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Abstract. We study a natural Hodge theoretic generalization of rational (or Q-)homology manifolds
through an invariant HRH(Z) where Z is a complex algebraic variety. The defining property of
this notion encodes the difference between higher Du Bois and higher rational singularities for local
complete intersections, which are two classes of singularities that have recently gained much attention.

We show that HRH(Z) can be characterized when the variety Z is embedded into a smooth variety
using the local cohomology mixed Hodge modules. Near a point, this is also characterized by the
local cohomology of Z at the point, and hence, by the cohomology of the link. We give an application
to partial Poincaré duality.

In the case of local complete intersection subvarieties, we relate HRH(Z) to various invariants. In
the hypersurface case it turns out that HRH(Z) can be completely characterized by these invariants.
However for higher codimension subvarieties, the behavior is rather subtle, and in this case we relate
HRH(Z) to these invariants through inequalities and give some conditions on when equality holds.
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A. Introduction

The cohomology of a compact, oriented real manifold X of dimension 2n satisfies the following
incredible symmetry, called Poincaré duality:

Hn−k(X,Q) ∼= Hn+k(X,Q)∨,

where the right hand side is the dual vector space.

In the non-compact setting, such a duality still holds, but it compares singular cohomology with
compactly supported cohomology:

Hn−k(X,Q) ∼= Hn+k
c (X,Q)∨.

The above applies to smooth complex algebraic varieties of dimension n. For singular varieties (in
this paper, meaning reduced, finite type schemes over C), the duality need not hold for singular co-
homology of the associated analytic space. Goresky-MacPherson’s theory of intersection cohomology
provides a replacement of singular cohomology which still admits a Poincaré duality isomorphism.
This theory associates to any purely d-dimensional complex variety Z a pair of graded vector spaces
IH∗(Z,Q) and IH∗

c(Z,Q) (which, in the smooth case agree with the singular cohomology and com-
pactly supported cohomology, respectively), such that there are natural isomorphisms

IHd−k(Z,Q) ∼= IHd+kc (Z,Q)∨.

As in [BBD82], these vector spaces can be realized as the hypercohomology of the intersection
complex perverse sheaf, which is self-dual as a perverse sheaf.

One of the many achievements of Saito’s theory of mixed Hodge modules [Sai88, Sai90] is that it
endows these intersection cohomology spaces with natural mixed Hodge structures. The important
aspects of this theory will be reviewed in Section B below.

Let Z be a purely d-dimensional complex algebraic variety. In §3, we explain the construction of
a natural morphism in Db(MHM(Z)) (due to Saito [Sai90, (4.5.12)]):

ψZ : QH
Z [d] → DZ(QH

Z [d])(−d),

which is a sheaf-theoretic incarnation of the Poincaré duality morphism.

By applying the associated graded de Rham functor GrF−pDR(−) to the morphism ψZ , we obtain

morphisms in Db
coh(OZ):

ϕp : ΩpZ → DZ(Ωd−pZ )[−d],
where ΩpZ is the p-th Du Bois complex of Z and DZ = RHomOZ

(−, ω•
Z) is the Grothendieck duality

functor. We review the Du Bois complexes in Section B below. For now, these should be thought of
as replacements of the sheaf of Kähler differentials which are better behaved from a Hodge theoretic
point of view.

Definition 0.1. Let Z be a pure d-dimensional variety. We say Z is a rational homology manifold
to Hodge degree k, or k-Hodge rational homology variety if ϕp is a quasi-isomorphism for 0 ≤ p ≤ k.

Further, define the HRH level of Z to be

HRH(Z) := sup{k ∈ Z≥0 | ϕp is a quasi-isomorphism for 0 ≤ p ≤ k}

where we follow the convention that HRH(Z) = −1 if ϕ0 is not a quasi-isomorphism.
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We will see in the sequel that HRH(Z) = +∞ if and only if Z is a rational homology manifold
(sometimes called rationally smooth in the literature). By duality, we have equality D(ϕp) = ϕd−p,
hence we have the upper bound

HRH(Z) < +∞ ⇐⇒ HRH(Z) <
d

2

(see Theorem G or Remark 4.8 (4)(c) for a better bound).

It turns out that if Z has rational singularities then HRH(Z) ≥ 0 (see Remark 4.8 (3) for a more
general statement). However, we note that there are varieties with HRH(Z) ≥ 0 whose singularities
are not even Du Bois, see Example 13.9 (2).

As the reader might have guessed from the above discussions, we have partial Poincaré duality for
k-Hodge rational homology varieties (see Theorem 7.2 for a more elaborate formulation). Throughout
the article, a variety Z is embeddable if there exists a closed embedding i : Z → X with X a smooth
variety.

Theorem A. Let Z be an embeddable complex algebraic variety with HRH(Z) ≥ k. Then for all
i ∈ Z, we have isomorphisms

F d−kHd−i(Z) ∼= F−kHd+i
c (Z)∨.

Remark 0.2. This notion is different from another weakening of Poincaré duality, due to Kato
[Kat77]. Indeed, the notion we study is related to which Hodge filtered pieces are Poincaré dual to
each other (in all cohomological degrees), whereas Kato’s notion is asking for which cohomological
degrees Poincaré duality holds (in all Hodge levels).

The notion of k-Hodge rational homology varieties is also studied in the recent article [PP24]
through an equivalent defining property that is phrased as “(∗)k-condition” (see Remark 5.2 for the
equivalence of (∗)k-condition with HRH(Z) ≥ k), and important consequences, such as symmetry of
Hodge-Du Bois numbers and Lefschetz properties are discussed in detail. However, in this paper we
will take a different point of view, and will mainly be concerned with characterizations of HRH level
via various singularity invariants.

HRH level via local cohomology in the embedded case. Our main results focus on the case
when i : Z ↪→ X is an embedding of a singular variety Z in a smooth variety X. In this setting, our
first result relates these notions to the local cohomology mixed Hodge modules of OX along Z.

Local cohomology modules have been recently studied [MP22,CDMO24,CDM22] from a Hodge
theoretic perspective due to their relation to the classes of higher Du Bois and higher rational
singularities (see Definition 3.2 below).

Let (Hj
Z(OX), F,W ) be the bi-filtered local cohomology DX -module. These are potentially non-

zero only for j ≥ codimX(Z). In what follows, we will be indexing the Hodge filtration following
conventions for right D-modules.

Theorem B. Let i : Z ↪→ X be a closed embedding of a pure c-codimensional variety Z inside a
smooth variety X of dimension n. Then HRH(Z) ≥ k if and only if

Fk−nHj
Z(OX) = 0 for all j > c and Fk−nWn+cHc

Z(OX) = Fk−nHc
Z(OX).

In the hypersurface case, the above result immediately shows that HRH(Z) can be detected using
weighted Hodge ideals introduced in [Ola23] (see Corollary 5.4). Moreover, when Z ⊆ X is a complete
intersection variety of pure codimension c, this condition resembles the one in the main theorem of
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[CDM22]. This similarity reflects the fact that the invariant HRH(Z) differentiates the notions of
k-Du Bois and k-rational singularities (see Remark 4.8 below). For this reason, we expect this should
be satisfied by a further iteration of the definitions of higher Du Bois and higher rational singularities.
Furthermore, higher rational singularities yield a lower bound for the invariant HRH(Z). In fact, if
a normal variety Z is pre-k-rational —a weakening of the k-rational condition— then HRH(Z) ≥ k
(see Remark 3.4 and Remark 4.8).

Applying Theorem B to a result of Mustaţă-Popa [MP22, Thm. C], we get the following. In the
statement, the “Ext” filtration E•Hq

Z(OX) is defined using the Ext description of local cohomology:

Hq
Z(OX) = lim−→

p

Extq(OX/J p+1
Z ,OX),

where JZ is the ideal sheaf of Z in X, and the filtration is defined by

E•Hq
Z(OX) = Im

[
Extq(OX/J •+1

Z ,OX) → Hq
Z(OX)

]
.

Corollary C. If Z ⊆ X is a closed embedding of a pure c-codimensional Cohen-Macaulay variety
Z inside a smooth variety X of dimension n, then

Z has rational singularities if and only if F−nWn+cHc
Z(OX) = E0Hc

Z(OX).

HRH level via local cohomology at points and link invariants. We can also study the
invariant HRH(Z) near x ∈ Z in terms of the local cohomology H∗

{x}(Z). It is well-known that Z is

a rational homology manifold if and only if for every x ∈ Z, we have

(0.3) H i
{x}(Z) =

{
0 i < 2d,

Q i = 2d.

It turns out that the condition HRH(Z) ≥ k is indeed the natural generalization of (0.3).

Theorem D. Let Z be a purely d-dimensional variety. Then for any k ≥ 0, we have HRH(Z) ≥ k
if and only if for every x ∈ Z, we have

Fk−dH
i
{x}(Z) =

{
0 i < 2d,

Q i = 2d.

A slightly extended version of the above is proven in Theorem 6.5, which can also be related to
the link invariants ℓp,q as defined in [FL24a]. We review the definition of the cohomology of the link
Lx of Z at x in §6 (following [DS90]), and the definition of the link invariants in (6.7). Recall that
the local cohomological defect of Z is defined by

lcdef(Z) := max{j | Hc+j
Z (OX) ̸= 0, i : Z → X codimension c embedding, X is smooth}

It turns out that the above description does not depend on choice of the embedding, and in fact

lcdef(Z) = max{j | H−j(QH
Z [d]) ̸= 0}.

This notion admits a local version lcdefx(Z) = minx∈U⊆Z lcdef(U) for any point x ∈ Z, where the
minimum runs over all Zariski open neighborhoods of x in Z. We obtain the following generalization
of [FL24a, Thm. 1.15(i)] via this invariant.
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Theorem E. Let Z be a purely d-dimensional variety and let x ∈ Z be an isolated singular point.
Let a = lcdefx(Z). Then for any k ≥ 0, we have HRHx(Z) ≥ k if and only if

(0.4)

{
ℓd−i,q−d+i = 0 i ≤ k, q ∈ [d, d+ a]

ℓd−i,d−1+i = 0 1 ≤ i ≤ k
.

