Thus, for any y € Z, the relative monodromy filtration on Gr)(r'(M)) is simply the
induced filtration from Wer'(M), i.e.,

WoGr)(r'(M)) = Grf(Wer' (M),
and so we have
WoBY(7'(M), F) = BY(Wer' (M), F).
By Lemma 4.10 below, the inclusion
WaB{ (' (M), F)*' — BY(x'(M), F)*~!

is a filtered quasi-isomorphism. Thus, the cohomology of B?(W!(M), F)*~1 is pure, which
proves the claim. ]

Lemma 4.10. Let M be a pure Hodge module of weight d on T with strict support not
contained in {t, = 0}. Using the notation above, the natural map

By (War (M), F)*~! — B (x' (M), F)* ™!

1S @ quasi-isomorphism.

Proof. 1t suffices to check that BY(Q,F)*! = 0. By Kashiwara’s equivalence, we have
(Q, F) = @kzo(Q&F)aﬁ
We have by Example 3.12 the equality
EV)\Q — @ ZIV)\JerOaﬁ;a
k>0
where ¢ = Z::_ll a;s;. For ease of notation, write Cyrtkg) = QS'H“ and write its w® graded
piece as Qg’)‘Jrk. As ‘V*Q splits into graded pieces, so does CyAtkQ,.
Then we have
a—1
tio=p| b @)
B=0 \b—j=B mod a
For all A € Q, the map
wy: (G} Q)" ! — (G Q)°
is an isomorphism.
Indeed, note that we can write
@)= @ &)
b=j—1 mod a

and
b AF14brg
Gr*Q’= P (M),
b=j mod a
Importantly, for the (a — 1)th piece, there is no j = 0 term. Given any j > 0 and

m € Qg’)‘ﬂ = Qg’o‘+1)+(j_1), we have

. i
wp0l, m = —j0l “m,

so the map is injective and surjective. As this is one of the morphisms appearing in the
Koszul-like complex BY(Q, F)*~1, this proves the claim. O
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5. SINGULARITIES OF SUBVARIETIES
Let Z=V(f1,..., fr) € X be a closed subvariety of the smooth variety X. Consider
By =if+(Ox) = @ Ox 0965,

a€ENT
a regular holonomic Dp-module. The D-module action is given by

h(g0;0f) = hgoi*éy for all h € Ox,

D(gof6s) = D(9)05'6s — Y D(f:)g07 %6y for all D € Derc(Ox),
=1
ti(90;'op) = fi90;' 0 — aigd; oy,
O, (907 05) = g0y 6.
The Hodge filtration is given by
FyinBy = €D Ox7s;,
e <p

where the shift by 7 is due to the relative dimension of the graph embedding and the fact
that we use left D-modules.

For any slope L = ), a;s;, define a Z-indexed filtration on By by
LG (By) = *v*Dr - 45
Define the by -function of fi,..., fr to be the monic minimal polynomial of the action of
L(s) = Y11 —a;0t; on Gr? ,(By).
Lemma 5.1. For any j € Z, we have

br(w + j)Gr}, ,(By) = 0.

Proof. As
Winp= Y V'Dr-o],
L(B)=L(v)+J
we have a surjection
LAop (PO 1
&b G'B; —5 LQI(By),
L(B)=L(v)+J

and if we compose with the projection to Gr{G(Bf), we get a surjection

Y .
P te's U G (8y),
L(B)=L(v)+J
where we can take = in the index set, as any terms with strict inequality necessarily map
to 0 by definition. Finally, for any fixed §,+, note that LGle maps to 0 in the associated
graded piece, so we have a surjection

D Gilu(By) D Grl(By).
L(B)=L(~)+j

As tP9) L(s) = (L(s + B — y))t?9], we see that ® o L(s) = (L(s) + 5)®, which proves the
claim. 0
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Example 5.2. Let L = as; for some a € Zso. Let by (s) = [[(s + )™ be the usual
Bernstein-Sato polynomial of the hypersurface defined by f;. Then it is easy to check that

=Tl -0 ().

