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Abstract. We study generalized V -filtrations, defined by Sabbah, on D-modules under-
lying mixed Hodge modules on X × Ar. Using cyclic covers, we compare these filtrations
to the usual V -filtration, which is better understood. The main result shows that these
filtrations can be used to compute σ!, where σ : X × {0} → X ×Ar is the inclusion of the
zero section.

As an application, we use the restriction result to study singularities of complete inter-
section subvarieties. These filtrations can be used to study the local cohomology mixed
Hodge module. In particular, we classify when weighted homogeneous isolated complete
intersection singularities in An are k-Du Bois and k-rational.

1. Introduction

Over the complex numbers, singularities of local complete intersection subvarieties have re-
cently been studied using Saito’s theory of mixed Hodge modules [MP22,CDMO24,CDM22].
One of the cornerstones of these applications is the extension, beyond the hypersurface case,
of the relation between the Hodge module structure on local cohomology with V -filtrations
and Bernstein-Sato polynomials.

A key technical tool in extending this relationship is an understanding of the V -filtration
of mixed Hodge modules along higher codimension smooth subvarieties. This V -filtration
and its relation to Bernstein-Sato polynomials was first introduced in [BMS06]. The Hodge
module theoretic properties were further studied in [CD23, CDS23]. For a brief review of
V -filtrations and mixed Hodge modules, see Section 2 below.

For a smooth complex algebraic variety X, we consider T = X × Ar
t with coordinates

t1, . . . , tr on Ar
t . Kashiwara and Malgrange showed that any DT -module M underlying a

mixed Hodge moduleM on T admits a V -filtration (V λM)λ∈Q by DX (not DT )-submodules.

Three important properties of this filtration are that it is discretely indexed, we have

tiV
λM ⊆ V λ+1M, ∂tiV

λM ⊆ V λ+1M,

and the shifted Euler operator
∑r

i=1 ti∂ti − λ+ r is nilpotent on GrλV (M).

We can define Koszul-like complexes

Aλ(M) =

[
V λM ti−→

r⊕
i=1

V λ+1M ti−→ . . .
ti−→ V λ+rM

]
,
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and

Bλ(M) =

[
GrλV (M)

ti−→
r⊕

i=1

Grλ+1
V (M)

ti−→ . . .
ti−→ Grλ+r

V (M)

]
placed in degree 0, 1, . . . , r.

It is not hard to see (as shown in Proposition 2.10 below) that most of these complexes are
acyclic. The most important one (and essentially the only one) that is not necessarily acyclic
is the complex for λ = 0. In fact, the cohomologies of this complex are shown to compute
the D-module theoretic restriction of the module M to the zero section X × {0} ⊆ X ×Ar

t .

The main results of [CD23,CDS23] are extensions of the acyclicity and restriction results
to the setting of mixed Hodge modules. Careful statements of these results are found in
Theorem 2.11 below.

The main objective of this paper is to extend these results to more general V -filtrations,
defined by Sabbah [Sab87]. The proper definition is given in Section 2 below. For now, we
just mention that associated to a tuple (a1, a2, . . . , ar) ∈ Z≥0, we can define a linear form
L =

∑r
i=1 aisi, which is called a slope. Such a slope is non-degenerate if ai > 0 for all i. We

set |L| =
∑r

i=1 ai and L(t∂t) =
∑r

i=1 aiti∂ti .

Sabbah defines the unique LV -filtration on a DT -module M by similar properties to the V -
filtration described above, except one requires L(t∂t)− λ+ |L| to be nilpotent on GrλLV (M),

which for the remainder of the paper we will write as GrλL(M). This imposes the other
conditions ti

LV λM ⊆ LV λ+aiM and ∂ti
LV λM ⊆ LV λ−aiM. This filtration heavily depends

on the ordered choice of coordinates t1, . . . , tr: for example, even reordering the coordinates
gives a different filtration, corresponding to the slope with permuted coefficients.

If L =
∑r

i=1 si, then LV •M = V •M from above. In fact, if L =
∑

i∈I si for some

I ⊆ {1, . . . , r}, the filtration LV •M is the V -filtration along {ti | i ∈ I}.
In analogy with the above, we can define Koszul-like complexes

Aλ
L(M) =

[
LV λM ti−→

r⊕
i=1

LV λ+aiM ti−→ . . .
ti−→ LV λ+|L|M

]
,

Bλ
L(M) =

[
GrλL(M)

ti−→
r⊕

i=1

Grλ+ai
L (M)

ti−→ . . .
ti−→ Gr

λ+|L|
L (M)

]
placed in degree 0, 1, . . . r.

Proposition 3.9 below shows that, at the D-module level, we have the acyclicity and re-
striction results for these complexes. The main result of this note is the extension to the
mixed Hodge module setting.

If (M, F,W ) is a bi-filtered DT -module underlying a mixed Hodge module M on T , we
define filtrations

FpA
λ
L(M) =

[
Fp+r

LV λM ti−→
r⊕

i=1

Fp+r
LV λ+aiM ti−→ . . .

ti−→ Fp+r
LV λ+|L|M

]
,

FpB
λ
L(M) =

[
Fp+rGrλL(M)

ti−→
r⊕

i=1

Fp+rGrλ+ai
L (M)

ti−→ . . .
ti−→ Fp+rGr

λ+|L|
L (M)

]
.
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Moreover, the nilpotent operator L(t∂t) − λ + |L| on GrλL(M) and the induced filtration

M•GrλL(M) = GrλL(W•M) give rise to the relative monodromy filtration W•GrλL(M). This is
recalled in more detail in Section 2 below. The complex B0

L(M) admits a filtrationW•B
0
L(M)

by taking the relative monodromy filtration on each piece.

With this notation in place, we have the following:

Theorem A. Let L =
∑r

i=1 aisi be a non-degenerate slope and let (M, F,W ) be a bi-filtered
DT -module underlying a mixed Hodge module. The complexes

Aχ
L(M, F ) and Bχ

L(M, F ) are filtered acyclic for all χ > 0.

Moreover, we have filtered quasi-isomorphisms

σ!(M, F ) ∼= A0
L(M, F ) ∼= B0

L(M, F ),

and the latter two complexes are strictly filtered.

Finally, the filtration W•HiB0
L(M, F ) induced by W•B

0
L(M, F ) satisfies

GrWk HiB0
L(M, F ) ∼= GrWk+iHiσ!(M, F ),

as filtered DX-modules underlying polarizable Hodge modules of weight k + i.

Remark 1.1. The old ideas in [CD23] are not sufficient to prove Theorem A because the
LV -filtration depends on the choice of coordinates.

The ideas in [CDS23] are used below; however, they do not automatically give us the
strictness of the complex B0

L(M, F ). Indeed, the same problem arises in this situation: the
LV -filtration depends on the choice of coordinates t1, . . . , tr, and to prove strictness as in
[CDS23], one takes tr to be a general linear combination of t1, . . . , tr.

Remark 1.2. A few results from [CD23] are missing in this paper. Namely, we would like to
understand the Koszul-like complexes

Cλ
L(M) =

[
Gr

λ+|L|
L (M)

∂ti−−→
r⊕

i=1

Gr
λ+|L|−ai
L (M)

∂ti−−→ . . .
∂ti−−→ GrλL(M)

]
in degree −r, . . . ,−1, 0.

It is not hard to see that, at the D-module level, Cχ
L(M) is acyclic for all χ ̸= 0. For

L =
∑r

i=1 si, however, we know that C0(M) is quasi-isomorphic to σ∗(M). At the moment,
we do not see a way to prove this even in the D-module setting. Naturally, one would also
want to study the corresponding filtered complexes and compute σ∗ for mixed Hodge modules
using the complex C0

L(M, F ).

Another missing result is the understanding of the Fourier-Laplace transform of an L-
monodromic mixed Hodge module. The notion of L-monodromic modules is reviewed below.
If one had an understanding of the Fourier-Laplace transform of such a module, then applying
it to SpL(M) (as constructed below), and using Theorem A, one would obtain the results
concerning the complex Cχ(M) mentioned at the beginning of this remark.

The paper ends with an application of Theorem A to the study of singularities of local
complete intersection subvarieties. If Z ⊆ X is defined by a regular sequence f1, . . . , fr in
OX(X), we can define a pure Hodge module Bf on T of weight n = dim(X). Its underlying
DT -module is

Bf =
⊕
α∈Nr

OX∂
α
t δf ,
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whose D-module structure is explained in Section 5 below.

If σ : X × {0} → T is the inclusion of the zero section, we have a natural isomorphism

Hrσ!Bf
∼= (Hr

Z(OX), F,W ),

where the right hand side is the bi-filtered local cohomology DX -module along Z, which is
traditionally computed using the Čech complex for f1, . . . , fr.

By [MP22,CDMO24,CDM22], the Hodge module structure of Hr
Z(OX) is related to higher

classes of singularities. These are the classes of k-Du Bois and k-rational singularities, where
k ∈ Z≥0, whose definitions are reviewed in Section 5 below. For k = 0, these agree with the
classical notions of Du Bois and rational singularities, hence the terminology.

In [CDMO24], the authors and Mustaţă define a numerical invariant of Z, the minimal
exponent α̃(Z), in terms of V •Bf . The minimal exponent satisfies the following implications:

α̃(Z) ≥ r + k ⇐⇒ Z has k-Du Bois singularities,

α̃(Z) > r + k ⇐⇒ Z has k-rational singularities.

From this, we see that Z has k-rational singularities if it has (k+1)-Du Bois singularities,
and it has k-Du Bois singularities if it has k-rational singularities. We say Z has k-liminal
(or strictly k-Du Bois) singularities if α̃(Z) = r + k.

Our first main result in the study of singularities is the following description of the mixed
Hodge module structure on local cohomology:

Theorem B. Let Z = V (f1, . . . , fr) ⊆ X be a complete intersection of pure codimension r.
Let L be a non-degenerate slope. Then for all p, ℓ ∈ Z≥0, we have

Fp+rWn+r+ℓHr
Z(OX)

=

∑
|α|≤p

α!hα

fα1+1
1 . . . fαr+1

r

| u =
∑
|α|≤p

hα∂
α
t δf ∈ LV |L|Bf , L(t∂t)

ℓ+1u ∈ LV >|L|Bf

 .

An immediate corollary of this computation is the following:

Corollary C. Let Z = V (f1, . . . , fr) ⊆ X be a complete intersection of pure codimension r.
Let L be a non-degenerate slope. Then

Fp+rBf ⊆ LV |L|Bf ⇐⇒ Z has k-Du Bois singularities,

L(t∂t)Fp+rBf ⊆ LV >|L|Bf ⇐⇒ Z has k-rational singularities.

Finally, the corollary allows us to prove the following, which is a generalization of the
main result of [CDM24]. Note that, here, we do not give an exact formula for the minimal
exponent, but what we show is enough for the singularity classification.

Let f1, . . . , fr ∈ C[x1, . . . , xn] be weighted homogeneous of (integer) degrees d1 ≤ · · · ≤ dr
with weights (w1, . . . , wn) ∈ Zn

≥1. Assume Z = V (f1, . . . , fr) ⊆ An
x is a complete intersection

of pure codimension r with an isolated singularity at 0.

Corollary D. The complete intersection Z has Du Bois (hence, log canonical) singularities
if and only if |w| =

∑n
i=1wi ≥ d1 + · · ·+ dr. In this case, let

k =

⌊
|w| −

∑r
i=1 di

dr

⌋
.
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Then

r + k ≤ α̃0(Z) ≤ r +
|w| −

∑r
i=1 di

dr
,

and in fact, α̃0(Z) = r + k if and only if dr | (|w| −
∑r

i=1 di).

In particular, for this value of k, we see

Z has k-liminal singularities near 0 ⇐⇒ dr |

(
|w| −

r∑
i=1

di

)

Z has k-rational singularities near 0 ⇐⇒ dr ∤

(
|w| −

r∑
i=1

di

)
.

We expect that the equality α̃0(Z) = r +
|w|−

∑r
i=1 di

dr
holds in the setting of Corollary D.