Thus, Z has k-rational singularities near x if and only if it has k-Du Bois singularities near x
and the vanishing (0.4) holds.

It is worth mentioning here that there is a result of Brion [Bri99, Prop. A1] which states that if
Z is a rational homology manifold near x, then it is irreducible near x. In fact, using a bound on
the local cohomological defect due to [PP24], we conclude the following (compare with the fact that
if Z has rational singularities near x, then it is normal, hence irreducible, near x):

Theorem F. Let Z be a purely d-dimensional variety and let x ∈ Z. If HRHx(Z) ≥ 0, then

dimH2d−ℓ−1(Lx) = dimH2d−ℓ
{x} (Z) =

{
1 ℓ = 0

0 0 < ℓ ≤ 2HRHx(Z) + 1
.

In particular, if HRHx(Z) ≥ 0, then Z is irreducible at x.

We also introduce a “generic variant” of the invariant lcdef(Z) in §5 that we call lcdefgen(Z) (see
Definition 8.1). It is a non-negative integer satisfying the inequality

(0.5) lcdefgen(Z) ≤ lcdef(Z)

(equality holds in the case of isolated singularities, but strict inequality is also possible in the above,
see §14 for explicit examples). In [PP24], it has been proven that the codimension of the locus ZnRS

where Z is not a rational homology manifold is bounded below by 2HRH(Z) + 3 (here nRS stands
for non-rationally smooth). We obtain the following improvement of this bound via lcdefgen(Z).

Theorem G. Let Z be a purely d-dimensional variety with HRH(Z) ≥ 0. Then we have the inequality

lcdefgen(Z) + 2HRH(Z) + 3 ≤ codimZ(ZnRS).

A more elaborate version of the above is proven in Proposition 8.5. There are instances when
equality holds (see the examples in §14, Example 15.1, Example 15.2), however strict inequality also
occurs (Example 15.3).

HRH level via integer invariants in the LCI case. For the remainder of the introduction,
we fix an embedding i : Z ↪→ X as a complete intersection subvariety of pure codimension r with
dim(X) = n. Moreover, we fix f1, . . . , fr ∈ OX(X) such that Z = V (f1, . . . , fr). In this setting,
there are various singularity invariants of Z defined through D-module and mixed Hodge module
theory, and our results compare these invariants. We will not mention the precise definitions in this
introduction.

It is illustrative to first discuss hypersurface singularities. In this case, the complete picture can
be understood with the well-known properties of the V -filtration (reviewed in §2 below). This is
discussed in §9 and should motivate the definitions in the local complete intersection case, as we try
to generalize the following initial result. Recall that for any object A with bounded below filtration
F•A, we let

p(A,F ) = min{p | FpA ̸= 0}.
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In the theorem statement, Bf is the Hodge module push-forward of the trivial Hodge module

QH
X [dimX] along the graph embedding Γ: X → X × A1.

Theorem H. Let Z be a hypersurface in an n-dimensional smooth variety X defined by f . Then,

HRH(Z) ≥ k − 1 ⇐⇒ Fk−nGr0V (Bf ) = 0.

In particular, HRH(Z) = p(Gr0V (Bf )) + n− 2.

The central construction we use to study local complete intersections is the unipotent Verdier
specialization of OX along Z. This is a monodromic mixed Hodge module SpZ(OX)

Z on X × Arz
which sits in a short exact sequence

0 → i∗QH
Z×Ar

z
[n] → SpZ(OX)

Z → QZ → 0,

where the left-hand side is the trivial Hodge module on Z×Arz and the module QZ is defined through
this short exact sequence, though it was observed in [Dir23] that it is related to another important
construction we will see below.

The first integer invariant we consider is p(QZ, F ), where F is the Hodge filtration on the underlying
D-module of Q. In the hypersurface case, we have p(QZ, F ) = p(φf,1(OX), F ) − 1. Up to a shift,
p(φf,1(OX), F ) is the invariant α̃min.int(f) defined in [JKSY22].

The module QZ is related to the integral spectrum of Z at x ∈ Z, defined by [DMS11]. We let
Spmin,Z(Z, x) denote the smallest non-zero element of the integral spectrum of Z at x. In [JKSY22],

it was noted that in the isolated hypersurface singularities case, α̃min.int(f) = Spmin,Z(Z, x). We give
another proof of this below (see Remark 11.7).

The main result about this level is the following and is proved in Proposition 11.1 and Proposi-
tion 11.4.

Theorem I. Let x ∈ Z be a point in a local complete intersection subvariety of the smooth variety
X. Then we have the following inequalities:

(1) p(QZ, F ) + n− 1 ≤ HRH(Z).
(2) p(QZ

x , F ) + n+ 1 ≤ Spmin,Z(Z, x).

Note that in the hypersurface case, we always have p(QZ, F ) + n− 1 = HRH(Z). Furthermore, in
the isolated hypersurface singularities case, we have p(QZ

x , F ) + n + 1 = Spmin,Z(Z, x). For isolated
local complete intersections, we partially recover the second equality (see Corollary 9.1).

Theorem J. Let Z be a variety that is locally a complete intersection that has an isolated singularity
at x ∈ Z. Then,

HRH(Z) ≥ Spmin,Z(Z, x)− 2.

It is clear from Theorem I that QZ = 0 implies Z is a rational homology manifold and that
Spmin,Z(Z, x) = +∞ for all x ∈ Z. However, this condition is too strong to be equivalent to rational

smoothness of Z, as we see in Example 16.2 below. We can characterize the vanishing of QZ, as we
explain now.

In [Mus22,CDMO24], singularities of f1, . . . , fr ∈ OX(X) are related to those of the general linear
combination hypersurface g =

∑r
i=1 yifi defined on Y = X × Ary. Let U = Y \ (X × {0}). The

hypersurface defined by g|U is used in [CDMO24,CDM22,Dir23] to study higher singularities of Z.
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We have the following characterization of the vanishing of QZ in terms of the rational smoothness of
V (g|U ) ⊆ U . We use the notation HRH(V (g|U )) = HRH(g|U ), and we let

α̃Z(g|U ) = min{j ∈ Z | b̃g|U (−γ) = 0},

where b̃g|U (s) = bg|U (s)/(s+ 1) is the reduced Bernstein-Sato polynomial of g|U .

Theorem K. In the notation above, we have

QZ = 0 ⇐⇒ V (g|U ) is a rational homology manifold ⇐⇒ φg|U ,1(OU ) = 0.

Moreover, we have inequalities

(1) α̃Z(g|U ) ≤ p(QZ, F ) + n+ r,
(2) α̃Z(g|U )− r − 1 ≤ HRH(Z),
(3) HRH(g|U )− r + 1 ≤ HRH(Z).

These results are a consequence of a more precise statement involving an invariant of the Hodge
filtration of QZ, or more precisely, of its monodromic pieces (see Remark 11.11).

The tuple f1, . . . , fr has a Bernstein-Sato polynomial bf (s) which is divisible by (s + r) in this

case, and so we can consider the reduced Bernstein-Sato polynomial b̃f (s) = bf (s)/(s+ r). Define

α̃Z(Z) = min{j ∈ Z | b̃f (−j) = 0},

and conventionally set α̃Z(Z) = +∞ if there are no integer roots of b̃f (s). For x ∈ Z, there are also
local notions: bf,x(s) = gcdx∈U (bf |U (s)) and α̃Z,x(f) = minx∈U α̃Z(f |U ), where U varies over Zariski
open neighborhoods of x. Regarding these invariants, we have the following:

Corollary L. If Z is a hypersurface or has rational singularities, then

(1) α̃Z(Z) ≤ p(QZ, F ) + n+ r,
(2) α̃Z(Z)− r − 1 ≤ HRH(Z),
(3) α̃Z,x(Z)− r + 1 ≤ Spmin,Z(Z, x).

If Z is a hypersurface, then α̃Z(Z) = +∞ if and only if Z is a rational homology manifold. If
Z has higher codimension, but has rational singularities, then α̃Z(Z) = +∞ implies Z is a rational
homology manifold.

In fact, we show a more precise statement, but it becomes rather technical and is discussed at the
end of Section D below. We remark that even in the isolated hypersurface singularities case, it is
possible to have strict inequality

α̃Z,x(Z) < Spmin,Z(Z, x),

see [JKSY22, Rmk 3.4d]. Moreover, the converse to the last statement of the corollary is not true
(Example 16.2).

Outline. Section B contains a review of the theory of mixed Hodge modules, the Specialization
construction, the definition of the spectrum, and the definition of higher Du Bois and higher rational
singularities.

Section C defines and studies the invariant HRH(Z). The proofs of Theorem B, Corollary C, and
Theorem G (= Proposition 8.5) are given in §5. In the following §6, Theorem D (= Theorem 6.5),
Theorem E, and Theorem F are proven. Moreover, an application to partial Poincaré duality on
singular cohomology is given in §7 where we prove Theorem A (= Theorem 7.2). The following §8
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contains a proof of Theorem G (= Proposition 8.5), the main observation being that lcdefx(Z) is
invariant under taking normal slices. The end of that section highlights some interesting behavior
with references to the examples in §14.

Section D studies the integer invariants HRH(Z), Spmin,Z(Z, x), α̃Z(Z) and p(QZ, F ) when Z =
V (f1, . . . , fr) ⊆ X is defined by a regular sequence. The invariant HRH(Z) is characterized via
the V -filtration and Theorem H is proven in §9. We prove Theorem I (= Proposition 11.1 and
Proposition 11.4), Theorem K, and Corollary L in §11. The proof of Theorem J is contained in §12.

Section E provides examples of various features. Here we compute the Hodge rational homology
levels of affine cones, determinantal varieties and other natural classes of examples. We also provide
an example of a variety with QZ ̸= 0 but which is a rational homology manifold. Moreover, the case
of varieties with k-liminal singularities (those which are k-Du Bois but not k-rational for some k) is
studied in this section.