This satisfies the following Thom-Sebastiani type property, similar to [BMS06, Thm. 5].
The proof is essentially the same, but we repeat it for convenience.

Proposition 5.3. Let f1,..., fr € Ox(X), g1,...,9c € Oy (Y) for X, Y two smooth complex
algebraic varieties. Write L1 = > _ja;s; and Ly = Y i 1 bis; and let L = Y ;| a;is; +
Z;:l bj8r+j.

Let br, f(w) be the by, -function for fi,..., fr and define similarly by, 4(w) and by, (5.4)(w).

Write
(9)

by g (w) = [Jw+ )™, by g(w) = [Jw+ 8" .
@ B
Then
br(r.g)(w) = [J(w+7)",

where m~, = max{m&f) + m(ﬁg) —1] mg{f),mgg) >0,a+ 3 =7}

Proof. Let iy (Ox) = By,ig+(Oy) = By and i(s )  (Oxxy) = B(y,g). Then, as in the proof
of [BMS06, Thm. 5] we have an isomorphism
B(q) = By X By.

Moreover, the “G*-filtration on the left is given by the convolution of the filtrations “1 G*B I’
and LZG'Bg. In other words,

LG*Bgy = > G'ByR™GIB,.
it+j=k
As in the proof of [BMS06, Thm. 5], we have
GriBg = P G, BrRGrl, B,
i+j=Fk
Let b/'(w) = [](w + 7)™ as defined in the proposition statement.

By Lemma 5.1, we see that b'(L(s) +i+ j) annihilates Gr?, ,(By) X GI{QG
We see then that by, (¢ q)(w) | b'(w).
On the other hand, by the binomial theorem we see that b'(w) is the minimal polynomial

of the action of L(s) on Gr%lG(Bf) @Grng(Bg). Thus, as by, (,4)(L(s)) annihilates this term,
we get the other divisibility. O

(By) for any i, j.

Next, we review the definitions of higher Du Bois and higher rational singularities.

Given any complex algebraic variety Z of pure dimension dz and any 0 < p < dz, we have
the pth Du Bois complex Q7 € DP | (Oz), with comparison morphisms ay,: 2, — Q. where
Q% is the sheaf of Kéahler differentials on Z. These morphisms are quasi-isomorphisms when

Z is smooth.

If Z has local complete intersection singularities, then following [JKSY22, MOPW23,F122],
we say Z has k-Du Bois singularities if «,, is a quasi-isomorphism for all p < k.
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Using a resolution of singularities, one can define a morphism QF, 2, DZ(Q%Z Py in
Db, (Oz). Here Dz(—) is the shifted Grothendieck duality functor RHom(—,wy)[—dz],
where w?, is the dualizing complex of Z. If Z is smooth, this map is the natural isomorphism

08 = Hom(QY P wy).

Assuming still that Z has local complete intersection singularities, we say that Z has k-
rational singularities if the composition @7, — Q7 — D Z(Q%Z “P) is a quasi-isomorphism for
all p < k. When Z is smooth, this is the usual isomorphism QF, = HomoZ(QéZ P wy) of
locally free sheaves.

Now, let Z =V (f1,...,fr) € X be a local complete intersection subvariety of a smooth
variety X. Associated to this, we have the local cohomology mixed Hodge module

MY (QX[dim X]),
with underlying bi-filtered Dx-module denoted (H%,(Ox), F, W).

The standard description of the local cohomology module is as follows: let Ox]| f1.f. . fr} be

the localization of Ox at all f; with j # ¢ and let Ox[ﬁ] be the localization at all f;.
These modules naturally underlie mixed Hodge modules on X, and we have

T —_ T T fz 1
Hz(0x) = coke (@OX {fl...fj - [fl---frD'

This carries the pole-order filtration, defined by
Py (Ox) = {m € Hy(Ox) | (f1,..., f)*'m = 0}.