Outline. Section 2 contains the background needed for the proofs of the main results.
In Subsection 2.1, we provide a review of the theory of mixed Hodge modules, including a
review of hypersurface V -filtrations. Subsection 2.3 reviews the results for higher codimension
V -filtrations. The definition and properties of the filtration LV •M are given in Section 3.
The Verdier specialization process is used in Subsection 3.1 to study LV -filtrations on mixed
Hodge modules, using the properties of hypersurface V -filtrations.

Section 4 contains the proof of Theorem A. It begins with an analysis of mixed Hodge
modules under cyclic coverings X ×Ar

w → X ×Ar
t defined by

(x,w1, . . . , wr) 7→ (x,wa1
1 , . . . , w

ar
r ).

The main point is that the usual V -filtration on π!(M) can be related to the LV -filtration
on M. Two difficulties are that π!(−) need not preserve pure modules (though we give a
criterion for when a pure Hodge module pulls back to a pure module, in a special case) and
the Hodge filtration is not easy to understand. We work around this by using the fact that,
on restriction to the étale locus, things behave nicely.

The final Section 5 contains the proof of Theorem B, Corollary C and the example of
weighted homogeneous complete intersections with isolated singularities. In particular, The
proof of Corollary D is a combination of results in Section 5.1. Though we cannot give an
exact computation of the minimal exponent in the latter example (except in special cases),
we give an easy criterion to check whether such a subvariety has k-Du Bois or k-rational
singularities.

Acknowledgments The authors would like to thank Mircea Mustaţă for his thoughtful
advice. We would also like to thank Lei Wu for many helpful discussions on the topic of
the paper. The second author would like to thank Christian Schnell and Claude Sabbah for
many enlightening conversations about ideas occurring in this work.

2. Preliminaries

We do not provide a review of the theory of D-modules in this paper, though we will review
the necessary notions as they arise. For reference, see [HTT08].



6 Q. CHEN, B. DIRKS, AND S. OLANO

2.1. Mixed Hodge modules and V-filtrations of hypersurfaces. In this subsection, we
discuss the relevant aspects of the theory of mixed Hodge modules. For details, one should
consult Saito’s papers [Sai88,Sai90] or Schnell’s survey article [Sch14].

Let X be a smooth algebraic variety over C with dim(X) = n. Saito associates to X an
abelian category MHM(X), the category of mixed Hodge modules on X. A mixed Hodge
module on X consists of the following data: a filtered regular holonomic DX -module (M, F ),
with a finite filtration W•M by sub-DX -modules, a finite filtered Q-perverse sheaf (K,W ),
and a comparison morphism

α : (K,W )⊗Q C → DRX(M,W )

which is a filtered quasi-isomorphism. These data are subject to various conditions which
we will not fully explain here. Some of the conditions are the following, which concern the
interaction between the Hodge filtration F•M and the V -filtration V •M on M along any
(locally defined) function f ∈ OX .

First, we recall the definition the V -filtration of DX×A1
t
-modules along t, which is the

coordinate onA1. TheDX×A1
t
-module if,+(M) admits a V -filtration along t, which, following

Saito, is a decreasing, discrete1 and left continuous2, Q-indexed filtration V •M satisfying the
following conditions:

(1) V αM is coherent over V 0DX×A1 = DX [t, t∂t],
(2) tV αM ⊆ V α+1M for all α ∈ Q, with equality for α≫ 0,
(3) ∂tV

αM ⊆ V α−1M for all α ∈ Q,
(4) the operator t∂t − α + 1 is nilpotent on GrαV (M) = V αM/V >αM, where V >αM =⋃

β>α V
βM.

Remark 2.1. Below, we will also use the operator s = −∂tt. This is more natural in the study
of singularities and b-functions. We clearly have

s = −(t∂t + 1),

so condition 4 can be restated as requiring s+ α to be nilpotent on GrαV (M).

Example 2.2. Let M be supported in {t = 0}. Then Kashiwara’s equivalence (see [HTT08,
Sect. 1.6]) tells us that M = i+M0 where M0 = ker(t) ⊆ M is a DX×{0}-module and

i : X × {0} → X ×A1
t is the closed embedding. Thus,

M =
⊕
k≥0

M0∂
k
t ,

and it is not hard to check that

V λM = V ⌈λ⌉M =
⊕

k≤−⌈λ⌉

M0∂
k
t

is a V -filtration of M along t.

If a V -filtration on M along t exists, then it is unique. Hence, existence is an intrinsic
property of the D-module M. The uniqueness implies the following:

1This means that there is an increasing sequence αj ∈ Q with limj→−∞ αj = −∞ and limj→∞ αj = ∞,
such that V χM for χ ∈ (αj , αj+1) only depends on j.

2Meaning V χM =
⋂

β<χ V βM. In other words, V χM is constant for χ ∈ (αj , αj+1].
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Lemma 2.3. Let 0 → M1 → M2 → M3 → 0 be a short exact sequence of DX×A1
t
-modules

such that Mi admits a V -filtration along t for i = 1, 2, 3. Then, for all λ ∈ Q, the sequence

0 → V λM1 → V λM2 → V λM3 → 0

is exact.

From this and Example 2.2, we see that positive pieces of the V -filtration only depend on
the restriction to {t ̸= 0}.

Lemma 2.4. Let φ : M → N be a morphism of DX×A1
t
-modules such that φ|{t̸=0} is an

isomorphism.

Then for all λ > 0, φ induces an isomorphism

φ : V λM ∼= V λN .

For f ∈ OX(X), let if : X → X ×A1
t be the graph embedding along f . We say that the

V -filtration of a DX -module M along f exists if the V -filtration of if,+(M) along t exists.
For DX -modules underlying mixed Hodge modules, the V -filtration exists for any locally
defined function f ∈ OX .

Returning to a DX×A1-module M, it is not hard to see using Condition 4 that the maps

t : GrαV (M) → Grα+1
V (M),

∂t : Grα+1
V (M) → GrαV (M)

are isomorphisms for all α ̸= 0. In fact, Condition 2 shows that t : V αM → V α+1M is an
isomorphism for all α > 0.

If (M, F ) is a filtered DX -module, then if,+(M) is also a filtered DX×A1
t
-module. Indeed,

we can write if,+(M) =
⊕

k≥0M∂kt δf , and we have

Fpif,+(M) =
⊕
k≥0

Fp−k−1M∂kt δf ,

where the shift by 1 is a normalizing convention due to the relative dimension of if : X →
X ×A1

t .

Saito imposes the following conditions on the filtration F•M: for any f ∈ OX(X), we have

(1) t : FpV
αif,+(M) → FpV

α+1if,+(M) is an isomorphism for all α > 0,

(2) ∂t : FpGrα+1
V (if,+(M)) → Fp+1GrαV (if,+(M)) is an isomorphism for all α < 0.

Remark 2.5. Another property imposed on filtered D-modules underlying mixed Hodge mod-
ules is the following: for (M, F ) underlying a mixed Hodge module on X ×A1

t , the filtration
induced by F•M on GrλV (M) is a good filtration.

In fact, we have the following (see [Sai88, Cor. 3.4.7] and [SS, Prop. 10.7.3]): for any
λ ∈ Q, let RF (V

λM) =
⊕

p∈Z FpV
λMzp. This is a module over RF (V

0DX×A1
t
), and in fact

is coherent over that ring. It is even coherent over the subring RF (DX×A1
t /A

1
t
) = RF (DX [t]).

For i : H = V (f) → X the inclusion of the hypersurface defined by f into X, we can
restrict a mixed Hodge module M on X along i to get i∗i

!M ∈ Db(MHM(X)). In fact, for
underlying filtered D-modules, this restriction is given by the morphism

t : Gr0V (if,+(M, F )) → Gr1V (if,+(M, F )),
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which is the motivation for Theorem A.

In the remainder of this section, we will work with M a mixed Hodge module on X ×A1
t .

The following lemma comes immediately from conditions (1) and (2), respectively.

Lemma 2.6. Let (M, F ) underlie a mixed Hodge module on X × A1
t . Let j : {t ̸= 0} →

X ×A1
t . Then

FpV
λM = V λM∩ j∗(Fpj

∗M)

and

FpM =
∑
k≥0

∂kt (Fp−kV
0M).

A mixed Hodge module M is pure of weight d if GrWi (M) = 0 for all i ̸= d. By definition,
any pure Hodge module of weight d decomposes into its strict support decomposition. This
means

M =
⊕

Z⊆X×A1
t

MZ

where MZ is a pure Hodge module of weight d with strict support Z ⊆ X×A1
t . Here Z is an

irreducible closed subset of X ×A1
t and strict support means that the D-module underlying

MZ admits no non-zero quotient or sub-object with support contained in a proper closed
subset of Z. Equivalently, the underlying perverse sheaf is an intersection complex.

Lemma 2.7. A DX×A1
t
-module M admits no non-zero sub-objects supported in {t = 0} if

and only if the map

t : Gr0V (M) → Gr1V (M) is injective.

It admits no non-zero quotient object supported in {t = 0} if and only if the map

∂t : Gr1V (M) → Gr0V (M) is surjective,

which holds if and only if M = DX×A1
t
· V >0M.

If (M, F ) underlies a Hodge module, then the morphisms in the previous lemma statement
are automatically strict with respect to the Hodge filtration. This gives the following:

Lemma 2.8. If (M, F ) underlies a Hodge module with no sub-object supported on {t = 0},
then

FpV
0M = V 0M∩ j∗(Fpj

∗(M)).

If (M, F ) underlies a Hodge module with no quotient supported on {t = 0}, then

FpM =
∑
k≥0

∂kt (Fp−kV
>0M).

2.2. Relative Monodromy Filtration. An important construction in Hodge theory is the
monodromy filtration of a nilpotent operator N on an object A in an abelian category. Given
such an operator, there exists a unique increasing filtration W (N)•A such that NW (N)•A ⊆
W (N)•−2(A) and with the property that

N i : Gr
W (N)
i (A) → Gr

W (N)
−i (A)

is an isomorphism for all i > 0.
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If instead A is itself already filtered by sub-objects L•A ⊆ A in the abelian category A,
there is the notion of relative monodromy filtration for any nilpotent operator N such that
NL• ⊆ L•.

The relative monodromy filtration W (N,L)•A is the unique, increasing filtration with the
property that NW (N,L)• ⊆W (N,L)•−2 and so that, for all k ∈ Z and i ∈ Z>0, the map

N i : Gr
W (N,L)
k+i GrLk (A) → Gr

W (N,L)
k−i GrLk (A)

is an isomorphism.

Such a filtration need not always exist, though an inductive criterion for existence is given
in [SZ85] (see also [Sai90, Lem. 1.2] and [Kas86, Lem. 3.1.1]).

One of the most useful observations in the theory of relative monodromy filtrations is due
to Kashiwara [Kas86, Thm. 3.2.9], which allows one to obtain a canonical splitting of the

filtration induced by L• on Gr
W (N,L)
k (A) for any k ∈ Z. This splitting (with an alternative

proof) is also given in [Sai90, Prop. 1.5]. In other words, there is a canonical isomorphism

(3) LiGr
W (N,L)
k (A) ∼=

⊕
j≤i

GrLj Gr
W (N,L)
k (A).

The above definitions and results hold in any exact category. This extension is important
when considering (bi)-filtered D-modules (M, F,W ), though it makes the notation a bit
cumbersome. For the details on this extension, consult [Sai90, Ch. 1].

In the theory of mixed Hodge modules, another property required of any (M, F,W ) which
underlies a mixed Hodge module is the following: for any λ ∈ [0, 1], the relative monodromy
filtration on GrλV (M) with respect to the nilpotent operator t∂t − λ+ 1 for the filtration

L•GrλV (M) =

{
Gr0V (W•M) λ = 0

GrλV (W•+1M) λ ∈ (0, 1]

should exist. The shift by 1 in the case λ ∈ (0, 1] is incredibly important to the theory. This
relative monodromy filtration is then the weight filtration on GrλV (M) as a mixed Hodge
module.