Acknowledgments. We would like to thank Bhargav Bhatt, Qianyu Chen, Radu Laza, Laurenţiu
Maxim, Mircea Mustaţă, Sung Gi Park, Mike Perlman, Mihnea Popa, Sridhar Venkatesh and Anh
Duc Vo for many conversations on the topics in this paper.

B. Preliminaries

In this section, we give a brief overview of the background material needed in the rest of the paper.
We will use without review the theory of perverse sheaves and D-modules. For more information,
see [BBD82] and [HTT08], respectively.

1. Mixed Hodge modules. The main objects used in this paper are mixed Hodge modules,
defined by Saito [Sai88, Sai90]. We make the convention in this paper that all D-modules are left
modules, however, we will index the Hodge filtration following the conventions for right D-modules.
We will remind the reader about these conventions below, when necessary.

On a smooth complex algebraic variety X of dimension n, a mixed Hodge module consists of the
data

M = (M, F,W, (K,W ), α)

where M is a regular holonomic DX -module, F•M is a good filtration on it, W•M is a finite
filtration by DX -modules, (K,W ) is an algebraically constructible Q-perverse sheaf on Xan with a
finite filtration W•K, and α is a filtered isomorphism

α : C⊗Q (K,W ) → DRan
X (M,W )

of filtered C-perverse sheaves. Recall that

DRX(M) =
[
M ∇−→ Ω1

X ⊗O M ∇−→ . . .
∇−→ ωX ⊗O M

]
placed in degrees −n, . . . , 0, with filtration WiDRX(M) = DRX(WiM). In a local choice of coordi-
nates x1, . . . , xn of X, the complex is the Koszul complex on the operators ∂x1 , . . . , ∂xn .

The filtration F•M is the “Hodge filtration” and W•M is the “weight filtration”. The Q-perverse
sheaf K is called the Q-structure, and the functor rat : MHM(X) → Perv(X) sending M to K is
faithful.

These data are subject to various conditions, which we will not explain fully here. The essential
idea is that mixed Hodge modules on a point should be exactly the graded-polarizable mixed Hodge
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structures, and then the definition for higher dimension varieties follows by induction on the dimen-
sion. The crucial constructions in the inductive step are the modules of nearby and vanishing cycles,
explained in the §2.

The category MHM(X) is abelian. In fact, any morphism φ : (M, F,W ) → (N , F,W ) underlying
a morphism of mixed Hodge modules is bi-strict with respect to F and W . We say a mixed Hodge
module M is pure of weight w if GrWi M = 0 for all i ̸= w.

We let Db(MHM(X)) denote the bounded derived category of mixed Hodge modules on X.

The theory of mixed Hodge modules is endowed with a six functor formalism which, under the
functor rat : Db(MHM(X)) → Db(Perv(X)) agrees with the six functor formalism on perverse sheaves
and which agrees with the six functors on underlying D-modules. In particular, given any morphism
f : X → Y between smooth varieties, we have functors

f∗, f! : D
b(MHM(X)) → Db(MHM(Y )),

f∗, f ! : Db(MHM(Y )) → Db(MHM(X)),

with f∗ left adjoint to f∗, f! left adjoint to f
!. Moreover, there is an exact functor

DX : MHM(X)op → MHM(X)

so that f ! = DXf
∗DY , f! = DY f∗DX . The dual functor satisfies

GrW−iDX(M) ∼= DX(GrWi M).

Using local embeddings into smooth varieties, the categories MHM(Z) and Db(MHM(Z)) make
sense for an arbitrary complex variety Z, and admit six functor formalisms as described above.
Similarly, the associated graded pieces GrFp DRZ(M) give objects of Db

coh(OZ) which are independent
of the choice of local smooth embeddings.

For any two smooth varieties X,Y and for any M ∈ MHM(X), the functor

M ⊠− : MHM(Y ) → MHM(X × Y )

is exact. On underlying filtered objects, it is given by convolution of filtrations: we have

Fk(M⊠N ) =
∑
i+j=k

FiM⊠ FjN ,

Wk(M⊠N ) =
∑
i+j=k

WiM⊠WjN .

Example 1.1. For X a smooth variety of dimension n, the trivial Hodge module is

QH
X [n] = (OX , F,W,QXan [n]),

where GrF−•OX = GrW• OX = 0 except for • = n.

In general, given the trivial Hodge structure QH ∈ MHM(pt), if aZ : Z → pt is the constant map,
then the trivial Hodge module on Z is actually an object in Db(MHM(Z)) given by

QH
Z = a∗ZQH ,

which might have many non-zero cohomology modules and those modules may not be pure.

Example 1.2. ([Sai90, (4.4.2)]) Assume X and Y are smooth varieties. Let p : X × Y → Y be the
projection. Then the pullback functor p∗ is given by QH

X ⊠−.
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Example 1.3. ([Sai90, (4.4.3)]) Consider a Cartesian diagram

Y ′ X ′

Y X

gY

f ′

gX

f

.

Then there are natural, canonical isomorphisms of functors

g∗Xf! = f ′! g
∗
Y , g!Xf∗ = f ′∗g

!
Y .

Example 1.4. For any M ∈ MHM(X) and j ∈ Z, we can define another mixed Hodge module
M(j) ∈ MHM(X), which is called the Tate twist of M by j. It has the same underlying DX -module
M, but the filtrations are shifted:

F•(M(j)) = F•−j(M), W•(M(j)) =W•+2jM.

If M is a pure Hodge module of weight w on X, then by definition it is polarizable, which implies
that there exists an isomorphism of pure Hodge modules of weight −w:

DX(M) ∼=M(w).

The Hodge filtration induces a filtration on DRX(M) by

FpDRX(M) =
[
Fp−nM

∇−→ Ω1
X ⊗O Fp−n+1M

∇−→ . . .
∇−→ ωX ⊗O FpM

]
,

so that GrFp DRX(M) is actually a bounded complex of coherent O-modules with O-linear differen-

tials. The functor GrFp DRX(−) extends to an exact functor

GrFp DRX(−) : Db(MHM(X)) → Db
coh(OX),

where the right hand side is the bounded derived category of OX -modules with coherent cohomology.

Moreover, the functor is well-behaved under various operations, as given by the following propo-
sition:

Proposition 1.5 ([Sai88, Lem. 2.3.6]). Let f : X → Y be a proper morphism between smooth
varieties and let M• ∈ Db(MHM(X)). Then, for any p ∈ Z there is a quasi-isomorphism

GrFp DRY (f∗(M
•)) ∼= Rf∗GrFp DRX(M

•),

where Rf∗ is the right derived functor of the usual O-module push-forward.

Moreover, [Sai88, Sect. 2.4]

DXGrFp DRX(M
•) ∼= GrF−pDRX(DX(M

•)),

where DX(−) = RHomOX
(−, ωX [dimX]) is the Grothendieck duality functor on X.

Given any object A with bounded below filtration F•A, we let p(A,F ) = min{p | FpA ̸= 0}.
For M a mixed Hodge module, we let p(M) = p(M, F ) where F•M is the Hodge filtration on the
underlying D-module. For M• ∈ Db(MHM(X)), we have p(M•) = mini∈Z p(Hi(M•)).

Lemma 1.6. Let M• ∈ Db(MHM(X)). Then

p(M•) = min{p | GrFp DRX(M
•) is not acyclic.}
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Proof. The argument is standard, but we include it for convenience of the reader.

We want to see that

FkM
• = 0 if and only if GrFℓ DRX(M

•) = 0 for all ℓ ≤ k,

where the first expression is equivalent to saying p(M•) > k. Indeed, if we represent M• by a
bounded complex of morphisms of mixed Hodge modules, then

FkHj(M•) = Hj(FkM•)

by strictness of morphisms.

We have the spectral sequence (shown using the standard truncation functors on Db(MHM(X))):

ℓEp,q2 = HpGrFℓ DRX(HqM•) =⇒ Hp+qGrFℓ DRX(M
•).

Note that if FkM
• = 0 (meaning FkHjM• = 0 for all j ∈ Z), then ℓEp,q2 = 0 for all ℓ ≤ k and all

p, q. The spectral sequence then shows that GrFℓ DRX(M
•) = 0 for all ℓ ≤ k, as desired.

Conversely, assume GrFℓ DRX(M
•) = 0 for all ℓ ≤ k. Let σ0 = min{σ | FσM• ̸= 0}, which is a

finite value because M• is a bounded complex (meaning there are only finitely many cohomology
modules to consider). The claim is that σ0 > k. If not, then σ0 ≤ k, and so by our assumed
vanishing, we have

σ0Ep,q∞ = 0.

But for any fixed q, the only non-zero σ0Ep,q2 is for p = 0. Indeed, the last few terms of the
associated graded de Rham complex are

· · · → Ωn−1
X ⊗GrFσ0−1Hq(M•)

d−→ ωX ⊗GrFσ0H
q(M•),

and by definition of σ0, all the leftmost terms are 0. Thus, σ0Ep,q∞ = σ0Ep,q2 = 0.

So we have reduced to checking the claim when M is a mixed Hodge module. But it is easy to see
that FkM = 0 if and only if GrFℓ DRXM = 0 for all ℓ ≤ k. □

Corollary 1.7. Let ψ : M• → N• be a morphism in Db(MHM(X)). Then Fkψ is a quasi-isomorphism
if and only if GrFℓ DRX(ψ) is a quasi-isomorphism for all ℓ ≤ k.

Proof. Apply Lemma 1.6 to the cone of the morphism ψ in Db(MHM(X)). □

The following two lemmas are proven in a way similar to [Sai90, Rmk. 4.6(1)]. The main idea is to
establish the result for variations of mixed Hodge structures and to use induction on the dimension
of the support.

Lemma 1.8. Let M• ∈ Db(MHM(Z)). Then

p(M•) ≥ j ⇐⇒ p(i!xM
•) ≥ j for all x ∈ Z.

Proof. The implication

p(M•) ≥ j =⇒ p(i!xM
•) ≥ j for all x ∈ Z

is obvious, by definition of the functor i!x for mixed Hodge modules (see, for example, Proposition 2.6
below).