It is not hard to see that FyH%,(Ox) C PyHY,(Ox), see [MP22, Prop. 7.1].

Our starting point is the following:

Theorem 5.4 ([CDMO24, CDM22, MP22)). Let (H%(Ox), F,W) be the local cohomology
bi-filtered D-module. Then

a(Z)>r+k <= FH,(Ox) =P H%(Ox) <= Z has k-Du Bois singularities,
a(Z)>r+k <= FWo,H,(Ox) = PkH,(Ox) <= Z has k-rational singularities.
In other words, the structure of the local cohomology mixed Hodge module allows us to

give lower bounds on the minimal exponent of a local complete intersection, which controls
these classes of singularities.

By Theorem A, we have the following:

Theorem 5.5. Let (H7,(Ox), F,W) be the local cohomology bi-filtered D-module. Then for
any non-degenerate slope L, we have

. alhg o
FHZ(0x) =4 D —arm a1 | D ha00p € "VIHB;

laj<p 71 o la|<p

and for any £ € Z>q, we have

., alhg, o
WiareHz(Ox) = {Z et | L(toy)™* (Z ha0j 5f> € LV>LBf}-
o FT g o

«
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To see this, we must make explicit the isomorphism
T
kg, / > tFVIHTeB, = 9 (0x).

Note that, by [CDMO24, Lem. 5.1], if we give any isomorphism between these D-modules,
then any other one differs from this by a non-zero scalar multiple. So in terms of the Hodge
and weight filtrations, any D-module isomorphism we define will (up to scalar multiple) agree
with the formal bi-filtered isomorphism given by Theorem A. We denote that isomorphism
by p: FVIEB, /S ¢ VIEEaB, — 1Y (Ox).

In loc. cit., a Dx-linear morphism 7: By — H’,(Ox) is defined as
8 By
B s

In loc. cit. it is observed that Y., t;8f C ker(7). In particular, Y ;_,(s; +1)Bs C ker(r).

We define 7: LV|L|Bf — M7, (Ox) by applying 7 to LV‘L|Bf C By, which vanishes on
e tiLV|L‘_‘“Bf C >0 tiBy. Thus, we get an induced morphism

7: Lyltp /ZtLVL “4Br — Hy(Ox).

Using the same argument as that in loc. cit., we have the following:

Lemma 5.6. The map T is surjective.

Proof. Let u = W € Ox[ﬁ] with m > 1, by definition, we have u = 7(v) where

V= Gt 1)" (O, ... 0, )10 € By. However, v needs not lie in “VIEIB;. If it does, we are
done.

Otherwise, by discreteness of the “V-filtration and nilpotency of L(s) + X on Gry} (By), we
can find a; < --- < ay < |L| such that
(L(s) + a1) ... (L(s) + an)v € FVIEB;.

By Bézout’s relation, we have some p(w), g(w) such that
N
(w + [L)p(w) + g(w) [ [(w + i) = 1 € Clu],

Plugging in L(s) and applying to v, we get

N
(L(s) + [LDp(L(s))o + q(L(5)) [ [(L(s) + ai)o = v.
i=1
Note that we have (L(s) + |L|) = > ;_; ai(s; + 1).

As (L(s)+|L)p(L(s))v = > "1 (si+1)aip(L(s))v € > (si+1)By C ker(r), we concludg
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Proof of Theorem B. We have shown above that 7o p~! € End(H%(Ox)) is surjective, hence
non-zero. It must then be multiplication by a non-zero scalar, and so we get

7 = \p for some \ € C*,

which shows that 7 is a bi-filtered isomorphism, as desired.

The description of the Hodge filtration is an easy computation (keeping in mind the shift
by r in the Hodge filtration in Theorem A). For the weight filtration, as By is pure of weight

n, we are interested in the monodromy filtration (shifted by n = dim X') on Gr‘LL|(B £) with
respect to L(t0).