2.3. Higher codimension V-filtrations. In this subsection, we review the results of [CD23,
CDS23] concerning Koszul-like complexes of higher codimension V -filtrations. For ease, we
work always on T = X × Ar

t with coordinates t1, . . . , tr on Ar
t . By the graph embedding

trick, this is always the local situation.

If M is a DX×Ar
t
-module underlying a mixed Hodge module, then it admits a V -filtration

along t1, . . . , tr. For details on this V -filtration, see [BMS06,CD23].

The V -filtration is the unique decreasing, discretely and left continuously Q-indexed fil-
tration V •M such that

(1) V χM is finitely generated over V 0DX×Ar
t
= DX [t1, . . . , tr]⟨ti∂tj | i, j ∈ {1, . . . , r}⟩.

(2) (t1, . . . , tr)V
χM ⊆ V χ+1M for all χ ∈ Q, with equality for χ≫ 0.

(3) ∂tiV
χM ⊆ V χ−1M for all i ∈ {1, . . . , r} and χ ∈ Q.

(4) Let θ =
∑r

i=1 ti∂ti . Then the operator θ − χ+ r is nilpotent on

GrχV (M) = V χM/V >χM,

where V >χM =
⋃

β>χ V
βM.
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Remark 2.9. As in the hypersurface case, we will also use the operator s =
∑r

i=1 si where
si = −∂titi. As s = −(θ + r), we can restate the last condition as requiring that s + χ is
nilpotent on GrχV (M).

As in the introduction, we define

Aχ(M) =

[
V χM ti−→

r⊕
i=1

V χ+1M ti−→ . . .
ti−→ V χ+rM

]
,

Bχ(M) =

[
GrχV (M)

ti−→
r⊕

i=1

Grχ+1
V (M)

ti−→ . . .
ti−→ Grχ+r

V (M)

]
.

Proposition 2.10. Let σ : X ×{0} → X ×Ar
t be the inclusion of the zero section. We have

quasi-isomorphisms σ!(M) = Kosz(M, t) ∼= A0(M) ∼= B0(M).

In fact, for χ ̸= 0, the complex Bχ(M) is acyclic and for χ > 0, the complex Aχ(M) is
acyclic.

Proof. As θ−χ− j + r is nilpotent on GrχV (Bf ), we see that θ− j + r is an automorphism of

Grχ+j
V (M) for all χ ̸= 0. This allows us to define an automorphism of the complex Bχ(M).

But using the ∂ti maps, it is easy to see that this automorphism is a null-homotopy, proving
that Bχ(M) is acyclic for χ ̸= 0.

The claim for Aχ(M) being acyclic is easy to show for χ≫ 0 using a strict surjection (on
the Z-indexed part) ⊕

I

(DX×Ar , V [βi]) → (M, V ),

and using the fact that such acyclicity is trivial to check for the ring DX×Ar .

Finally, the definition of σ!(M) is as the derived O-module pull-back of M along σ : X ×
{0} → X ×Ar

t . Using the Koszul resolution of OX×{0}, we see that σ!(M) = Kosz(M, t).

Using what we have already shown, it is obvious that A0(M) → B0(M) is a quasi-
isomorphism. By discreteness of the filtration V •M, we can check that for all χ < 0, the
inclusion A0(M) → Aχ(M) is a quasi-isomorphism. Taking the inductive limit as χ → −∞
proves the claim. □

The main results of [CD23, CDS23] are to extend the results of the previous lemma to
include the Hodge and weight filtrations.

For (M, F,W ) a bi-filtered DX×Ar
t
-module underlying a mixed Hodge module, we define

filtered complexes

FpA
χ(M) =

[
Fp+rV

χM ti−→
r⊕

i=1

Fp+rV
χ+1M ti−→ . . .

ti−→ Fp+rV
χ+rM

]
,

FpB
χ(M) =

[
Fp+rGrχV (M)

ti−→
r⊕

i=1

Fp+rGrχ+1
V (M)

ti−→ . . .
ti−→ Fp+rGrχ+r

V (M)

]
.

Using Verdier specialization (as in Subsection 3.1 below), we can easily see that the rel-
ative monodromy filtration for N = θ − χ + r on GrχV (M) for the filtration L•GrχV (M) =
GrχV (W•M) exists. We denote it by W•GrχV (M).
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We have the sub-complexes L•B
0(M) = B0(W•M) ⊆ B0(M), and since the morphisms

in B0(M) also commute with N (in the obvious way), we see that these morphisms preserve
the relative monodromy filtration. Thus, we get a weight filtration

W•B
0(M) =

[
W•Gr0V (M)

ti−→
r⊕

i=1

W•Gr1V (M)
ti−→ . . .

ti−→W•GrrV (M)

]
.

With these filtrations on the complexes, we have the following results:

Theorem 2.11. The complexes

Aχ(M, F ) and Bχ(M, F ) are filtered acyclic for all χ > 0.

Moreover, we have filtered quasi-isomorphisms

σ!(M, F ) ∼= A0(M, F ) ∼= B0(M, F ),

and the latter two complexes are strictly filtered.

Finally, the filtration W•HiB0(M, F ) induced by W•B
0(M, F ) satisfies

GrWk HiB0(M, F ) ∼= GrWk+iHiσ!(M, F ),

as filtered DX-modules underlying polarizable Hodge modules of weight k + i.

We remark that the filtered complex W•B
0(M) need not be strict. However, the weight

spectral sequence degenerates at E2, see, for example [Sai00, Prop. 2.3].

3. Generalized V-filtrations

Throughout this section, we work on T = X ×Ar
t , and let t1, . . . , tr be the coordinates on

Ar
t .

We call a linear form L(s) =
∑r

i=1 aisi a slope if ai ∈ Z≥0 for all i. It is non-degenerate if
ai ̸= 0 for all i. Given a slope L, we obtain a Z-indexed filtration on DT by

LV jDT =

∑
β,γ

Pβ,γt
β∂γt | Pβ,γ ∈ DX , L(β) ≥ L(γ) + j.


If M is a module over DT , we say that a filtration U•M is compatible if

LV jDT · UkM ⊆ Uk+jM,

for example, the filtration LV •DT is compatible (in other words, it is a multiplicative filtra-
tion).

We define the Rees ring RL(DT ) =
⊕

k∈Z
LV kDTu

−k. It is a Z-graded ring, by the
multiplicative property of the filtration. Given a module M with a compatible filtration
U•M, we define the Rees module RU (M) =

⊕
k∈Z U

kMu−k. The filtration U•M is good if

RU (M) is coherent over RL(DT ). We will also say that (M, U) is a good filtered (DT ,
LV )-

module in this case.

For a filtered module (M, U) and k ∈ Z, we set (M, U [k]) for the filtration with U [k]•M =
U•−kM. The following is immediate.



12 Q. CHEN, B. DIRKS, AND S. OLANO

Lemma 3.1. An exhaustive filtration U•M is good if and only if there exist m1, . . . ,mN and
k(1), . . . , k(N) ∈ Z such that we have

U•M =
N∑
i=1

LV •−k(i)DT ·mi.

Equivalently, we have a strict surjection
⊕N

i=1(DT ,
LV [k(i)]) → (M, U).

From this, we get comparability of good filtrations:

Lemma 3.2. Let U•
1M, U•

2M be two good filtrations of the DT -module M. Then there exists
k ∈ Z such that

U•+k
1 M ⊆ U•

2M ⊆ U•−k
1 M.

The following can be thought of as the analogue of the Artin-Rees lemma:

Lemma 3.3. The ring RL(DT ) is Noetherian. Thus, if (M, U) is a good filtered (DT ,
LV )-

module and N ⊆ M is a sub DT -module, the induced filtration

U•N = N ∩ U•M is good.

Proof. The second claim is immediate from the first. The first follows from Lemma 3.14
below, which we postpone until we discuss specialization constructions. □

Definition 3.4. Let (M, U) be a good filtered (DT ,
LV )-module. The b-function for U•M

is the monic polynomial p(w) ∈ C[w] of least degree such that

(4) p(L(s) + k)UkM ⊆ Uk+1M,

where L(s) =
∑r

i=1−ai∂titi.
We say (M, U) is specializable if it admits a b-function. For any subfield A ⊆ C, we say

(M, U) is A-specializable if the b-function splits into linear factors over A.

Lemma 3.2 can be used to show the following, which says that being A-specializable is a
property of the module, not the filtration:

Proposition 3.5. If (M, U) is a good filtered (DT ,
LV )-module which is A-specializable, then

any other good filtration is also A-specializable.

Lemma 3.3 shows that if N ⊆ M is a submodule and M is A-specializable, then N is,
too. This applies in particular to DT · u ⊆ M for any element u ∈ M, which leads to the
following definition.

Definition 3.6. Let M be A-specializable. For any u ∈ M, the b-function of u is the monic
polynomial of least degree b(w) ∈ C[w] such that

b(s)u ∈ LV 1DT · u,
which we denote by bu(w). Such a polynomial exists (and splits over A) for any section
u ∈ M of an A-specializable module.

For the remainder, we assume M is Q-specializable, though the same constructions can
be made with A = R. Given u ∈ M, let bu(w) be the b-function of u, which we factor as

bu(w) = (w + γ1) . . . (w + γN ),
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with γ1 ≤ · · · ≤ γN . Then define the L-order of u to be ordL(u) = γ1.

This leads to a Q-indexed filtration LV •M defined by

LV λM = {u ∈ M | ordL(u) ≥ λ},
whose Z-indexed part is characterized by the following proposition.

Proposition 3.7. Let M be Q-specializable. Then there exists a unique good filtration U•M
whose b-function satisfies the following: bU (−γ) = 0 =⇒ γ ∈ [0, 1).

Moreover, for all integers j ∈ Z, this filtration satisfies
LV jM = U jM.

Remark 3.8. The Z-indexed filtration in the proposition statement can be refined in the
following way to a Q-indexed filtration, which agrees with the Q-indexed filtration LV •M.
The main idea is to lift generalized eigenspaces of the operator L(s) on the associated graded

pieces GrjU (M).

To be precise, let U•M be a good Z-indexed filtration whose b-function bU (w) satisfies
bU (−γ) = 0 implies γ ∈ [0, 1). Write bU (w) = (w + γ1)

m1 . . . (w + γN )mN for 0 ≤ γ1 ≤ γ2 ≤
· · · ≤ γN < 1.

For any j ∈ Z, define UγN+jM = {u ∈ M | (L(s) + γN + j)mNu ∈ U j+1M}. Inductively,
we then define

Uγi+jM = {u ∈ M | (L(s) + γi + j)miu ∈ U j+γi+1M}.

For any χ ∈ Q, set j = ⌊χ⌋ and ε = χ− j ∈ [0, 1). First, if ε ≤ γN , let i be minimal such
that ε ≤ γi and set UχM = U j+γiM. Otherwise, if ε > γN , set UχM = U j+1+γ1M.

It is an easy exercise to see that, in this case, U•M is a decreasing, discrete and left-
continuous Q-indexed filtration.

We call LV •M “the (canonical) LV -filtration” ofM. For example, for any I ⊆ {1, . . . , r}, if
L =

∑
i∈I si, this filtration is the Kashiwara-Malgrange V -filtration ofM along the subvariety

V (ti | i ∈ I).

Define Koszul-like complexes

Aγ
L(M) =

[
LV γM ti−→

r⊕
i=1

LV γ+aiM ti−→ . . .
ti−→ LV γ+|L|M

]

Bγ
L(M) =

[
GrγL(M)

ti−→
r⊕

i=1

Grγ+ai
L (M)

ti−→ . . .
ti−→ Gr

γ+|L|
L (M)

]
placed in degree 0, 1, . . . , r.

The following can be shown in the same way as Proposition 2.10 above, using the fact that
L(s) + λ is nilpotent on GrλL(M).

Lemma 3.9. Let M admit an LV -filtration. Then Bχ
L(M) is acyclic for all χ ̸= 0. Moreover,

Aχ
L(M) is acyclic for all χ > 0.