To prove the converse, assume for all x that p(i!xM
•) ≥ j.

We use induction on dim(Z). For dim(Z) = 0, the claim is obvious.
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For dim(Z) > 0, there exists a Zariski open cover Z =
⋃
α∈I Uα such that, for each α ∈ I, there

exists gα ∈ O(Uα) so that the subset U ′
α = {gα ̸= 0} ⊆ Uα is a smooth and dense open and with the

property that the restriction Hi(M)|U ′
α
is a variation of mixed Hodge structures for all i ∈ Z.

It suffices to prove the claim locally, so we can replace Z with Uα. We have reduced to the case
that there exists g ∈ OZ(Z) such that U ′ = {g ̸= 0} ⊆ Z is a smooth, Zariski open dense subset so
that Hi(M)|U ′ is a variation of mixed Hodge structures for all i ∈ Z.

Let j : U ′ → Z and i : {g = 0} → Z be the natural embeddings, with exact triangle

i∗i
!M• →M• → j∗(M

•|U ′)
+1−−→ .

If p(M•) < j, then either p(i∗i
!M•) < j or p(j∗(M

•|U ′)) < j. Note that for all x ∈ {g = 0}, we
have

i!xi∗i
!M• = i!xM

•,

and so by induction on the dimension we conclude that p(i∗i
!M•) ≥ j.

For all x ∈ U ′, we have

i!xM
• = i!xj∗(M

•) = ι!x(M
•|U ′),

where ιx : {x} → U ′ is the inclusion. We see using the spectral sequence

Ep,q2 = Hpι!xHq(M•|U ′) =⇒ Hp+qι!x(M
•|U ′),

and the fact that ιx is non-characteristic for each cohomology module Hq(M•|U ′) (implying that the
spectral sequence degenerates at E2) that p(M

•|U ′) ≥ j, and so p(j∗(M
•|U ′)) ≥ j, too.

Thus, we have shown that p(M•) ≥ j. □

Lemma 1.9. Let M ∈ MHM(Z). Then for any x ∈ Z, we have Hji!xM = 0 for all j > dimZ.

Proof. Fix x ∈ Z. The claim is obvious if dimZ = 0.

As above, we will use the definition of mixed Hodge modules in [Sai13]. We can replace Z by a
Zariski open neighborhood of x in Z because the question is local near x. Take such a neighborhood
U such that there exists a function g ∈ O(U) with the property that on U ′ = {g ̸= 0}, the module
M restricts to a variation of mixed Hodge structures.

We have the exact triangle

i∗i
!M →M → j∗(M |U ′)

+1−−→ .

If x ∈ U ′, then we have

i!xM = i!xj∗(M |U ′) = i!x,U ′(M |U ′)

and the claim is obvious as U ′ is smooth of dimension dim(Z).

If x /∈ U ′, then

i!xi∗i
!M = i!xM

and so we can use induction on the dimension, using that each cohomology of i∗i
!M is supported on

{g = 0} which has strictly smaller dimension than Z. Then one uses induction on the dimension of
the support and the spectral sequence:

Ei,j2 = Hii!xHj(i∗i
!M) =⇒ Hi+ji!xM.

Note that as i is the inclusion of a divisor, Ei,j2 ̸= 0 implies j = 0, 1. Thus, by induction on the

dimension of the support, Ei,j2 ̸= 0 implies i+ j ≤ 1 + dim{g = 0} = dimZ. □
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Lemma 1.10. Let M• ∈ Db(MHM(Z)) be such that there exists c ∈ Z, ℓ ∈ Z≥0 such that

dimSupp(Hi+cM•) ≤ ℓ− i.

Then Hj+ci!xM
• = 0 for all j > ℓ and all x ∈ Z.

Proof. By shifting M• we can assume c = 0. By the spectral sequence

Ei,j2 = Hii!xHjM• =⇒ Hi+ji!xM
•,

we want to show that Hii!xHjM• = 0 for all i+ j > ℓ. By the previous lemma and the assumption
on dimSupp(HjM•), we get the desired vanishing. □

2. V-filtration, specialization and spectrum. To define nearby and vanishing cycles for mixed
Hodge modules, Saito uses the V -filtration of Kashiwara and Malgrange. As this is arguably the
most important construction for what follows, we remind the reader of its definition.

For the smooth varietyX, let T = X×Art be the trivial vector bundle overX with fiber coordinates
t1, . . . , tr. We have DT = DX⟨t1, . . . , tr, ∂t1 , . . . , ∂tr⟩, where as usual [∂ti , tj ] = δij , the Kronecker
delta. This ring carries a Z-indexed, decreasing filtration

V •DT =

∑
β,γ

Pβ,γt
β∂γt | Pβ,γ ∈ DX , |β| ≥ |γ|+ •

 ,

so that, for example, ti ∈ V 1DT , ∂tj ∈ V −1DT , and

V jDT · V kDT ⊆ V j+kDT .

If M is a regular holonomic DT -module underlying a mixed Hodge module, then it admits a Q-
indexed V -filtration along (t1, . . . , tr). This is the unique exhaustive, decreasing, Q-indexed filtration
(V αM)α∈Q which is discrete1 and left continuous2, and which satisfies the following properties:

(1) For any α ∈ Q, j ∈ Z, we have containment V jDT · V αM ⊆ V α+jM.
(2) For α≫ 0, j ∈ Z≥0, we have equality V jDT · V αM = V α+jM.
(3) For all α ∈ Q, the V 0DT -module V αM is coherent.
(4) For s = −

∑r
i=1 ∂titi and for any α ∈ Q, there exists some N ≫ 0 such that

(s+ α)NV αM ⊆
⋃
β>α

V βM = V >αM.

In other words, s+ α is nilpotent on GrαV (M) = V αM/V >αM.

Example 2.1. If σ : X → X × T is the inclusion of the zero section, then for any mixed Hodge
module N on X, the push forward σ∗N underlies a mixed Hodge module on T . Its DT -module can
be written

σ+N =
⊕
α∈Nr

N∂αt δ0,

where δ0 is a formal symbol which is annihilated by t1, . . . , tr. Then

V λσ+N =

⌊−λ⌋⊕
|α|=0

N∂αt δ0.

1Meaning there exists {αj}j∈Z with limj→±∞ αj = ±∞ so that V αM is constant for α ∈ (αj , αj+1).
2Meaning V αM =

⋂
β<α V βM.
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For (M, F ) a filtered DT -module underlying a mixed Hodge module on T , we define Koszul-like
complexes

FpA
χ(M) =

[
FpV

χM t−→
r⊕
i=1

FpV
χ+1M t−→ . . .

t−→ FpV
χ+rM

]
,

FpB
χ(M) = FpA

χ(M)/FpA
>χ(M) =

[
FpGrχV (M)

t−→
r⊕
i=1

FpGrχ+1
V (M)

t−→ . . .
t−→ FpGrχ+rV (M)

]
,

FpC
χ(M) =

[
Fp−rGrχ+rV (M)

∂t−→
r⊕
i=1

Fp−r+1Grχ+r−1
V (M)

∂t−→ . . .
∂t−→ FpGrχV (M)

]
.

The last condition in the definition of the V -filtration leads to the following acyclicity results for
these complexes.

Proposition 2.2 ([CD23, Thm. 3.1, 3.2]). For all χ ̸= 0, the complexes Bχ(M), Cχ(M) are acyclic.
For χ > 0, the complex Aχ(M) is acyclic.

When r = 1, this acyclicity means we have isomorphisms

t : V αM ∼= V α+1M for α > 0

t : GrαV (M) ∼= Grα+1
V (M) for α ̸= 0

∂t : Grα+1
V (M) ∼= GrαV (M) for α ̸= 0.

For r = 1, one of the properties which the filtered module (M, F ) must satisfy to underlie a
mixed Hodge module on T is that these isomorphisms are filtered isomorphisms in certain ranges:
specifically, Saito imposes that

t : FpV
αM ∼= FpV

α+1M for α > 0

∂t : FpGrα+1
V (M) ∼= Fp+1GrαV (M) for α < 0.

Some immediate consequences of these conditions are the following:

Proposition 2.3 ([Sai88, Sect. 3]). Let (M, F ) underlie a mixed Hodge module on T = X × A1
t .

Let j : X ×Gm → X × A1
t be the inclusion of the complement of the zero section. Then

(1) For any λ > 0 and p ∈ Z, we have

(2.4) FpV
λM = V λM∩ j∗(j∗(FpM)).

(2) For all p ∈ Z, we have

FpM =
∑
i≥0

∂it(Fp−iV
0M).

If M has no sub-module supported on {t = 0}, then the equality (2.4) holds with λ = 0. In this
case, we have

FpM =
∑
i≥0

∂it(V
0M∩ j∗j∗(Fp−iM)).

For r > 1, filtered acyclicity still holds in the corresponding ranges.

Proposition 2.5 ([CD23, CDS23]). For all χ < 0, the complex Cχ(M, F ) is filtered acyclic. For
χ > 0, the complexes Aχ(M, F ) and Bχ(M, F ) are filtered acyclic.
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The complexes B0(M), C0(M) are related to the restriction functors for mixed Hodge modules.

Proposition 2.6 ([CD23, CDS23]). Let M ∈ MHM(T ). Then B0(M, F ), C0(M, F ) are strictly
filtered complexes.

Let σ : X → X × Art be the zero section. We have filtered isomorphisms

FpHjσ!(M) ∼= FpHjB0(M) for all j ∈ [0, r],

FpHjσ∗(M) ∼= FpHjC0(M) for all j ∈ [−r, . . . , 0].

The results of this paper make use of the Verdier specialization functor, which we review here.
For details, see [Sai90,BMS06,CD23].

Let Z ⊆ X be a (possibly singular) subvariety defined by f1, . . . , fr ∈ OX(X). This defines a
graph embedding Γ: X → T by x 7→ (x, f1(x), . . . , fr(x)). Given M a mixed Hodge module on X,
we obtain Γ∗M a mixed Hodge module on T .