By [SZ85, Rmk. 2.3], we can write this filtration as

WGt (B = S L(t0,) ker(L(t8,)"+1+%).
j>max{0,—¢}

Note that if j > 0, then

L(t0,)? ker(L(t0,) ™ 14%) C Im(L(t9y)) € Y t:0,, Gy (By) € 3,y =" (8By).
i=1 i=1
Thus,
ker(L(t0)!) + S0, t;Grl1 = (By)
iy Gy (By)
which finishes the proof. Note that the shift by r comes from the fact that we are studying
the rth cohomology in Theorem A. O

Wit Hy7(Ox) =

This immediately gives the following:

Corollary 5.7. For Z =V (f1,..., fr) € X a complete intersection of pure codimension r
and any non-degenerate slope L, we have

a(Z)>r+k = 8285f € LV|L|Bf V8| <k < Z has k-Du Bois singularities,
a(Z)>r+k <= L(t@t)ﬁtﬂéf € LV>‘L|Bf V8| <k <= Z has k-rational singularities.

5.1. Weighted homogeneous complete intersections. Next, we prove Corollary D. We
assume that f1,...,f, € Clzy,...,x,] are weighted homogeneous of degrees d; < -+ <
d, which define Z C AT, a complete intersection such that 0 € Z is an isolated singular
point. Here weighted homogeneous means there exist wi,...,w, € Zsg such that if 6,, =
o w0y, , then

Owfj = djf; for all j.

We assume throughout this section that di+- - -+d, < |w|. It was shown in [CDM?24, Prop.
2.1] that this implies

lwl =2 di
—_— dr .
Our goal is the following theorem, which is a strengthening of the result of [CDM24] in
the case of Du Bois singularities:
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Theorem 5.8. Let Z =V (f1,...,fr) C X = A be defined by fi,..., fr which are weighted
homogeneous of degrees 2 < dy < --- < d, satisfying lw| > di + -+ + d,. Assume Z is a
complete intersection with an isolated singularity at 0. Then

e wl =0 di

@ J <a(Z)<r+ 4

Thus, |ao(Z)] =r+ L%J Moreover, ay(Z) = |ao(Z)] if and only if
w| =) d;.
i=1

To prove the lower bound, we study the “V-filtration on By = @, cn- Ox02dy. Here
L =>""_, d;s;. This is the natural slope to consider in this example, by observing

0(07) = L(s)dy,

dr

and so
(5) 0(a0)57) = (L(s — B) + w - a) (x°0; by)
We have the following general observation:

Lemma 5.9. Let Z =V (f1,...,fr) € X be a reduced complete intersection of codimension
r in a smooth variety X. Then for any non-degenerate slope L =\, a;s;, we have

Gri(Bf) is supported on Zsing for X ¢ Z>|,
where |L| =", a;.
Proof. Let U C X be an open subset such that U N Z = Z.,. Then f1,..., f, are part of

a system of coordinates on U. In this case, we have that By is LVOBf coherent, which by
Lemma 3.13 proves the claim. Indeed, it suffices to show that, for every 5 € N, the element

Gféf € LVOD - §;. But we have
0/0; = d}d; € Dx - Oy

over U, proving the claim. ]
Return now to the case that Z = V(fi,..., fr) € A is a complete intersection with an
isolated singular point at 0, such that each f; is weighted homogeneous of degree d;, i.e.,
O fi = di fi.

By reordering, we can assume d; < --- < d,.. The following observation is elementary:
Lemma 5.10. In the situation above, for any o € N™ and § € N, we have
xaatﬁ(gf c LVmin{lL\7|w|+w~a—L(ﬁ)}Bf7
where |w| =" w; and w- o =Y 1 wioy.