Let M admit an LV -filtration. Then

σ!(M) ∼= A0
L(M) ∼= B0

L(M)

for any slope L.
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The following proposition gives the characterizing properties of the canonical LV -filtration,
as well as a useful test for containment. As above, instead of L(s) + χ being nilpotent on
GrχL(M), we could ask for θL − χ+ |L| =

∑r
i=1 aiti∂ti − χ+ |L| to be nilpotent.

Proposition 3.10. Let M be a DT -module. Assume U•M is a discrete, left-continuous
Q-indexed filtration such that the following conditions hold:

(1) LV kDT · UχM ⊆ Uk+χM,
(2) for χ≫ 0 we have equality UχM =

∑r
i=1 tiU

χ−aiM,
(3) for any χ ∈ Q, the operator L(s) + χ is nilpotent on GrχU (M).

Then LV χM ⊆ UχM for all χ ∈ Q. If, moreover, we assume that UχM is coherent over
LV 0DT for all χ ∈ Q, then equality holds.

Proof. The claim follows from the observation that if U•
1M is a filtration satisfying all con-

ditions in the proposition statement and U•
2M is another filtration satisfying just the first

three conditions, then U•
1M ⊆ U•

2M. This can be shown similarly to [CDM24, Prop. 3.14]
and we leave the checking of details to the reader.

To see why this observation implies the desired result, it suffices to note that LV •M
satisfies all the conditions in the proposition statement. Indeed, by construction, L(s) + χ is
nilpotent on GrχL(M). By definition of LV χM in Remark 3.8, it is easy to see that the Q-

indexed filtration LV χM is compatible, using the fact that Ptβ∂γt L(s) = L(s+ β − γ)Ptβ∂γt
for P ∈ DX . By the goodness of the Z-indexed filtration LV •M and Noetherianity of the
ring LV 0DT (which holds because it is the 0th graded piece of a Noetherian Z-graded ring),
we see that each LV χM is LV 0DT -coherent.

From this, using the acyclicity of Lemma 3.9, we see that the Koszul-like complex

Aγ
L(M) =

[
LV γM ti−→

r⊕
i=1

LV γ+aiM ti−→ . . .
ti−→ LV γ+|L|M

]
is acyclic for all γ > 0, where |L| =

∑r
i=1 ai. In particular, by the vanishing of the rightmost

cohomology, we see that for all χ > |L|, we have the equality

LV χM =
r∑

i=1

ti
LV χ−aiM.

□

Example 3.11. Let M be supported on V (t1, . . . , tr) ⊆ T . Then we can write M =⊕
α∈Nr M0∂

α
t δ0 where ti(ηδ0) = 0 for all η ∈ M0. In particular,

L(s)ηδ0 =
r∑

i=1

−ai∂titi(ηδ0) = 0.

It is not hard to check that M is Q-specializable. Using that L(s)∂αt ηδ0 = ∂αt L(s+α)ηδ0 =
L(α)∂αt ηδ0, we see in fact that

LV λM = LV ⌈λ⌉M =
⊕

L(α)≤−⌈λ⌉

M0∂
α
t δ0,

which has b-function equal to b(w) = w.
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Example 3.12. Let M be a regular holonomic DT -module supported on V (ti) ⊆ T . Then

we have M =
⊕

j∈NN∂jtiδ0 where ti(ηδ0) = 0 for all η ∈ N . In particular, we have

L(s)(ηδ0) = (ℓ(s)η)δ0, where if L =
∑r

i=1 aisi then ℓ =
∑

j ̸=i ajsj . More generally,

L(s)(η∂jtiδ0) = (ℓ(s) + aij)(η)∂
j
ti
δ0.

From this it is easy to see

LV λM =
⊕
j≥0

ℓV λ+aijN∂jtiδ0.

The following lemma applies in particular to the case when M is O-coherent, or when
M = N ⊠OAr

t
for N a DX -module.

Lemma 3.13. Let M be a coherent DT -module. Then the LV -filtration is “t-adic”, in the
sense that

LV λM =

{
M λ ≤ |L|∑r

i=1 ti
LV λ−aiM λ > |L|,

if and only if M is coherent over LV 0DT .

Proof. If the filtration is t-adic, then LV |L|M = M is, by definition, coherent over LV 0DT .
Note that another way to write the t-adic filtration is

LV λM =
(
tβ | L(β + 1) ≥ λ

)
· M.

For the converse, note that if M is coherent over LV 0DT and we define

UλM =
(
tβ | L(β + 1) ≥ λ

)
· M,

then each UλM is coherent over LV 0DT . Then we need to check the remaining properties of
the LV -filtration to conclude.

Assume L(β + 1) ≥ λ. Then L(β + ei + 1) ≥ λ+ ai, so we see that tiU
λM ⊆ Uλ+aiM.

Let L(β+1) ≥ λ. Then for tβm ∈ UλM, when we apply ∂ti , there are two options. Either
βi = 0, in which case

∂ti(t
βm) = tβ(∂tim) ∈ UλM ⊆ Uλ−aiM,

or βi > 0, in which case

∂ti(t
βm) = tβ(∂tim) + βit

β−eim,

and so since L(β − ei + 1) ≥ λ− ai, this shows that ∂tiU
λM ⊆ Uλ−aiM.

Each UλM is clearly stable by DX , so we only need to prove the nilpotency of L(s) + λ
on GrλUM. Note that GrλUM ≠ 0 if and only if there exists β ∈ Nr with L(β + 1) = λ. Take
such a β and consider an element tβm. Then

(L(s) + λ)(tβm) = L(s+ β + 1)(tβm) = tβL(s+ 1)m,

and s+ 1 = (s1 + 1, . . . , sr + 1) = (−t1∂t1 , . . . ,−tr∂tr). Hence,

L(s+ 1)m = −
r∑

i=1

aiti∂ti(m),

and we have that ait
β+ei(∂tim) ∈ U>λM, proving the claim. □
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3.1. Specialization Constructions. In this section, we use deformation to the normal
bundle to allow us to use established tools to study LV -filtrations. The idea goes back at
least to Verdier. The papers [BMS06] and [CD23] use these ideas to study the V -filtration
when L =

∑r
i=1 si, and Wu’s article [Wu22] discusses the case of arbitrary slopes L.

As above, consider T = X × Ar
t . Let L =

∑r
i=1 aisi be a non-degenerate slope. For

T = X ×Ar
t , define

T̃L = X ×Ar
t/ua ×A1

u,

where the coordinates on the Ar term are t1/u
a1 , . . . , tr/u

ar . This is naturally a deformation
to the normal bundle of X × {0} ⊆ T .

This carries a map T̃L → T sending (x, t/ua, u) to (x, t). Over {u ̸= 0}, this is isomorphic

to the projection T ×Gm → T . Let jL : {u ̸= 0} → T̃L be the open embedding.

The projection T̃L → A1
u is clearly smooth, so we can consider the ring of relative differ-

ential operators D
T̃L/A1

u
.

We have an identification of the relative differential operators with the Rees ring of DT for
the LV -filtration. As relative differential operator rings are Noetherian, this proves the first
claim of Lemma 3.3.

Lemma 3.14. We have a filtered isomorphism of rings

(D
T̃L/A1

u
, F ) ∼= (RL(DT ), F ).

Hence, we also have an isomorphism

RF (DT̃L/A1
u
) ∼= RF,L(DT ) =

⊕
k,j

Fk
LV jDT z

ku−j .

Proof. As the coefficients in DX are unimportant in this proof, we assume X is a point.

For ease of notation, write zi =
ti
uai .

In this case, we have D
T̃L/A1

u
= C[u, z1, . . . , zr]⟨∂z1 , . . . , ∂zr⟩. Define a C[u]-linear mor-

phism

D
T̃L/A1

u
→ RL(DT ),

zi 7→
ti
uai

, ∂zi 7→ ∂tiu
ai .

For the inverse, we want it to satisfy

tβ∂γt u
L(γ−β) 7→ zβ∂γz ,

and so for arbitrary elements

tβ∂γt u
−j = u−j−L(γ−β)(tβ∂γt u

L(γ−β)) ∈ RL(DT ),

we simply have to note that, by definition, tβ∂γt ∈ LV jDT , so that L(β − γ) ≥ j. Thus,

u−j−L(γ−β) ∈ C[u], and so we can define the map by sending tβ∂γt u
L(γ−β) → zβ∂γz and

extending C[u]-linearly.

It is clear that this isomorphism preserves the order filtration on both sides. □
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Let M be a DT -module with Z-indexed filtrations F•M, U•M such that F•M is compat-
ible with F•DT and U•M is compatible with LV •DT . We can define

FpA
χ(M, U) =

[
Fp+rU

χM ti−→
r⊕

i=1

Fp+rU
χ+aiM ti−→ . . .

ti−→ Fp+rU
χ+|L|M

]
.

The Noetherianity of the ring RF,L(DT ) allows us to prove acyclity of Aχ(M, U, F ) for
χ≫ 0.

Lemma 3.15. Let (M, U, F ) be a bi-filtered DT -module as above such that RF,U (M) =⊕
k,j∈Z FkU

jMzku−j is coherent over RF,L(DT ). Then there exists k0 ∈ Z such that k ≥ k0
implies Ak(M, U, F ) is F -filtered acyclic.

Proof. It is a simple computation to see that Ak(DT ,
LV, F ) is filtered acyclic for all k ≥ 0.

Indeed, by taking GrF• , this boils down to the claim that variables in a polynomial ring form
a regular sequence, hence the corresponding Koszul complex is acyclic (except at the right).
For the vanishing of the right-most cohomology, use that k ≥ 0.

Now, by coherence of RF,U (M) over RF,L(DT ), we have a finite indexing set I and a strict
surjection ⊕

i∈I
(DT ,

LV [bi], F [ci]) → (M, U, F ) → 0.

By Noetherianity of RF,L(DT ), the kernel K with its induced filtrations F•K and U•K also
satisfies RF,U (K) is coherent over RF,L(DT ). We have the F -strict short exact sequence of
complexes

0 → Ak(K, U, F ) →
⊕
i∈I

Ak−bi(DT ,
LV, F [ci]) → Ak(M, U, F ) → 0,

and so for k ≥ k0 = max{bi}, the middle term is filtered acyclic. Hence, we get the vanishing
of FpHrAk(M, U) for all p and filtered isomorphisms

Hj(Ak(M, U), F ) ∼= Hj+1(Ak(K, U), F ).

Repeating the argument with (K, F, U) in place of (M, F, U), and possibly increasing k0,
we get Hr+1(Ak(M, U), F ) ∼= Hr(Ak(K, U), F ) = 0 for all k ≥ k0. Repeating again r − 1
more times, this completes the proof. □

Given a system of coordinates x1, . . . , xn on X, the variety T̃L has local coordinates
x1, . . . , xn, z1 = t1

ua1 , . . . , zr = tr
uar , u. The open subset T × Gm has the simpler system

of coordinates x1, . . . , xn, t1, . . . , tr, u, and the change of variables formula yields (using (̃−)
to denote the functions x1, . . . , xn, u viewed in the second system of coordinates):

∂x̃i
= ∂xi ,

∂ti =
1

uai
∂zi ,

∂ũ = ∂u +
r∑

j=1

∂ũ(zj)∂zj = ∂u −
r∑

j=1

aj
tj

uaj+1∂zj = ∂vi −
1

u
L(t∂t).
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For M a mixed Hodge module on T , consider M̃L = jL∗(M ⊠ QH
Gm

[1]) a mixed Hodge

module on T̃L. The underlying D-module M̃L is the O-module⊕
k∈Z

Muk,

on which, thanks to the computation of the coordinate change above, the action is given by

zi(mu
k) = (tim)uk−ai ,

∂zi(mu
k) = ∂ti(m)uk+ai ,

∂u(mu
k) = (k + L(t∂t))(m)uk−1.

We have the following:

Proposition 3.16. Let V •M̃L be the V -filtration along u. Then

V λM̃L =
⊕
k∈Z

LV λ+|L|−k−1Muk.