The Verdier specialization of M along Z (or, of Γ∗M along X ×{0}) is a mixed Hodge module on
X × Arz, where z1, . . . , zr are the fiber coordinates. The module is denoted SpZ(M) = Sp(Γ∗(M)).
Its underlying filtered D-module is

FpSp(Γ∗(M)) =
⊕
χ∈Q

FpGrχV (Γ∗(M)),

where V •Γ∗(M) is the V -filtration along t1, . . . , tr and FpGrχV (Γ∗(M)) =
FpV χΓ∗(M)
FpV >χΓ∗(M) . The D-

module action is given on m ∈ GrχV (Γ∗(M)) by

Pm = Pm, for P ∈ DX ,

zim = tim ∈ Grχ+1
V (Γ∗(M)),

∂zim = ∂tim ∈ Grχ−1
V (Γ∗(M)).

This gives an example of a monodromic mixed Hodge module on X × Arz. Recall that a mixed
Hodge module is monodromic if its underlying D-module is, which means that it decomposes into
generalized eigenspaces for the Euler operator θz =

∑r
i=1 zi∂zi . If N is monodromic, for any χ ∈ Q,

we let
N χ =

⋃
j≥1

ker((θz − χ+ r)j), so that N =
⊕
χ∈Q

N χ.

The V -filtration along z1, . . . , zr is particularly easy to understand for monodromic modules: in-
deed, it is given by

V λN =
⊕
χ≥λ

N χ, GrλV (N ) ∼= N λ.

We have particular interest in the case M = QH
X [n]. We let Γ∗(QH

X [n]) = Bf in this case for
ease of notation. For Z ⊆ X a complete intersection (meaning f1, . . . , fr ∈ OX(X) form a regular
sequence), the module Sp(Bf ) admits a morphism L→ Sp(Bf ), where L = i∗QH

Z×Ar
z
[n] is the trivial

Hodge module on i : Z × Arz ↪→ X × Arz.

Lemma 2.7. Let

(K, F ) = ker((GrrV (Bf ), F [r])
∂ti−−→

r⊕
i=1

(Grr−1
V (Bf ), F [r − 1])).
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Then (K, F ) underlies i∗QH
Z [n− r].

Moreover, the D-module L = K ⊠ OAr
z
= K[z1, . . . , zr] underlies L, with filtration given by

FpL = (Fp+rK)[z1, . . . , zr].

Proof. The first claim follows by applying Proposition 2.6 to Bf = Γ∗(QH
X [n]), using Base Change

(Example 1.3) to see that

σ∗Γ∗(QH
X [n]) = i∗i

∗QH
X [n] = i∗QH

Z [n].

The second claim follows by definition, using Example 1.2. □

The map L→ Sp(Bf ) is injective, and we let Q be the cokernel of the map. Then we have a short
exact sequence of monodromic mixed Hodge modules on X × Arz:

0 → L→ Sp(Bf ) → Q→ 0.

The monodromic pieces of L satisfy Lχ = 0 for χ /∈ Z≥r. Thus, we see that Sp(Bf )χ = Qχ for all
χ /∈ Z≥r. The interesting part of this short exact sequence is then

(2.8) 0 → L→ Sp(Bf )
Z → QZ → 0

where for any monodromic mixed Hodge module, we use the superscript Z to denote the “unipotent
part”, which is the direct sum of the monodromic pieces with integer indices. We also use a super-
script α + Z to denote the filtered direct summand of a monodromic module which is obtained by
collecting all summands with indices in α+ Z.

For Z ⊆ X a local complete intersection subvariety, we review the definition of the spectrum of Z
at x ∈ Zsing due to Dimca, Maisonobe and Saito. For details, consult [DMS11] and [Dir23].

Using the monodromy endomorphism and the mixed Hodge structure on the cohomology of the
Milnor fiber, Steenbrink [Ste89] defined, in the isolated hypersurface singularities case, the spectrum
of the hypersurface singularity. This is an invariant of the singularity given by a multiset of positive
rational numbers, encoding the eigenspaces of the monodromy operator.

In [DMS11], Dimca, Maisonobe and Saito defined the spectrum for any variety Z at a point x ∈ Z
using the theory of mixed Hodge modules. The definition is rather technical, but when we assume
Z is a local complete intersection variety it is slightly simpler.

Let Z ⊆ X be a local complete intersection subvariety of pure codimension r. Let x ∈ Z, and
locally around x we can write Z = V (f1, . . . , fr) where f1, . . . , fr ∈ OX(X) form a regular sequence.
Let ξ ∈ {x} × Arz be a sufficiently general element, and set iξ : {ξ} → X × Arz to be the inclusion.
Then define the non-reduced Spectrum of Z at x by

Ŝp(Z, x) =
∑

α∈Q>0

mα,xt
α,

where

mα,x =
∑
k∈Z

(−1)k dimCGrF⌈α⌉−dimZ−1H
k−ri∗ξ(Sp(Bf )α+Z),

and we define the reduced spectrum by

Sp(Z, x) = Ŝp(Z, x) + (−t)dimZ+1.
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This definition clearly extends to an arbitrary monodromic module M , where we write mα,x(M)
for the alternating sum

mα,x(M) =
∑
k∈Z

(−1)k dimCGrF⌈α⌉−dimZ−1H
k−ri∗ξ(Mα+Z).

Moreover, if
0 →M1 →M2 →M3 → 0

is a short exact sequence of monodromic mixed Hodge modules, then we see that

Ŝp(M2, x) = Ŝp(M1, x) + Ŝp(M3, x).

For M a monodromic mixed Hodge module, we let its integer spectrum be denoted

ŜpZ(M,x) =
∑
j∈Z>0

mj,x(M)tj .

Applying the additivity to the short exact sequence (2.8) we get

Ŝp(Q, x) = Ŝp(Z, x)− Ŝp(L, x),

and in particular,

ŜpZ(Q, x) = ŜpZ(Z, x)− Ŝp(L, x),

which by an easy computation of the non-reduced spectrum of L, gives

Ŝp(Q, x) = Sp(Z, x).

We end this subsection by stating a criterion for vanishing of integer spectral numbers, which is a
special case of [Dir23, Lem. 2.7]:

Lemma 2.9. Let M be a monodromic mixed Hodge module. Assume Fp−1−dimXMZ = 0. Then for
all j ∈ Z<p, we have mj,x(M) = 0.

3. Poincaré duality and higher singularities. Let Z be a pure d-dimensional complex variety.
The trivial Hodge module QH

Z ∈ Db(MHM(Z)) satisfies the property that if aZ : Z → pt is the
constant map, then

Hj(aZ)∗QH
Z ∈ MHM(pt) = MHS

gives Deligne’s mixed Hodge structure on the cohomology Hj(Z,Q). Moreover,

Hj(aZ)!QH
Z ∈ MHS

gives the canonical mixed Hodge structure on compactly supported cohomology Hj
c (Z,Q).

Although QH
Z [d] ∈ Db(MHM(Z)) is not necessarily a single mixed Hodge module, it is known

(for example, by comparing to the underlying perverse sheaf) that Hj(QH
Z [d]) ̸= 0 implies j ≤ 0.

Moreover, H0(QH
Z [d]) ∈ MHM(Z) satisfies the property that GrWd H0(QH

Z [d]) has underlying perverse
sheaf equal to ICZ , the intersection complex perverse sheaf of [BBD82]. By the weight formalism for
mixed Hodge modules, we know that GrWℓ H0(QH

Z [d]) ̸= 0 implies ℓ ≤ d.

We write
ICHZ = GrWd H0(QH

Z [d]),

and so in particular, there is a natural epimorphism

γZ : H0(QH
Z [d]) → ICHZ .
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Being a pure, polarizable Hodge module of weight d means there exists an isomorphism

DZ(IC
H
Z )

∼= ICHZ (d),

where DZ is the duality of mixed Hodge modules on Z. On underlying perverse sheaves, it is Verdier
duality.

By duality, we can also realize ICHZ as GrWd (H0(DZ(QH
Z [d])(−d))). Again by the weight formal-

ism, we see that ICHZ can be written as Wd(H0(DZ(QH
Z [d])(−d))), and in particular, we have a

monomorphism

γ∨Z : IC
H
Z → H0(DZ(QH

Z [d])(−d)),
which, up to Tate twist, is dual to γZ .

The composition γ∨Z ◦ γZ gives a morphism

H0(QH
Z [d]) → H0(DZ(QH

Z [d])(−d)),

which uniquely determines a morphism in Db(MHM(Z)):

ψZ : QH
Z [d] → DZ(QH

Z [d])(−d).

Remark 3.1. Saito [Sai90, (4.5.14)] shows that the morphism ψZ is unique up to scalar multiplica-
tion on each irreducible component of Z.

If the morphism ψZ is a quasi-isomorphism, we say that the variety Z is a rational (or Q-)homology
manifold (this notion is also called rational smoothness in the literature). This can be checked on
underlying perverse sheaves, and so does not require the theory of Hodge modules.

The morphism ψZ has recently found applications in the study of so-called “higher singularities”.
The reason for this comes from the connection with the Du Bois complex of the variety Z. We will
not review the definition of the Du Bois complex here (aside from its connection to mixed Hodge
modules), for such a review, see [MP22,SVV23,PS24].

For Z a pure d-dimensional variety, the p-th Du Bois complex is ΩpZ ∈ Db
coh(OZ). An important

consequence of the definition is that there is a natural comparison morphism in Db
coh(OZ):

αp : Ω
p
Z → ΩpZ ,

for all 0 ≤ p ≤ dim(Z), where ΩpZ is the sheaf of Kähler differentials. Then αp is a quasi-isomorphism
for all p if Z is smooth.

Recall that GrF• DRZ(QH
Z ) ∈ Db

coh(OZ) can be defined using local embeddings into smooth varieties.
Then there is a natural quasi-isomorphism ([Sai99]):

ΩpZ [d− p] ∼= GrF−pDRZ(QH
Z [d]),

and so we can use the theory of mixed Hodge modules to try to understand these Du Bois complexes.