Proof. Assume 330‘8? ¢ defines a non-zero element of Gr}(By) with x < |L|. Our goal is to
establish the inequality x > w - a + |w| — L(5).
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As x < |L|, we have by Lemma 5.9 above that Gr}(By) is supported on Zgn, = {0}.
By Kashiwara’s equivalence (which in this setting of possibly non-coherent D-modules, just
means studying the eigenspaces of the Euler operator), we can write

Gry(By) = €D NJb,
yEN™

where A is a complex vector space (possibly of infinite dimension). For any n € N/, we have
x;(ndp) = 0. Moreover, the Leibniz rule gives

00 0) = 87 (B — w - 7).
Finally, 0, = Y 1" wizi0y, = > 1 q WOy, x; — |w]|. Putting this together, we see that
0 (97 (ndo)) = 97 (0wndo) = (—[w| — w - v)IIndo.

Hence, in this situation, any generalized eigenvector of 6,, is actually an eigenvector and
its eigenvalue is < —|w].

Assume 1:“8? &y defines a non-zero element of Gr} (By). Then
0w (20, 87) = (L(s — B) +w - a) (%0 5y),
and so
(L(s) + X)(@°0/57) = (Bu + L(B) = w- a - x) (=0 ).
As L(s) + x is nilpotent on Gr}(By), we see that $O‘8tﬁ§f is a generalized eigenvector for
0, with eigenvalue w - o« — L(3) — x. This gives
w-a—L(B) —x < —|w,
and so x > w -« — L(B) + |w|, proving the claim. O
Corollary 5.11. For k = LWJ, we have
FroBy CHVIHBy, Fiyp By € FVIMIBy.
Proof. To prove this, we show that for any  with |3| = k we have
875; e LvIHB;.

By the previous lemma, we want to understand when |w| — L(3) > |L|. By varying over
all 8 with |3] = k, the maximal value of L(f) is kd,. Hence, for any p € Z such that
lw| — |L| > pd,, we get Fpi,B; C LVILIB,.

The second claim follows from the general upper bound on a(Z). O

In summary, with the discussion above, we have the following result.

Corollary 5.12. If Z = V(f1,..., fr) € Al is a complete intersection with isolated sin-
gularity at 0, such that f; is weighted homogeneous of degree d; and di < --- < d, and
lw| >dy + -+ dy, then

|w| — |L\J

qo(2) =+ |1

Proof. This follows immediately from Fj,1,B8; C “VIHIB; when k = LWJ and the previous
proposition. ]
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Using the general upper bound, we have the following:

Corollary 5.13. If d,«} |w| — |L|, we have

As we can compute the weight filtration on H’(Ox) using the nilpotent operator L(t0;)
on Gr‘LL|(B ), we also have the following:
Lemma 5.14. If d, { |w| — |L|, then
jwl ~ 12|

ao(Z
Oz[)( )>7’+ dr

Proof. Let k = L%:'L'J We will show that, under the assumption d, 1 |w| — |L|, we have
ofteisy e Ly>IH=dig, for all |8 = k,1 < i <r.

Indeed, this implies that L(tat)FkMGr‘LL'(B £) =0, proving

FiWasrHy (Ox) = FrHz(Ox) = PyHzZ(Ox).
Assume there exists 8 with |3] = k and 1 < ¢ < r such that
atﬁJreié‘f c LV|L|—diBf \ LV>|L|_diBf.

By Lemma 5.10, this means |L| — d; > |w| — L(B + e;), so that L(8) > |w| — |L|. But
L(B) < kd,, so we get
jw| = |L| < kdy,

L 1L .. .
and so & o L] < Llwl o | |J, contradicting our assumption. O

We end with an explicit computation of the “V-filtration in this setting.

Theorem 5.15. Define a filtration

UAB _ Z|w|+w~a—L(6)2>\ Dx - (xaatﬁéf) A< |L’ )
T, o 4B, A> ||

In the setting above, we have LV)‘Bf = U)‘Bf.

Proof. Lemma 5.10 shows U*By C V°*®By, so we need only prove the opposite inclusion.
It is trivial to check that it satisfies the properties of Proposition 3.10 except possibly the
coherence condition, but this gives the desired containment. (]
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