For any λ ≥ 0, we have

FpV
λM̃L =

⊕
k∈Z

Fp
LV λ+|L|−k−1Muk

Proof. The second claim follows from the first using the fact that for all p ∈ Z and λ ≥ 0, we
have by Lemma 2.8 equality

FpV
λM̃L = V λM̃L ∩ jL∗(Fp(M⊠OGm)).

For the first claim, define

UλM̃L =
⊕
k∈Z

LV λ+|L|−k−1Muk.

We show that UλM̃L satisfies the properties of the V -filtration along u. A simple compu-
tation shows

uUλ = Uλ+1, ∂uU
λ ⊆ Uλ−1.

As

u∂u(mu
k) = (k + L(t∂t))(m)uk

it is easy to see that u∂u − λ+ 1 is nilpotent on GrλU (M̃L). By Proposition 3.10, this proves

the containment V λM̃L ⊆ UλM̃L

For the other containment, for any fixed k, define a filtration

UλM = {m ∈ M | muk ∈ V λ+k+1−|L|M̃L}.

Let muk ∈ V λ+k+1−|L|M̃L. Then by applying uaizi, we see that

(tim)uk ∈ V λ+ai+k+1−|L|M̃L,

so that tiUλ ⊆ Uλ+ai . Applying ∂zi , we get that ∂ti(m)uk+ai ∈ V λ+ai+k+1−|L|M̃L.

As u acts invertibly on M̃L, we know that u : V χM̃L → V χ+1M̃L is an isomorphism.

Thus, having ∂ti(m)uk+ai ∈ V λ+k+1−|L|M̃L implies that ∂ti(m)uk ∈ V λ−ai+k+1−|L|M̃L.
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By definition of the V -filtration, we know that V λ+k+1−|L|M̃L is coherent over V 0D
T̃L =

DX [z, u]⟨∂z, u∂u⟩. For some fixed λ, choose generators m1u
ℓ1 , . . . ,mau

ℓa for V λ+k+1−|L|M̃L

over V 0. As u : V χM̃L → V χ+1M̃L is an isomorphism for all χ ∈ Q, we see then that

m1u
ℓ1+j , . . . ,mau

ℓa+j

are generators of V (λ+j)+k+1−|L|M̃L for all j ∈ Z.

Let ℓ = min{ℓ1, . . . , ℓa}. Note that the only operators in V 0 which decrease the power of
u are z1, . . . , zr. Thus, we see that for any b < ℓ+ j, we have

mub ∈ V (λ+j)+k+1−|L|M̃L =⇒ mub ∈ (z1, . . . , zr)V
(λ+j)+k+1−|L|M̃L,

and so for all j with j > k − ℓ, we have

m ∈ Uλ+jM =⇒ m ∈
r∑

i=1

tiUλ+j−aiM.

Finally, it is clear that L(t∂t)− λ+ |L| is nilpotent on GrλU (M). By Proposition 3.10, this
shows

LV •M ⊆ U•M,

which finishes the proof of the claim. □

Lemma 3.17. Consider the Z-indexed LV -filtration LV •M on M. Then RF,L(M) is co-
herent over RF,L(DT ).

In particular, for integer k ≫ 0, the complex Ak
L(M, F ) is filtered acyclic.

Proof. The second claim follows immediately from the first using Lemma 3.15.

The first claim follows from the observation that, up to a shift of grading, we have

RF,L(M) = RF (V
0M̃L) and the isomorphism RF (DT̃L/A1

u
) ∼= RF,L(DT ) from Lemma 3.14.

We know by Remark 2.5 that RF (V
0M̃L) is coherent over RF (DT̃L/A1

u
), proving the claim.

□

Define SpL(M) = ψu(M̃L), which is a mixed Hodge module on X × Ar
z, where we use

zi =
ti
uai as above. Its underlying filtered D-module is given by

FpSpL(M) =
⊕
χ∈Q

FpGrχL(M).

This is an example of an L-monodromic mixed Hodge module, i.e., one whose underlying
D-module is L-monodromic. Recall that this means that every local section m is annihilated
by some polynomial in L(z∂z) =

∑r
i=1 aizi∂zi .

Such modules decompose into generalized eigenspaces for the operator L(z∂z): we write

N =
⊕
χ∈Q

N χ,

where N χ =
⋃

j≥1 ker((L(z∂z) − χ + |L|)j). Any L-monodromic module carries a nilpotent

D-linear endomorphism N which acts on N χ by L(z∂z)− χ+ |L|.
We record the following useful fact about pure L-monodromic mixed Hodge modules.
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Lemma 3.18. Assume M is pure and L-monodromic on X ×Ar
z. Then N = 0 on M , i.e.,

L(z∂z) acts semi-simply on M.

Proof. As the D-module underlyingM is semi-simple (see [CD23, Pf. of Prop. 5.7]) it suffices
to assume that the D-module underlyingM is simple, as any sub-module of an L-monodromic
module is also L-monodromic. But then because N is nilpotent, the claim is obvious. □

We use the fact that the complex B0
L(M) computes the D-module theoretic restriction.

This shows that SpL(M) can be used to compute the restriction. The proposition below is
shown following the proof for the usual V -filtration [Sai90, Pg. 269]:

Proposition 3.19. Let M be a mixed Hodge module on T . There is a canonical quasi-
isomorphism

σ!(M) ∼= σ!SpL(M).

Proof. The claim follows for underlying D-modules by Lemma 3.9. Indeed,

σ!(M) ∼= B0
L(M) = B0

L(SpL(M)) ∼= σ!SpL(M).

Kashiwara’s equivalence shows that SpL ◦ σ∗ = σ∗, i.e., that specialization is the identity
on modules supported on X × {0}.

Let j : T \ (X ×{0}) → T be the inclusion of the complement of the zero section. We have
morphisms

j∗j
∗SpL(M) → j∗j

∗Sp(j∗j
∗(M))

SpL(j∗j
∗(M)) → j∗j

∗Sp(j∗j
∗(M)).

The cones of these morphisms vanish because their underlying complexes of D-modules
do. Thus, these morphisms are quasi-isomorphisms.

Thus, starting with

σ∗σ
!(M) →M → j∗j

∗(M)
+1−−→,

when we apply SpL(−), we get

σ∗σ
!(M) → SpL(M) → j∗j

∗SpL(M)
+1−−→,

which gives a canonical isomorphism

σ∗σ
!(M) ∼= σ∗σ

!SpL(M),

by, for example, [Dir24, Lem. 4.4]. □

We end this section by mentioning the existence of the relative monodromy filtration on
GrλL(M) for the nilpotent operator L(t∂t)− λ+ |L| and for the induced filtration

M•GrλL(M) = GrλL(W•M).

We denote this filtration W•GrλL(M).

As above, this allows us to define W•B
0
L(M), which will be the weight filtration on the

complex B0
L(M).

The following can be shown exactly as in the proof of [CD23, Lem. 6.2]. It says that there
exists a splitting of M• on GrWk GrλL(M) which is functorial in a certain sense.
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Lemma 3.20. There exists a splitting of M•GrWk GrλL(M) which is functorial with respect to
the morphisms

ti : GrWk GrλL(M) → GrWk Grλ+ai
L (M).

In particular, the complex GrWk B
0
L(M) splits into its associated graded pieces.

This lemma will be the key to allow us to reduce to the pure case. Indeed, we have that
GrMi GrWk B

0
L(M) = GrWk B

0
L(GrWi M).

4. Cyclic Coverings

Let (a1, . . . , ar) ∈ Zr
≥1. We consider the map π : X × Ar

w → X × Ar
t which sends (x,w)

to (x,wa). For any (b1, . . . , br) ∈ Zr
≥0, we define the slope ℓ =

∑r
i=1 bisi and consider

L = ℓ ∗ a =
∑r

i=1(aibi)si.

Given M a regular holonomic DX×Ar
t
-module, the pull-back π!M agrees with the O-

module pull-back, and is given by

π!M =
⊕

0≤β≤a−1

Mwβ,

where β ≤ a− 1 means βi ≤ ai − 1 for all 1 ≤ i ≤ r.

The D-module action is given by [HTT08, Sect. 1.3]

P (mwβ) = P (m)wβ for all P ∈ DX ,

wi(mw
β) =

{
mwβ+ei βi < ai − 1

timw
β−(ai−1)ei βi = ai − 1

,

∂wi(mw
β) =

{
(βi + aiti∂ti)(m)wβ−ei βi > 0

ai∂ti(m)wβ+(ai−1)ei βi = 0
.

Thus, wi∂wi(mw
β) = (βi + aiti∂ti)(m)wβ and so

ℓ(w∂w)(mw
β) = (ℓ(β) + L(t∂t))(m)wβ.

The first main result of this section is the following:

Theorem 4.1. Let M be a regular holonomic DX×Ar
t
-module. For any slope ℓ =

∑r
i=1 bisi,

write L = ℓ ∗ a. Then, for all λ ∈ Q, we have

ℓV λπ!M =
⊕

0≤β≤a−1

LV λ+|L|−ℓ(β)−|ℓ|Mwβ.

Remark 4.2. We will only apply this in the case where M is L-monodromic, where it becomes
essentially trivial.

Before proving this, we study cyclic coverings of the corresponding deformations to the
normal bundle. Let T = X ×Ar

t and W = X ×Ar
w. We consider

T̃L = X ×Ar
t/uab ×A1

u

W̃ ℓ = X ×Ar
w/ub ×A1

u.
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By Lemma 3.14 above, we have isomorphisms

D
T̃L/A1

u

∼= RLV (DT ),

D
W̃ ℓ/A1

u

∼= RℓV (DW ).

We have a finite morphism Π: W̃ ℓ → T̃L over X×A1
u defined by the map Ar

w/ub → Ar
t/uab

which sends

ti/u
biai 7→ (wi/u

bi)ai .

The functor Π! for relative D-modules agrees with the (derived) O-module pull-back. By
flatness, it is the usual pull-back of O-modules.

The functor Π! need not preserve coherence of relative D-modules. Indeed, even imposing
relative holonomicity, coherence is not preserved, see [MFS17, Example 2.4].

However, [MFS17, Thm. 2] shows that the pull-back of a regular relative holonomic D-
module is regular relative holonomic, in particular, coherent.

Lemma 4.3. Let M be a regular holonomic DT -module. Then RLV (M) is a relative regular
holonomic D

T̃L/A1
u
-module.

Proof. For λ ∈ C, let iλ : {λ} → A1
u be the inclusion of the point λ. We have

i!λ(RLV (M)) =

{
M λ ̸= 0

SpL(M) λ = 0
,

where we use that LV kM/LV k+1M =
⊕

χ∈[k,k+1)GrχL(M) for all k ∈ Z.

As M and SpL(M) are regular holonomic, this proves the claim. □

Proof of Theorem 4.1. We will show that

U•π!M =
⊕

0≤β≤a−1

LV •+|L|−ℓ(β)−|ℓ|Mwβ

satisfies the defining properties of the ℓV -filtration.

It is trivial to see that wiU
• ⊆ U•+1, ∂wiU

• ⊆ U•−1, and that (ℓ(w∂w)−λ+|ℓ|) is nilpotent
on GrλU (π

!M). The last claim follows from

(ℓ(w∂w)− λ+ |ℓ|)(mwβ) = (L(t∂t)− λ+ ℓ(β) + |ℓ|)(mwβ).

The last remaining claim is coherence of U• over V 0DX×Ar
w
. We prove this for the under-

lying Z-indexed filtration.

By Lemma 4.3, the module RLV (M) is regular relative holonomic on T̃L. Hence, Π! applied
to it remains regular relative holonomic, in particular, coherent. It is a simple computation
to see that this pull-back is isomorphic to RU (π

!M), proving the claim. □

Remark 4.4. Let ℓ = ei, so that ℓV •π!M is the V -filtration along wi.

Then L = aiei, and it is not hard to check that

LV λM = V
λ
ai
i M,
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where the right hand side is the canonical V -filtration along ti. Thus, Theorem 4.1 gives the
formula

V λ
i π

!(M) =
⊕

0≤β≤a−1

V
1+

λ−βi−1

ai
i Mwβ.