By applying Grothendieck duality DZ(−) = RHomOZ
(−, ω•

Z), where ω
•
Z is the dualizing complex

on Z, we can write (using Proposition 1.5)

DZ(ΩpZ [d− p]) = GrFp DRZ(DZ(QH
Z [d])),

and using d− p in place of p, we get

DZ(Ωd−pZ [p]) = GrFd−pDRZ(DZ(QH
Z [d])) = GrF−pDRZ(DZ(QH

Z [d])(−d)).
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Thus, applying GrF−pDRZ to the morphism ψZ , we obtain natural morphisms

ΩpZ [d− p] ∼= GrF−pDRZ(QH
Z [d])) → GrF−pDRZ(DZ(QH

Z [d])(−d)) ∼= DZ(Ωd−pZ [p])

which are identified with ϕp[d− p] in the notation of [FL24b] and the introduction.

We now define the classes of higher singularities, though we focus on the case when Z has local
complete intersection singularities.

Definition 3.2 ([JKSY22,FL24b]). A pure d-dimensional variety Z with isolated or local complete
intersection singularities has k-Du Bois singularities if for all p ≤ k, the maps αp : Ω

p
Z → ΩpZ are

quasi-isomorphisms.

Such a variety Z has k-rational singularities if it has k-Du Bois singularities and if, for all p ≤ k, the

maps ϕp : ΩpZ → DZ(Ωd−pZ )[−d] are quasi-isomorphisms. Equivalently, Z has k-rational singularities
if for all p ≤ k, the composition ϕp ◦ αp is a quasi-isomorphism.

Example 3.3. If Z is smooth, then we mentioned above that αp is a quasi-isomorphism for all p.
But then the morphism

ΩpZ → DZ(Ωd−pZ )[−d]
is the well-known isomorphism of locally free sheaves

ΩpZ
∼= HomOZ

(Ωd−pZ , ωZ).

Thus, smooth varieties are k-rational for all k.

Remark 3.4 (Non-LCI Setting). In the non-local complete intersection case, these notions have been
studied for isolated singularities by [FL24a], and in general by [SVV23] (see also [ORS24,Tig24] for
some interesting examples).

There are several relevant notions: in [SVV23], the definitions of k-Du Bois and k-rational that
we gave above are called strict k-Du Bois and strict k-rational, respectively. However, comparing
with the Kähler differentials is rather restrictive: there are not many examples of such singularities
which are not local complete intersection.

Without comparing to the Kähler differentials, there is the notion of pre-k-Du Bois and pre-k-
rational. Following [SVV23], pre-k-Du Bois is the condition that Hi(ΩpZ) = 0 for all i > 0 and p ≤ k,

and pre-k-rational is the condition that Hi(DZ(Ωd−pZ )[−d]) = 0 for all i > 0 and p ≤ k.

Then a normal variety Z is pre-k-rational if and only if it is pre-k-Du Bois and the maps ϕp : ΩpZ →
DZ(Ωd−pZ )[−d] defined above are quasi-isomorphisms for all p ≤ k.

Remark 3.5. If Z has hypersurface singularities, [MOPW23, JKSY22, FL24b] have related these
classes of singularities to the minimal exponent of Z, which is a positive rational number α̃(Z)
refining the log canonical threshold. In the isolated singularities case, this minimal exponent agrees
with the minimal non-zero spectral number of the hypersurface.

Similarly, when Z has local complete intersection singularities, [MP22, CDMO24, CDM22] have
related these classes of singularities to the minimal exponent.

C. Hodge Rational Homology Manifold Level

4. Definition and basic properties. As mentioned above, a pure d-dimensional variety Z is a
rational (or Q-)homology manifold, or rationally smooth, if the morphism

ψZ : QH
Z [d] → (DZQH

Z [d])(−d)
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is a quasi-isomorphism. This is equivalent to requiring the map on the underlying Q-structure to be
a quasi-isomorphism. This section is devoted to defining and studying a natural weakening of this
notion.

We observed above that QH
Z [d] ∈ D≤0(MHM(Z)), and by duality this implies DZ(QH

Z [d]) ∈
D≥0(MHM(Z)). The following elementary lemma allows us to understand the map ψZ .

Lemma 4.1. Let A be an abelian category and let A ∈ D≤0(A), B ∈ D≥0(A) be objects in the derived
category. Let ψ : A→ B be a morphism.

Then ψ is a quasi-isomorphism if and only if H0ψ : H0A → H0B is an isomorphism in A and
H−iA = HiB = 0 for all i > 0.

Recall that we have factored H0ψZ = γ∨Z ◦ γZ , where

γZ : H0(QH
Z [d]) → ICHZ , γ∨Z = DZ(γZ)(−d).

In particular, by duality, we have the relation

DZ(ψZ) = ψZ(d).

Proposition 4.2. We have the following:

• The map γZ is an isomorphism if and only if it is a monomorphism.
• The map γ∨Z is an isomorphism if and only if it is an epimorphism.

Either condition is equivalent to H0ψZ being an isomorphism.

Thus, the variety Z is a rational homology manifold if and only if QZ [d] is perverse and either γZ
or γ∨Z is an isomorphism.

Proof. The first three claims are immediate.

The condition that QZ [d] is perverse is equivalent to saying that Hj(QH
Z [d]) = 0 for all j < 0, and

so the last claim follows by the previous lemma. □

We will now define the weakening of rational smoothness that is slightly different but equivalent
to Definition 0.1, and compare its behavior to that when Z is actually a rational homology manifold.

Definition 4.3. Let Z be a pure d-dimensional variety. We say Z is a rational homology manifold
to Hodge degree k, or for short k-Hodge rational homology if the morphism

GrF−pDRZ(ψZ) : GrF−pDRZ(QH
Z [d]) → GrFd−pDRZ(DZ(QH

Z [d]))

is a quasi-isomorphism for all p ≤ k. We set

HRH(Z) = sup {k | Z is a k-Hodge rational homology variety}

with HRH(Z) = −1 if Z is not 0-Hodge rational homology.

Remark 4.4. By the discussion at the end of Section B, this condition is equivalent to having

ϕp : ΩpZ → DZ(Ωd−pZ )[−d] be a quasi-isomorphism for all p ≤ k.

We will see in Remark 5.2 that this notion is the same as the one studied in [PP24,PSV24], where
it is called condition (∗)k.
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Remark 4.5. Let f : Z̃ → Z be a strong log resolution with reduced exceptional divisor E. Then
U := Z \ Zsing

∼= Z̃ \E. Let j : U → Z and j′ : U → Z̃ be the inclusions. The map j!QH
U [d] → QH

Z [d]
by duality yields

DZ(QH
Z [d])(−d) → j∗QH

U [d].

The above fits into the commutative diagram:

(4.6)

QH
Z [d] f∗QH

Z̃
[d]

DZ(QH
Z [d])(−d) j∗QH

U [d]

ψZ

Applying GrF−kDRZ and appropriate shifts, we obtain the commutative diagram:

(4.7)

ΩkZ Rf∗Ω
k
Z̃

DZ(Ωd−kZ )[−d] Rf∗Ω
k
Z̃
(logE)

ϕk

Note that the right vertical map is induced by the residue sequence on Z̃ (it is an isomorphism for
k = 0).

To motivate the reader, we describe some useful properties of k-Hodge rational homology varieties
that are proven in [PP24] (thanks to the fact that HRH(Z) ≥ k is equivalent to Z satisfying (∗)k in
the sense of [PP24], see Remark 5.2):

Remark 4.8. Let Z be a variety of pure dimension d.

(1) Z is a rational homology manifold if and only if HRH(Z) ≥ k for all k (i.e. HRH(Z) = +∞).
(2) If Z is quasi-projective with general hyperplane section Z ′ and HRH(Z) ≥ k, then we also

have HRH(Z ′) ≥ k.
(3) If Z is normal and its singularities are pre-k-rational, then HRH(Z) ≥ k.
(4) Assume HRH(Z) ≥ k. Then:

(a) Its singularities are pre-k-Du Bois (resp. strict-k-Du Bois) if and only if they are pre-k-
rational (resp. strict-k-rational).

(b) ϕp is an isomorphism for d− k − 1 ≤ p ≤ d.
(c) codimZ(ZnRS) ≥ 2k+3 where ZnRS is the locus of Z where it is not a rational homology

manifold. In particular

HRH(Z) < +∞ if and only if HRH(Z) ≤ d− 3

2
.

(d) lcdef(Z) ≤ max {d− 2k − 3, 0} where lcdef(Z) is the local cohomological defect of Z,
given by

lcdef(Z) = max{a | H−aQH
Z [d] ̸= 0}.

(e) (Symmetry of Hodge-Du Bois numbers) The Hodge-Du Bois numbers hp,q(Z) := Hq(Z,ΩpZ)
are partially equipped with the full symmetry:

hp,q(Z) = hq,p(Z) = hd−p,d−q(Z) = hd−q,d−p(Z) for all 0 ≤ p ≤ k, 0 ≤ q ≤ d.

We end this subsection with some general remarks on the behavior of the invariant HRH(Z).
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Remark 4.9. By duality, we see that HRH(Z) ≥ k if

DZ(GrF−pDRZ(ψZ)) = GrFp DRZ(D(ψZ))

is a quasi-isomorphism for all p ≤ k. As DZ(ψZ) = ψZ(d), this is equivalent to having

GrFp−dDRZ(ψZ)

be a quasi-isomorphism for all p ≤ k.

We proceed with some comments about the behavior of HRH(X) under certain geometric opera-
tions.

Recall the notation p(A,F ) = min{p | FpA ̸= 0} for any (A,F ) where F•A is a bounded below
filtration.

Lemma 4.10. Let Z1, Z2 be two pure dimensional complex algebraic varieties. Assume either that
HRH(Z1) ̸= HRH(Z2) or that lcdef(Zi) = 0 for i = 1, 2. Then

HRH(Z1 × Z2) = min{HRH(Z1),HRH(Z2)}.