For now, we let r = 1. We will apply this case later with X × Ar−1
t in place of X. Let

jw : {w ̸= 0} → W = X × A1
w and jt : {t ̸= 0} → T = X × A1

t be the open embeddings.
Define the restriction π|{w ̸=0} to be ρ : {w ̸= 0} → {t ̸= 0}, which is finite étale.

Let M be a pure Hodge module of weight d on X ×A1
t with strict support not contained

in {t = 0}. In general, π!M need not remain pure, but we know that Wd−1π
!M = 0.

Lemma 4.5. In the situation above, we have that Q = π!(M)/Wdπ
!(M) is supported on

{w = 0}.
Moreover, Wdπ

!(M) has no non-zero sub-module or quotient module supported in {w = 0}.

Proof. The first claim is obvious by restricting π!(M) to {w ̸= 0}, which gives ρ!(M |{t ̸=0}).
As ρ is étale, this module is pure of weight d.

Note that Wdπ
!(M) ⊆ π!(M), and π!(M) has no sub-modules supported in {w = 0} by

adjunction, using the fact that M has no sub-modules supported on {t = 0}.
Thus, Wdπ

!(M) has no sub-modules supported in {w = 0}. By polarizability, it also
admits no quotient objects supported in {w = 0}, proving the claim. □

Thus, we haveWdπ
!(M) = DW ·V >0Wdπ

!(M) by Lemma 2.7, where V • is the V -filtration
along w. Note that

V >0Wdπ
!(M) = V >0π!(M) =

⊕
0≤b≤a−1

V >1− b+1
a Mwb,

where the second equality comes from Remark 4.4. The first one comes from Lemma 2.4.

We see from the DW -module action that Wdπ
!(M) is a graded sub-module of π!(M).

Throughout, we let

Wdπ
!(M)b ⊆ π!(M)b

denote the bth graded piece, i.e., the coefficient of wb.

Lemma 4.6. We have

V 0Wdπ
!(M) =

⊕
0≤b<a−1

(
N (b) · V 1− b+1

a M+ V >1− b+1
a M

)
wb ⊕ V 0Mwa−1,

where N (b) = (t∂t − (1− b+1
a ) + 1) is the nilpotent endomorphism of Gr

1− b+1
a

V (M).

Proof. This follows from V 0Wdπ
!(M) = ∂wV

1π!(M) + V >0π!(M), which holds by the last
claim of Lemma 4.5 and the surjectivity

∂w : Gr1V (Wdπ
!(M)) → Gr0V (Wdπ

!(M))

which holds by Lemma 2.7. To identify the coefficient of wa−1, we use the similar formula
V 0M = ∂tV

1M+ V >0M which also follows by Lemma 2.7. □
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Lemma 4.7. The inclusion

Wdπ
!(M) → π!(M)

induces an equality for all p ∈ Z and λ > 0,

FpV
λWdπ

!(M) = FpV
λπ!(M) =

⊕
0≤b≤a−1

FpV
1+λ−b−1

a (M)wb,

and for λ = 0, we get equality for all p ∈ Z:

FpV
0Wdπ

!(M)a−1 = FpV
0π!(M)a−1 = FpV

0(M)wa−1.

Proof. We already saw the equality

FpV
λWdπ

!(M) = FpV
λπ!(M) for all λ > 0

above, using the fact that both restrict to ρ!(M|{t̸=0}) on {w ̸= 0}.
For λ = 0, we have by Lemmas 4.5 and 2.8 the equality

FpV
0Wdπ

!(M) = ∂wr(Fp−1V
1Wdπ

!(M)) + FpV
>0Wdπ

!(M)

and by what we mentioned at the beginning of this proof, the right hand side is equal to

∂wr(Fp−1V
1π!(M)) + FpV

>0π!(M).

Using the fact that π!(M) has no wr-torsion, we know by Lemma 2.8 that for all λ ≥ 0
that we have

FpV
λπ!(M) = V λπ!(M) ∩ j∗(Fpρ

!(M|tr ̸=0})) =
⊕

0≤b≤a−1

FpV
1+λ−b−1

a (M)wb.

Finally, using that M has strict support not contained in {tr = 0}, we get by Lemma 2.8
FpV

0M = ∂t(Fp−1V
1M)+FpV

>0M, which is the coefficient of wa−1 in FpV
0Wdπ

!(M). □

By Kashiwara’s equivalence and Lemma 4.5, we have Q = i∗Q0 where i : {w = 0} →W is
the closed embedding and the underlying D-module of Q0 is Q0 = ker(w) ⊆ Q. Note that
by Example 2.2, we have V 0Q = Q0.

Corollary 4.8. Let Q = π!(M)/Wdπ
!(M) with underlying D-module Q. Then

Q0 = V 0Q =
⊕

0≤b<a−1

coker

(
N (b) : Gr

1− b+1
a

V (M) → Gr
1− b+1

a
V (M)

)
.

In particular, π!(M) is pure if and only if the V -filtration of M along t has no jumping
numbers in 1

aZ \ Z, i.e., GrλV (M) ̸= 0 implies λ /∈ 1
aZ \ Z.

Proof. We have V 0Q = V 0π!(M)/V 0Wdπ
!(M), so the formula is obvious by the previous

lemma and Lemma 2.3.

The last claim follows because π!(M) is pure if and only if Q = 0 if and only if N (b) is

surjective on Gr
1− b+1

a
V (M) for all 0 ≤ b < a− 1, but since N (b) is nilpotent, this is equivalent

to the vanishing of Gr
1− b+1

a
V (M). □
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4.1. Proof of Theorem A. By induction on r, we have the claims of Theorem A for any
mixed Hodge modules on X ×Ar−1

t with coordinates t1, . . . , tr−1 on Ar−1
t .

For any M a mixed Hodge module on X ×Ar
t , by Proposition 3.19 we can replace M by

SpL(M) to assume that M is L-monodromic. Indeed, we have Bχ
L(M, F ) = Bχ

L(SpL(M), F )
for all χ ≥ 0.

Moreover, by the functorial splitting of the relative monodromy filtration, we can assumeM
is L-monodromic and pure of weight d. By the strict support decomposition, we can assume
M has strict support not contained in {tr = 0}. Indeed, if M is supported in {tr = 0}, the
result follows by induction on r using Example 3.12.

Lemma 4.9. Let V •
r M be the V -filtration along tr = 0. The complex V 0

r B
α
L(M, F ) is filtered

quasi-isomorphic to Bα
L(M, F ) for α ≥ 0.

Proof. The idea is essentially the same as the one in [CDS23]. We include a detailed proof
for the reader’s convenience. We argue inductively on r for Theorem A. Let L′ = L−artr∂r.
Denote by θr = tr∂r, θL =

∑r
i=1 aiti∂i and θL′ = θL − arθr. As θL and θr commute, we have

a decomposition

V β
r M =

⊕
α∈Q

V β
r Mα, where V β

r Mα = V β
r M∩Mα.

Recall that Mα is the component annihilated by some large power of θL − α + |L|. Hence,
there is a decomposition

GrβVr
(M) =

⊕
α∈Q

GrβVr
(Mα).

This implies that GrβVr
(M) is an L′-monodromic mixed Hodge module on X×Ar−1

t . Indeed,

a local section m of GrβVr
(Mα) is annihilated by a sufficiently large power of

(θL′ − (α− arβ) + |L′|) =
(
(θL − α+ |L|)− ar(θr − β + 1)

)
.

In particular, the L′-graded piece
(
GrβVr

(M)
)α−arβ is exactly GrβVr

(Mα). It follows that we

have an isomorphism between complexes GrβVr
Bα

L(M, F ) and the shifted mapping cone

Cone
[
Bα−arβ

L′ (GrβVr
(M, F ))

tr−→ Bα−arβ
L′ Grβ+1

Vr
(M, F )

]
[−1].

Therefore, if β > 0, GrβVr
Bα

L(M, F ) is acyclic because tr : (V
β
r M, F ) → (V β+1

r M, F ) is an iso-

morphism; and if α−arβ > 0, the inductive hypothesis on r implies that again GrβVr
Bα

L(M, F )
is acyclic. By the distinguished triangle

V >β
r Bα

L(M, F ) → V β
r B

α
L(M, F ) → GrβVr

Bα
L(M, F )

+1−−→

if α ≥ 0 and β < 0, the natural inclusion V >β
r Bα

L(M, F ) → V β
r Bα

L(M, F ) is a filtered
quasi-isomorphism. Hence, taking the direct limit gives the filtered quasi-isomorphism

V 0
r B

α
L(M, F )

∼=−→ Bα
L(M, F )

for α ≥ 0. □

Note that by Lemma 3.17, in order to prove filtered acyclity of Aχ
L(M, F ) for all χ > 0, it

suffices to prove it for Bχ
L(M, F ) for all χ > 0.



26 Q. CHEN, B. DIRKS, AND S. OLANO

We will prove the claims by induction on |IL| where IL = {i | ai > 1}. The case |IL| = 0
is [CD23, Thm. 1, 2]. So assume by induction that we can compute restriction functors and
we have filtered acyclicity for any ℓ =

∑r
i=1 bisi with |Iℓ| < |IL|. Without loss of generality,

we can assume ar = a > 1 in L.

Let π : W = X ×Ar
w → X ×Ar

t = T be the map (x,w) 7→ (x,w1, w2, . . . , w
a
r ). We can use

the results of the above sub-section for this cyclic cover, as only one variable is being raised
to a power.

Let σw : X → W and σt : X → T be the inclusion of the zero section. Then π ◦ σw = σt.
Thus, we have an isomorphism

σ!w(π
!M) ∼= σ!t(M).

Note that π!(M) is ℓ-monodromic, where ℓ = sr +
∑r−1

i=1 aisi, as we can easily see from the
definition of the D-module action.

Let V •
r M and V •

r π
!(M) be the V -filtration along tr (resp. wr). By Lemma 4.9, for any

χ ≥ 0, we have filtered quasi-isomorphisms

V 0
r A

χ
L(M, F ) ∼= Aχ

L(M, F ), and V 0
r A

χ
ℓ (π

!(M), F ) ∼= Aχ
ℓ (π

!(M), F ).

The latter two complexes are Z/aZ-graded because the morphisms w1, . . . , wr preserve the
grading up to a shift. We normalize the grading so that the bth graded piece of the complex
is the sub-complex which starts on the left at the bth graded piece of the corresponding term.

By the right-most equalities in Lemma 4.7 and the definition of the D-module action, we
have equality

V 0
r A

χ
ℓ (π

!(M), F )a−1 = V 0
r A

χ
L(M, F ).

Proof of Theorem A, Filtered Acyclicity. Let χ > 0, then we have the chain of filtered quasi-
isomorphisms

Aχ
L(M, F ) ∼= V 0

r A
χ
L(M, F ) ∼= V 0

r A
χ
ℓ (π

!(M), F )a−1 ∼= Aχ
ℓ (π

!(M), F )a−1.

By the inductive hypothesis, the last complex is filtered acyclic, proving the claim. □

Proof of Theorem A, Restriction Functor. We begin by proving the claim for the Hodge fil-
tration.

By the inductive hypothesis, we know A0
ℓ (π

!(M), F ) ∼= σ!w(π
!(M, F )) = σ!(M, F ). More-

over, the graded pieces which are not the (a− 1)th are filtered acyclic. Indeed, for b < a− 1,
the map wr from the wb term to the wb+1 term is an isomorphism. Thus, we have

A0
ℓ (π

!(M), F )a−1 ∼= σ!w(π
!(M, F )) = σ!(M, F ).

To prove the claim for the Hodge filtration, note that we have the chain of filtered quasi-
isomorphisms

A0
L(M, F ) ∼= V 0

r A
0
L(M, F ) ∼= V 0

r A
0
ℓ (π

!(M), F )a−1

∼= A0
ℓ (π

!(M), F )a−1 ∼= σ!(M, F ).

For the weight filtration, as M is pure L-monodromic, we know that the nilpotent endo-
morphism N : M →M is 0 by Lemma 3.18. Thus, the same is true for π!(M), though π!(M)
need not be pure.
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Thus, for any χ ∈ Z, the relative monodromy filtration on Grχℓ (π
!(M)) is simply the

induced filtration from W•π
!(M), i.e.,

W•Grχℓ (π
!(M)) = Grχℓ (W•π

!(M)),

and so we have

W•B
0
ℓ (π

!(M), F ) = B0
ℓ (W•π

!(M), F ).

By Lemma 4.10 below, the inclusion

WdB
0
ℓ (π

!(M), F )a−1 → B0
ℓ (π

!(M), F )a−1

is a filtered quasi-isomorphism. Thus, the cohomology of B0
ℓ (π

!(M), F )a−1 is pure, which
proves the claim. □

Lemma 4.10. Let M be a pure Hodge module of weight d on T with strict support not
contained in {tr = 0}. Using the notation above, the natural map

B0
ℓ (Wdπ

!(M), F )a−1 → B0
ℓ (π

!(M), F )a−1

is a quasi-isomorphism.

Proof. It suffices to check that B0
ℓ (Q, F )a−1 = 0. By Kashiwara’s equivalence, we have

(Q, F ) =
⊕

k≥0(Q0, F )∂
k
w.

We have by Example 3.12 the equality

ℓV λQ =
⊕
k≥0

ℓ′V λ+kQ0∂
k
w,

where ℓ′ =
∑r−1

i=1 aisi. For ease of notation, write ℓ′V λ+kQ0 = Qλ+k
0 and write its wb graded

piece as Qb,λ+k
0 . As ℓV λQ splits into graded pieces, so does ℓ′V λ+kQ0.

Then we have

GrλℓQ =

a−1⊕
β=0

 ⊕
b−j≡β mod a

∂jwr
(Qb,λ+j

0 )

 .

For all λ ∈ Q, the map

wr : (GrλℓQ)a−1 → (Grλ+1
ℓ Q)0

is an isomorphism.

Indeed, note that we can write

(GrλℓQ)a−1 =
⊕

b≡j−1 mod a

∂jwr
(Qb,λ+brj

0 )

and

(Grλ+1
ℓ Q)0 =

⊕
b≡j mod a

∂jwr
(Qb,λ+1+brj

0 ).

Importantly, for the (a − 1)th piece, there is no j = 0 term. Given any j > 0 and

m ∈ Qb,λ+j
0 = Qb,(λ+1)+(j−1)

0 , we have

wr∂
j
wr
m = −j∂j−1

wr
m,

so the map is injective and surjective. As this is one of the morphisms appearing in the
Koszul-like complex B0

ℓ (Q, F )a−1, this proves the claim. □
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5. Singularities of Subvarieties

Let Z = V (f1, . . . , fr) ⊆ X be a closed subvariety of the smooth variety X. Consider

Bf = if,+(OX) =
⊕
α∈Nr

OX∂
α
t δf ,

a regular holonomic DT -module. The D-module action is given by

h(g∂αt δf ) = hg∂αt δf for all h ∈ OX ,

D(g∂αt δf ) = D(g)∂αt δf −
r∑

i=1

D(fi)g∂
α+ei
t δf for all D ∈ DerC(OX),

ti(g∂
α
t δf ) = fig∂

α
t δf − αig∂

α−ei
t δf ,

∂ti(g∂
α
t δf ) = g∂α+ei

t δf .

The Hodge filtration is given by

Fp+rBf =
⊕
|α|≤p

OX∂
α
t δf ,

where the shift by r is due to the relative dimension of the graph embedding and the fact
that we use left D-modules.

For any slope L =
∑r

i=1 aisi, define a Z-indexed filtration on Bf by

LG•(Bf ) =
LV •DT · δf .

Define the bL-function of f1, . . . , fr to be the monic minimal polynomial of the action of
L(s) =

∑r
i=1−ai∂titi on Gr0LG(Bf ).

Lemma 5.1. For any j ∈ Z, we have

bL(w + j)GrjLG(Bf ) = 0.

Proof. As
LV jDT =

∑
L(β)≥L(γ)+j

LV 0DT · tβ∂γt ,

we have a surjection ⊕
L(β)≥L(γ)+j

LG0Bf
(tβ∂γ

t )−−−−→ LGj(Bf ),

and if we compose with the projection to GrjLG(Bf ), we get a surjection⊕
L(β)=L(γ)+j

LG0Bf
(tβ∂γ

t )−−−−→ GrjLG(Bf ),

where we can take = in the index set, as any terms with strict inequality necessarily map
to 0 by definition. Finally, for any fixed β, γ, note that LG1Bf maps to 0 in the associated
graded piece, so we have a surjection⊕

L(β)=L(γ)+j

Gr0LG(Bf )
Φ−→ GrjLG(Bf ).

As tβ∂γt L(s) = (L(s+ β − γ))tβ∂γt , we see that Φ ◦ L(s) = (L(s) + j)Φ, which proves the
claim. □
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Example 5.2. Let L = asi for some a ∈ Z>0. Let bfi(s) =
∏
(s + γ)mγ be the usual

Bernstein-Sato polynomial of the hypersurface defined by fi. Then it is easy to check that

bL,f (s) =
∏

(s+ aγ)mγ = adeg bfi bfi

(s
a

)
.

This satisfies the following Thom-Sebastiani type property, similar to [BMS06, Thm. 5].
The proof is essentially the same, but we repeat it for convenience.

Proposition 5.3. Let f1, . . . , fr ∈ OX(X), g1, . . . , gc ∈ OY (Y ) for X,Y two smooth complex
algebraic varieties. Write L1 =

∑r
i=1 aisi and L2 =

∑c
i=1 bisi and let L =

∑r
i=1 aisi +∑c

j=1 bjsr+j.

Let bL1,f (w) be the bL1-function for f1, . . . , fr and define similarly bL2,g(w) and bL,(f,g)(w).
Write

bL1,f (w) =
∏
α

(w + α)m
(f)
α , bL2,g(w) =

∏
β

(w + β)m
(g)
β .

Then
bL,(f,g)(w) =

∏
(w + γ)mγ ,

where mγ = max{m(f)
α +m

(g)
β − 1 | m(f)

α ,m
(g)
β > 0, α+ β = γ}.

Proof. Let if,+(OX) = Bf , ig,+(OY ) = Bg and i(f,g),+(OX×Y ) = B(f,g). Then, as in the proof
of [BMS06, Thm. 5] we have an isomorphism

B(f,g)
∼= Bf ⊠ Bg.

Moreover, the LG•-filtration on the left is given by the convolution of the filtrations L1G•Bf

and L2G•Bg. In other words,

LGkB(f,g) =
∑

i+j=k

L1GiBf ⊠ L2GjBg.

As in the proof of [BMS06, Thm. 5], we have

GrkLGB(f,g)
∼=
⊕

i+j=k

GriL1GBf ⊠GrjL2G
Bg.

Let b′(w) =
∏
(w + γ)mγ as defined in the proposition statement.

By Lemma 5.1, we see that b′(L(s)+ i+ j) annihilates GriL1G
(Bf )⊠GrjL2G

(Bg) for any i, j.

We see then that bL,(f,g)(w) | b′(w).
On the other hand, by the binomial theorem we see that b′(w) is the minimal polynomial

of the action of L(s) on Gr0L1G
(Bf )⊠Gr0L2G

(Bg). Thus, as bL,(f,g)(L(s)) annihilates this term,
we get the other divisibility. □

Next, we review the definitions of higher Du Bois and higher rational singularities.

Given any complex algebraic variety Z of pure dimension dZ and any 0 ≤ p ≤ dZ , we have
the pth Du Bois complex Ωp

Z ∈ Db
coh(OZ), with comparison morphisms αp : Ω

p
Z → Ωp

Z , where
Ωp
Z is the sheaf of Kähler differentials on Z. These morphisms are quasi-isomorphisms when

Z is smooth.

If Z has local complete intersection singularities, then following [JKSY22,MOPW23,FL22],
we say Z has k-Du Bois singularities if αp is a quasi-isomorphism for all p ≤ k.
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Using a resolution of singularities, one can define a morphism Ωp
Z

γp−→ DZ(Ω
dZ−p
Z ) in

Db
coh(OZ). Here DZ(−) is the shifted Grothendieck duality functor RHom(−, ω•

Z)[−dZ ],
where ω•

Z is the dualizing complex of Z. If Z is smooth, this map is the natural isomorphism

Ωp
Z
∼= Hom(ΩdZ−p

Z , ωZ).

Assuming still that Z has local complete intersection singularities, we say that Z has k-

rational singularities if the composition Ωp
Z → Ωp

Z → DZ(Ω
dZ−p
Z ) is a quasi-isomorphism for

all p ≤ k. When Z is smooth, this is the usual isomorphism Ωp
Z

∼= HomOZ
(ΩdZ−p

Z , ωZ) of
locally free sheaves.

Now, let Z = V (f1, . . . , fr) ⊆ X be a local complete intersection subvariety of a smooth
variety X. Associated to this, we have the local cohomology mixed Hodge module

Hr
Z(Q

H
X [dimX]),

with underlying bi-filtered DX -module denoted (Hr
Z(OX), F,W ).

The standard description of the local cohomology module is as follows: let OX [ fi
f1...fr

] be

the localization of OX at all fj with j ̸= i and let OX [ 1
f1...fr

] be the localization at all fi.

These modules naturally underlie mixed Hodge modules on X, and we have

Hr
Z(OX) = coker

(
r⊕

i=1

OX

[
fi

f1 . . . fr

]
→ OX

[
1

f1 . . . fr

])
.

This carries the pole-order filtration, defined by

PkHr
Z(OX) = {m ∈ Hr

Z(OX) | (f1, . . . , fr)k+1m = 0}.

It is not hard to see that FkHr
Z(OX) ⊆ PkHr

Z(OX), see [MP22, Prop. 7.1].

Our starting point is the following:

Theorem 5.4 ([CDMO24, CDM22, MP22]). Let (Hr
Z(OX), F,W ) be the local cohomology

bi-filtered D-module. Then

α̃(Z) ≥ r + k ⇐⇒ FkHr
Z(OX) = PkHr

Z(OX) ⇐⇒ Z has k-Du Bois singularities,

α̃(Z) > r + k ⇐⇒ FkWn+rHr
Z(OX) = PkHr

Z(OX) ⇐⇒ Z has k-rational singularities.

In other words, the structure of the local cohomology mixed Hodge module allows us to
give lower bounds on the minimal exponent of a local complete intersection, which controls
these classes of singularities.

By Theorem A, we have the following:

Theorem 5.5. Let (Hr
Z(OX), F,W ) be the local cohomology bi-filtered D-module. Then for

any non-degenerate slope L, we have

FpHr
Z(OX) =

∑
|α|≤p

α!hα

fα1+1
1 . . . fαr+1

r

|
∑
|α|≤p

hα∂
α
t δf ∈ LV |L|Bf


and for any ℓ ∈ Z≥0, we have

Wn+r+ℓHr
Z(OX) =

{∑
α

α!hα

fα1+1
1 . . . fαr+1

r

| L(t∂t)ℓ+1

(∑
α

hα∂
α
t δf

)
∈ LV >|L|Bf

}
.
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To see this, we must make explicit the isomorphism

LV |L|Bf

/ r∑
i=1

ti
LV |L|−aiBf

∼= Hr
Z(OX).

Note that, by [CDMO24, Lem. 5.1], if we give any isomorphism between these D-modules,
then any other one differs from this by a non-zero scalar multiple. So in terms of the Hodge
and weight filtrations, any D-module isomorphism we define will (up to scalar multiple) agree
with the formal bi-filtered isomorphism given by Theorem A. We denote that isomorphism
by ρ : LV |L|Bf

/∑r
i=1 ti

LV |L|−aiBf → Hr
Z(OX).

In loc. cit., a DX -linear morphism τ : Bf → Hr
Z(OX) is defined as∑

β

hβ∂
β
t δf 7→

∑
β

β!hβ

fβ1+1
1 . . . fβr+1

r

.

In loc. cit. it is observed that
∑r

i=1 tiBf ⊆ ker(τ). In particular,
∑r

i=1(si+1)Bf ⊆ ker(τ).