Before beginning the proof, we recall the structure of the exterior product for (complexes of)
mixed Hodge modules.

For any two mixed Hodge modules Mi on smooth varieties Xi, the underlying filtered D-module
of M1 ⊠M2 is M1 ⊠M2 with convolution Hodge filtration

Fp(M1 ⊠M2) =
∑
i+j=p

FiM1 ⊠ FjM2,

and so
GrFp (M1 ⊠M2) =

⊕
i+j=p

GrFi M1 ⊠GrFj M2.

Given two complexes M•
i ∈ Db(MHM(Xi)), we have

Hk(M•
1 ⊠M•

2 ) =
⊕
i+j=k

HiM•
1 ⊠HjM•

2 .

Thus, we have

GrFp Hk(M•
1 ⊠M•

2) =
⊕
a+b=p

⊕
i+j=k

GrFaHi(M•
1)⊠GrFb Hj(M•

2).

Consequently, we get

(4.11) p(M•
1 ⊠M•

2 ) = p(M•
1 ) + p(M•

2 )

Now, for Z1, Z2 not necessarily smooth, consider the exact triangle in Db(MHM(Zi)):

QH
Zi
[di] → DZi(Q

H
Zi
[di])(−di) → S•

Zi

+1−−→ .

It is easy to see (for example, by restriction to the regular locus) that

p(QH
Zi
[di]) = p(DZi(Q

H
Zi
[di])(−di)) = −di.

Moreover, we have

QH
Z1
[d1]⊠QH

Z2
[d2] = QH

Z1×Z2
[d1 + d2]
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DZ1(QH
Z1
[d1])(−d1)⊠DZi(Q

H
Z2
[d2])(−d2) = DZ1×Z2(QH

Zi
[d1 + d2])(−d1 − d2).

We make use of the following easy lemma.

Lemma 4.12. For i = 1, 2, let Ai
αi−→ Bi

βi−→ Ci
+1−−→ be an exact triangle. Let S = cone(α1 ⊠ α2).

Then there are exact triangles

A1 ⊠ C2 → S → C1 ⊠B2
+1−−→

C1 ⊠A2 → S → B1 ⊠ C2
+1−−→ .

Proof. This follows from the octahedral axiom and the exactness of the functor −⊠M for any object
M . □

Proof of Lemma 4.10. As noted above, ψZ1 ⊠ ψZ2 = ψZ1×Z2 up to non-zero scalar multiples on the
connected components, so that we can identify

cone(ψZ1 ⊠ ψZ2) = S•
Z1×Z2

.

By Lemma 4.12, we have exact triangles

QH
Z1
[d1]⊠ S•

Z2
→ S•

Z1×Z2
→ S•

Z1
⊠DZ2(QH

Z2
[d2])(−d2)

+1−−→

S•
Z1

⊠QH
Z2
[d2] → S•

Z1×Z2
→ DZ1(QH

Z1
[d1])(−d1)⊠ S•

Z2

+1−−→ .

We can use either exact triangle to conclude the proof: let k = min{HRH(Z1),HRH(Z2)}, so, by
definition, p(S•

Zi
) ≥ k − di with equality for (at least) one of i = 1, 2. Thus, the outer two terms of

either triangle satisfy p(−) ≥ k − d1 − d2, and so we see by (4.11) that p(S•
Z1×Z2

) ≥ k − d1 − d2.
Moreover, equality obviously holds if HRH(Z1) ̸= HRH(Z2) or if lcdef(Zi) = 0 for i = 1, 2, the latter
implying that the exact triangles are actually short exact sequences. □

For example, if Z2 is a rational homology manifold, then HRH(Z1 ×Z2) = HRH(Z1). For smooth
morphisms which are not projections from a product, we will see in Lemma 6.10 that HRH is
preserved.

5. Embedded case. The condition in Remark 4.9 resembles the condition in Corollary 1.7, though
we cannot talk about FkQH

Z [d] without using a fixed local embedding. Indeed, the terms in these
complexes are not OZ-modules, and the morphisms are not OZ-linear. To continue this discussion,
we will assume i : Z ↪→ X is a closed embedding of Z inside a smooth variety X.

We focus on i∗ψZ : i∗QH
Z [d] → i∗DZ(QH

Z [d])(−d), which is a morphism of objects in Db(MHM(X)).

Then HRH(Z) ≥ k if and only if GrFp−dDRX(i∗ψZ) is a quasi-isomorphism for all p ≤ k. By
Corollary 1.7, this is equivalent to Fk−di∗ψZ being a quasi-isomorphism.

This condition is equivalent to Fk−dH−j(i∗QH
Z [d]) = Fk−dHj(i∗DZ(QH

Z [d])(−d)) = 0 for j > 0 and
Fk−dH0(i∗ψZ) being an isomorphism. From here, we can give the lower bound on HRH(Z) in terms
of local cohomology in Theorem B. Recall that we are indexing our Hodge filtrations following the
conventions for right D-modules.

Remark 5.1. Before giving the proof, note that Wn+cHc
Z(OX) = ICHZ (−c). The theorem is essen-

tially saying that HRH(Z) is controlled by the morphism Fk−di∗γ
∨
Z .

Although duality is used in the argument, it is important to note that it is not equivalent to study
Fk−di∗γZ . Indeed, in the non-rational homology manifold hypersurface case, we will see below that
Fk−di∗γZ can be an isomorphism when Fk−di∗γ

∨
Z is not.



24 B. DIRKS, S. OLANO, AND D. RAYCHAUDHURY

Remark 5.2. At this point, we can see that HRH(Z) ≥ k if and only if Z satisfies the condition (∗)k
of [PP24,PSV24]. Indeed, as both notions are local, we can assume i : Z → X is a closed embedding
into a smooth variety X. Then we have

HRH(Z) ≥ k if and only if Fk−di∗γ
∨
Z is a quasi-isomorphism,

which is true if and only if

GrFp−dDRX(i∗γ
∨
Z) is a quasi-isomorphism for all p ≤ k.

By duality, this is equivalent to

GrFd−pDRX(i∗D(γ∨Z)) being a quasi-isomorphism for all p ≤ k,

and finally, using that D(γ∨Z) = γZ(d), we have that this is equivalent to the natural map

GrF−pDRX(i∗QH
Z [d]) → GrF−pDRX(i∗IC

H
Z ) being a quasi-isomorphism for all p ≤ k,

which is the condition (∗)k.

Remark 5.3. In [CDM22], it is shown that when Z is a complete intersection, then

Fk−nWn+cHc
Z(OX) = Fk−nHc

Z(OX) = PkHc
Z(OX)

is equivalent to Z having k-rational singularities. Here PkHc
Z(OX) is the pole order filtration, con-

sisting of elements which are annihilated by Ik+1
Z , where IZ ⊆ OX is the ideal sheaf defining Z in

X. The comparison with the pole order filtration is essentially the same as the map αk comparing
the Kähler differentials to the Du Bois complex.

Proof of Theorem B. We have d = n− c by definition of the codimension of Z in X, and so we are
interested in

i∗QH
Z [n− c] → i∗DZ(QH

Z [n− c])(c− n).

By definition, QH
Z [n− c] = i∗(QH

X [n])[−c]. Applying duality and using the fact that X is smooth
(so that QH

X [n] is pure, polarizable of weight n), we get

DZ(QH
Z [n− c]) = i!(DX(QH

X [n]))[c] = i!(QH
X [n](n))[c]

so that i∗ψZ can be identified with the morphism

i∗ψZ : i∗QH
Z [n− c] → i∗i

!(QH
X [n])[c](c).

Using that Hj(i∗i
!(QH

X [n])) = Hj
Z(OX) as mixed Hodge modules, we see that

Fk−dHj(i∗i
!(QH

X [n])(c)) = Fk−d−cHj
Z(OX) = Fk−nHj

Z(OX).

Thus, we see that HRH(Z) ≥ k if and only if Fk−di∗ψZ is a quasi-isomorphism if and only if
Fk−dH−j(i∗QH

Z [n − c]) = Fk−dHj(i∗i
!(QH

X [n])(c)) = 0 and Fk−dH0(ψZ) is an isomorphism. As
Fk−dH0(ψZ) = Fk−dγ

∨
Z ◦ Fk−dγZ , the last condition is equivalent to both Fk−dγ

∨
Z and Fk−dγZ being

isomorphisms.

Note that Fk−dγ
∨
Z is an isomorphism if and only if we have equality

Fk−nWn+cHc
Z(OX) = Fk−nHc

Z(OX),

and so we see that HRH(Z) ≥ k implies the conditions in the theorem statement.

For the converse, we assume

Fk−nHj
Z(OX) = 0 for all j > c, Fk−nWn+cHc

Z(OX) = Fk−nHc
Z(OX),
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and we want to show HRH(Z) ≥ k.

For ease of notation, let A = QH
Z [d] and let B = D(A)(−d). By the discussion at the beginning of

the proof, to show that HRH(Z) ≥ k it suffices under our assumption to show that Fk−dH−j(A) = 0
for all j > 0 and that Fk−dγZ is an isomorphism. For this, we follow the argument of [CDM22, Lem.
3.5]. To prove Fk−dH−j(A) = 0 it suffices to prove for all ℓ ∈ Z that Fk−dGrWℓ H−j(A) = 0. To prove

that Fk−dγZ is an isomorphism it suffices to prove that Fk−dGrWℓ (H0(A)) = 0 for all ℓ < d.

Our assumption is equivalent to Fk−dHj(B) = 0 for all j > 0 and that Fk−dGrWℓ H0(B) = 0 for
all ℓ > d.

By polarizability of the pure Hodge module GrWℓ Hj(B), we have an isomorphism

D(GrWℓ HjB) ∼= (GrWℓ HjB)(ℓ).

But we also have
D(GrWℓ HjB) ∼= GrW−ℓH−j(D(B)).

We have that D(B) ∼= A(d), and so if we apply Fp to this isomorphism (keeping in mind the Tate
twists), we have

Fp−ℓGrWℓ HjB ∼= Fp−dGrW2d−ℓH−jA.