We define τ : LV |L|Bf → Hr
Z(OX) by applying τ to LV |L|Bf ⊆ Bf , which vanishes on∑r

i=1 ti
LV |L|−aiBf ⊆

∑r
i=1 tiBf . Thus, we get an induced morphism

τ : LV |L|Bf

/ r∑
i=1

ti
LV |L|−aiBf → Hr

Z(OX).

Using the same argument as that in loc. cit., we have the following:

Lemma 5.6. The map τ is surjective.

Proof. Let u = g
(f1...fr)m

∈ OX [ 1
f1...fr

] with m ≥ 1, by definition, we have u = τ(v) where

v = g
(m−1)!r (∂t1 . . . ∂tr)

m−1δf ∈ Bf . However, v needs not lie in LV |L|Bf . If it does, we are

done.

Otherwise, by discreteness of the LV -filtration and nilpotency of L(s) + λ on GrλL(Bf ), we
can find α1 ≤ · · · ≤ αN < |L| such that

(L(s) + α1) . . . (L(s) + αN )v ∈ LV |L|Bf .

By Bézout’s relation, we have some p(w), q(w) such that

(w + |L|)p(w) + q(w)
N∏
i=1

(w + αi) = 1 ∈ C[w].

Plugging in L(s) and applying to v, we get

(L(s) + |L|)p(L(s))v + q(L(s))

N∏
i=1

(L(s) + αi)v = v.

Note that we have (L(s) + |L|) =
∑r

i=1 ai(si + 1).

As (L(s)+ |L|)p(L(s))v =
∑r

i=1(si+1)aip(L(s))v ∈
∑r

i=1(si+1)Bf ⊆ ker(τ), we conclude.
□
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Proof of Theorem B. We have shown above that τ ◦ρ−1 ∈ End(Hr
Z(OX)) is surjective, hence

non-zero. It must then be multiplication by a non-zero scalar, and so we get

τ = λρ for some λ ∈ C∗,

which shows that τ is a bi-filtered isomorphism, as desired.

The description of the Hodge filtration is an easy computation (keeping in mind the shift
by r in the Hodge filtration in Theorem A). For the weight filtration, as Bf is pure of weight

n, we are interested in the monodromy filtration (shifted by n = dimX) on Gr
|L|
L (Bf ) with

respect to L(t∂t).

By [SZ85, Rmk. 2.3], we can write this filtration as

Wn+ℓGr
|L|
L (Bf ) =

∑
j≥max{0,−ℓ}

L(t∂t)
j ker(L(t∂t)

ℓ+1+2j).

Note that if j > 0, then

L(t∂t)
j ker(L(t∂t)

ℓ+1+2i) ⊆ Im(L(t∂t)) ⊆
r∑

i=1

ti∂tiGr
|L|
V (Bf ) ⊆

r∑
i=1

tiGr
|L|−ai
L (Bf ).

Thus,

Wn+ℓ+rHr
Z(OX) =

ker(L(t∂t)
ℓ+1) +

∑r
i=1 tiGr

|L|−ai
L (Bf )∑r

i=1 tiGr
|L|−ai
L (Bf )

,

which finishes the proof. Note that the shift by r comes from the fact that we are studying
the rth cohomology in Theorem A. □

This immediately gives the following:

Corollary 5.7. For Z = V (f1, . . . , fr) ⊆ X a complete intersection of pure codimension r
and any non-degenerate slope L, we have

α̃(Z) ≥ r + k ⇐⇒ ∂βt δf ∈ LV |L|Bf ∀ |β| ≤ k ⇐⇒ Z has k-Du Bois singularities,

α̃(Z) > r + k ⇐⇒ L(t∂t)∂
β
t δf ∈ LV >|L|Bf ∀ |β| ≤ k ⇐⇒ Z has k-rational singularities.

5.1. Weighted homogeneous complete intersections. Next, we prove Corollary D. We
assume that f1, . . . , fr ∈ C[x1, . . . , xn] are weighted homogeneous of degrees d1 ≤ · · · ≤
dr which define Z ⊆ An

x, a complete intersection such that 0 ∈ Z is an isolated singular
point. Here weighted homogeneous means there exist w1, . . . , wn ∈ Z>0 such that if θw =∑n

i=1wixi∂xi , then

θwfj = djfj for all j.

We assume throughout this section that d1+· · ·+dr ≤ |w|. It was shown in [CDM24, Prop.
2.1] that this implies

α̃(Z) ≤ r +
|w| −

∑r
i=1 di

dr
.

Our goal is the following theorem, which is a strengthening of the result of [CDM24] in
the case of Du Bois singularities:



RESTRICTIONS OF MIXED HODGE MODULES USING GENERALIZED V -FILTRATIONS 33

Theorem 5.8. Let Z = V (f1, . . . , fr) ⊆ X = An
x be defined by f1, . . . , fr which are weighted

homogeneous of degrees 2 ≤ d1 ≤ · · · ≤ dr satisfying |w| ≥ d1 + · · · + dr. Assume Z is a
complete intersection with an isolated singularity at 0. Then

r +

⌊
|w| −

∑r
i=1 di

dr

⌋
≤ α̃0(Z) ≤ r +

|w| −
∑r

i=1 di
dr

.

Thus, ⌊α̃0(Z)⌋ = r + ⌊ |w|−
∑r

i=1 di
dr

⌋. Moreover, α̃0(Z) = ⌊α̃0(Z)⌋ if and only if

dr

∣∣∣∣ |w| − r∑
i=1

di.

To prove the lower bound, we study the LV -filtration on Bf =
⊕

α∈Nr OX∂
α
t δf . Here

L =
∑r

i=1 disi. This is the natural slope to consider in this example, by observing

θw(δf ) = L(s)δf ,

and so

(5) θw(x
α∂βt δf ) = (L(s− β) + w · α)(xα∂βt δf )

We have the following general observation:

Lemma 5.9. Let Z = V (f1, . . . , fr) ⊆ X be a reduced complete intersection of codimension
r in a smooth variety X. Then for any non-degenerate slope L =

∑r
i=1 aisi, we have

GrλL(Bf ) is supported on Zsing for λ /∈ Z≥|L|,

where |L| =
∑r

i=1 ai.

Proof. Let U ⊆ X be an open subset such that U ∩ Z = Zreg. Then f1, . . . , fr are part of
a system of coordinates on U . In this case, we have that Bf is LV 0Bf coherent, which by
Lemma 3.13 proves the claim. Indeed, it suffices to show that, for every β ∈ Nr, the element

∂βt δf ∈ LV 0D · δf . But we have

∂βt δf = ∂βf δf ∈ DX · δf
over U , proving the claim. □

Return now to the case that Z = V (f1, . . . , fr) ⊆ An
x is a complete intersection with an

isolated singular point at 0, such that each fi is weighted homogeneous of degree di, i.e.,

θwfi = difi.

By reordering, we can assume d1 ≤ · · · ≤ dr. The following observation is elementary:

Lemma 5.10. In the situation above, for any α ∈ Nn and β ∈ Nr, we have

xα∂βt δf ∈ LV min{|L|,|w|+w·α−L(β)}Bf ,

where |w| =
∑n

i=1wi and w · α =
∑n

i=1wiαi.

Proof. Assume xα∂βt δf defines a non-zero element of GrχL(Bf ) with χ < |L|. Our goal is to
establish the inequality χ ≥ w · α+ |w| − L(β).
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As χ < |L|, we have by Lemma 5.9 above that GrχL(Bf ) is supported on Zsing = {0}.
By Kashiwara’s equivalence (which in this setting of possibly non-coherent D-modules, just
means studying the eigenspaces of the Euler operator), we can write

GrχL(Bf ) =
⊕
γ∈Nn

N∂γxδ0,

where N is a complex vector space (possibly of infinite dimension). For any η ∈ N , we have
xi(ηδ0) = 0. Moreover, the Leibniz rule gives

θw∂
γ
x = ∂γx(θw − w · γ).

Finally, θw =
∑n

i=1wixi∂xi =
∑n

i=1wi∂xixi − |w|. Putting this together, we see that

θw(∂
γ
x(ηδ0)) = ∂γx(θwηδ0) = (−|w| − w · γ)∂γxηδ0.

Hence, in this situation, any generalized eigenvector of θw is actually an eigenvector and
its eigenvalue is ≤ −|w|.

Assume xα∂βt δf defines a non-zero element of GrχL(Bf ). Then

θw(x
α∂βt δf ) = (L(s− β) + w · α)(xα∂βt δf ),

and so
(L(s) + χ)(xα∂βt δf ) = (θw + L(β)− w · α+ χ)(xα∂βt δf ).

As L(s) + χ is nilpotent on GrχL(Bf ), we see that xα∂βt δf is a generalized eigenvector for
θw with eigenvalue w · α− L(β)− χ. This gives

w · α− L(β)− χ ≤ −|w|,
and so χ ≥ w · α− L(β) + |w|, proving the claim. □

Corollary 5.11. For k = ⌊ |w|−|L|
dr

⌋, we have

Fk+rBf ⊆ LV |L|Bf , Fk+r+1Bf ̸⊆ LV |L|Bf .

Proof. To prove this, we show that for any β with |β| = k we have

∂βt δf ∈ LV |L|Bf .

By the previous lemma, we want to understand when |w| − L(β) ≥ |L|. By varying over
all β with |β| = k, the maximal value of L(β) is kdr. Hence, for any p ∈ Z such that

|w| − |L| ≥ pdr, we get Fp+rBf ⊆ LV |L|Bf .

The second claim follows from the general upper bound on α̃(Z). □

In summary, with the discussion above, we have the following result.

Corollary 5.12. If Z = V (f1, . . . , fr) ⊆ An
x is a complete intersection with isolated sin-

gularity at 0, such that fi is weighted homogeneous of degree di and d1 ≤ · · · ≤ dr and
|w| ≥ d1 + · · ·+ dr, then

⌊α̃0(Z)⌋ = r +

⌊
|w| − |L|

dr

⌋
.

Proof. This follows immediately from Fk+rBf ⊆ LV |L|Bf when k = ⌊ |w|−|L|
dr

⌋ and the previous
proposition. □
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Using the general upper bound, we have the following:

Corollary 5.13. If dr
∣∣ |w| − |L|, we have

α̃0(Z) = r +
|w| − |L|

dr
.

As we can compute the weight filtration on Hr
Z(OX) using the nilpotent operator L(t∂t)

on Gr
|L|
L (Bf ), we also have the following:

Lemma 5.14. If dr ∤ |w| − |L|, then

α̃0(Z) > r +
|w| − |L|

dr
.

Proof. Let k = ⌊ |w|−|L|
dr

⌋. We will show that, under the assumption dr ∤ |w| − |L|, we have

∂β+ei
t δf ∈ LV >|L|−diBf for all |β| = k, 1 ≤ i ≤ r.

Indeed, this implies that L(t∂t)Fk+rGr
|L|
L (Bf ) = 0, proving

FkWn+rHr
Z(OX) = FkHr

Z(OX) = PkHr
Z(OX).

Assume there exists β with |β| = k and 1 ≤ i ≤ r such that

∂β+ei
t δf ∈ LV |L|−diBf \ LV >|L|−diBf .

By Lemma 5.10, this means |L| − di ≥ |w| − L(β + ei), so that L(β) ≥ |w| − |L|. But
L(β) ≤ kdr, so we get

|w| − |L| ≤ kdr,

and so |w|−|L|
dr

≤ ⌊ |w|−|L|
dr

⌋, contradicting our assumption. □

We end with an explicit computation of the LV -filtration in this setting.

Theorem 5.15. Define a filtration

UλBf =

{∑
|w|+w·α−L(β)≥λDX · (xα∂βt δf ) λ ≤ |L|∑r
i=1 tiU

λ−diBf λ > |L|
.

In the setting above, we have LV λBf = UλBf .

Proof. Lemma 5.10 shows U•Bf ⊆ V •Bf , so we need only prove the opposite inclusion.
It is trivial to check that it satisfies the properties of Proposition 3.10 except possibly the
coherence condition, but this gives the desired containment. □
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