By the weight formalism, we know that GrWℓ Hj(B) ̸= 0 implies ℓ ≥ d+ j (and the same inequality

is implied when GrW2d−ℓH−j(A) ̸= 0). For j > 0, we trivially have ℓ > d, and for j = 0, we only need
to consider ℓ > d. Plugging in p = k − d+ ℓ, we get

0 = Fk−dGrWℓ Hj(B) = Fk−2d+ℓ(GrW2d−ℓH−j(A)),

and so because W is exhaustive (for the j > 0 case) and ℓ > d, this gives the desired vanishing. □

Proof of Corollary C. Assume Z is a Cohen-Macaulay subvariety of X of pure codimension c.

Recall the notation of the corollary statement: the filtration E•Hq
Z(OX) is defined by

E•Hq
Z(OX) = Im

[
Extq(OX/I

•+1
Z ,OX) → Hq

Z(OX)
]
,

where IZ ⊆ OX is the ideal sheaf defining Z in X.

Under the Cohen-Macaulay assumption, we get F−nHq
Z(OX) = 0 for q > c. Moreover, the result

of [MP22, Thm. C] says that, under the Cohen-Macaulay assumption, Z is Du Bois if and only if it
satisfies F−nHc

Z(OX) = E0Hc
Z(OX).

Thus, either assumption in the corollary statement implies that Z is Du Bois, so we can assume
Z is Du Bois. Then Z has rational singularities if and only if HRH(Z) ≥ 0, and so the claim follows
from the previous theorem. □

Let D be a hypersurface inside a smooth variety X. The notion of Hodge ideals Ip(D) was
introduced in [MP19], and subsequently their weighted variants IWl

p (D) were introduced [Ola23]. It
is interesting to note that HRH(D) can be detected through the weighted Hodge ideals:

Corollary 5.4. Let D be a hypersurface inside a smooth variety X of dimension n. Then HRH(D) ≥
k if and only if IW1

p (D) = Ip(D) for all 0 ≤ p ≤ k.

Proof. Observe that HRH(D) ≥ k if and only if Fp−nGrWn+lH1
D(OX) = 0 for 0 ≤ p ≤ k, l ≥ 2 by

Theorem B. The assertion is an immediate consequence of the exact sequence

0 → I
Wl−1
p (D)⊗ OX((p+ 1)D) → IWl

p (D)⊗ OX((p+ 1)D) → Fp−nGrWn+lOX(∗D) → 0
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given by [Ola23, (6.1)], and the fact H1
D(OX) = OX(∗D)/OX . □

In the case of isolated singularities, the connection between this value and the lack of Poincaré
duality of D was noted in [Ola23, Remark 6.8].

6. Local cohomology at a point and link invariants. We can now relate HRH(Z) to the local
cohomology at a point x ∈ Z. Using the results of [DS90], it can be related to the cohomology of
the link.

Let S• = cone(ψZ), where ψZ : QH
Z [d] → DZ(QH

Z [d])(−d). If Z is embeddable into a smooth
variety X, then we saw above that HRH(Z) ≥ k if and only if Fk−dψZ is a quasi-isomorphism, which
holds (by strictness of morphisms with respect to the Hodge filtration) if and only if Fk−dS

• = 0.

Let ix : {x} → Z be the inclusion of a point. The local cohomology of Z at x is given by Hk(i!xQH
Z )

and denoted Hk
{x}(Z). For any neighborhood x ∈ V ⊆ Z, if ix,V : {x} → V is the inclusion, then

i!xQH
Z = i!x,VQH

V . Thus, as far as local cohomology is concerned, we can replace Z with any open
neighborhood of x. In particular, we can choose an affine neighborhood, so that we can assume Z is
embeddable into a smooth variety. We will need the following lemma:

Lemma 6.1. Let ϕ : M• → N• be a morphism in Db(MHM(X)) where X is a smooth alge-
braic variety. Let i : Y → X be a closed embedding. Assume Fkϕ is a quasi-isomorphism. Then
Fki∗i

!(ϕ), Fki∗i
∗(ϕ) are quasi-isomorphisms. If Y is a smooth subvariety, then Fki

!(ϕ), Fki
∗(ϕ) are

quasi-isomorphisms.

Proof. It suffices to prove the following: let C• ∈ Db(MHM(X)) be such that FkC
• is acyclic. Then

Fki∗i
∗(C•) and Fki∗i

!(C•) are acyclic. Indeed, this implies the lemma by applying this claim to the
cone of ϕ and using that i∗i

!, i∗i
∗ are exact functors between triangulated categories.

Again, using that i∗i
! and i∗i

∗ are exact functors, this reduces to the claim when C is a single
mixed Hodge module. Indeed, assume C• ∈ D[a,b](MHM(X)) and we use induction on b − a. We
have the natural exact triangle

τ≤b−1C
• → C• → Hb(C•)[−b] +1−−→,

where, by assumption, Fk applied to any term in the triangle is acyclic. Induction handles the outer
two terms. So we can assume C• = C ∈ MHM(X).

As this is a local statement, we can assume Y = V (f1, . . . , fr) ⊆ X for some f1, . . . , fr ∈ OX(X).

Let Γ: X → X × Art be the graph embedding along f1, . . . , fr. If σ : X × {0} → X × Art is the
inclusion of the zero section, then by Base Change (Example 1.3) we have isomorphisms σ∗Γ∗ ∼=
i∗i

∗, σ!Γ∗ ∼= i∗i
!. Moreover, we know that FkΓ∗(C) = 0 by definition of the direct image for mixed

Hodge modules (recall that we index like right D-modules). Thus, we have reduced to the case that
Y ⊆ X is a smooth subvariety defined by t1, . . . , tr. The claim then follows by Proposition 2.6. □

Now we can prove the connection with the local description of being a rational homology manifold
using local cohomology at x ∈ Z in (0.3). We note that this invariant is related to the question of
whether H2d

{x}(Z) is one dimensional, which by a result of Brion [Bri99, Prop. A1] is equivalent to Z

being irreducible near x.
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First, we prove a lemma which strengthens [PP24, Prop. 6.4]. It is simply a corollary of [PP24, Cor.
7.5]. We have the following exact triangles considering the RHM defect object and its dual:

K•
Z → QH

Z [d]
γZ−→ ICHZ

+1−−→,

ICHZ
γ∨Z−→ DZ(QH

Z [d])(−d) → DZ(K
•
Z)(−d)

+1−−→,

QH
Z [d]

ψZ−−→ DZ(QH
Z [d])(−d) → S• +1−−→ .

The octahedral axiom gives an exact triangle

K•
Z [1] → S• → DZ(K

•
Z)(−d)

+1−−→,

and so because the first object has non-zero cohomology only in strictly negative degrees and the
third object only has non-zero cohomology in non-negative degrees, we have isomorphisms

H−iK•
Z
∼= H−i−1S• for all i > 0, HiDZ(K

•
Z)(−d) ∼= HiS• for all i ≥ 0.

Lemma 6.2. We have the following inequality:

dimSupp(H−iK•
Z) = dimSupp(HiDZ(K

•
Z)(−d)) = dimSupp(H±iS•) ≤ d− 2HRH(Z)− 3− i.

Proof. It suffices by duality to prove the claim for K•
Z . For ease of notation let k = HRH(Z).

First of all, [PP24, Cor. 7.5(ii)] shows that

H2k+2−dK•
Z = 0.

The claim is local, so we can assume Z is quasi-projective. Note that HRH(Z) doesn’t decrease
under restriction to a general hyperplane L. Using that ι∗K•

Z = K•
Z∩L[1] as shown in [PP24, Lem.

6.6], the argument of [PP24, Prop. 6.4] gives the desired claim. □

Recall that the local cohomological defect is given by

lcdef(Z) = max{a | H−a(QH
Z [d]) ̸= 0}.

It admits a local version lcdefx(Z) = minx∈U⊆Z lcdef(U), where the minimum runs over Zariski open
neighborhoods of x in Z.

Remark 6.3. By the Hartshorne-Lichtenbaum Theorem [Har68, Thm. 3.1] [Ogu73, Cor. 2.10],
which has also been recovered by Mustaţă-Popa in [MP22, Cor. 11.9], we have the following bound
for the local cohomological defect :

lcdef(Z) ≤ d− 1 if and only if no irreducible component of Z is a point.

As we are working with Z purely d-dimensional with d > 0, this is automatic for us.

We begin with the following observation in the isolated singularities setting, which is a warm-up
to the proof of Theorem F:

Lemma 6.4. Let x ∈ Z be such that Z \ {x} is a rational homology manifold. Then Z is irreducible
near x if and only if lcdefx(Z) ≤ d− 2.
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Proof. If Z is a rational homology manifold, then [Bri99, Prop. A1] shows that Z is irreducible.
Moreover, lcdef(Z) = 0 in this case. So we assume Z is not a rational homology manifold at x.

Let ix : {x} → Z be the inclusion. Apply i!x to the triangle

QH
Z [d] → DZ(QH

Z [d])(−d) → S• +1−−→
to get

i!xQH
Z [d] → QH(−d)[−d] → i!xS

• +1−−→ .

This gives the exact sequence

0 → Hd−1i!xS
• → H2d

x (Z) → Q(−d) → Hdi!xS
• → 0,

and so it suffices to prove that Hd−1i!xS
• = Hdi!xS

• = 0 if and only if lcdef(Z) ≤ d− 2.

As Z \ {x} is a rational homology manifold, we know S• is supported at x. Thus, we can write
S• = ix∗S

′ for some S′ ∈ Db(MHM({x})) and so i!xS
• = S′. Thus, it suffices to prove that

Hd−1S′ = HdS′ = 0 if and only if lcdef(Z) ≤ d− 2.

Again, as ix∗S
′ = S•, it suffices to consider H•S• itself. But then by definition (using that S• ̸= 0),

we have
lcdef(Z) = max{a | Ha(DZ(K

•
Z)) ̸= 0} = max{a | HaS• ̸= 0},

so the claim follows. □

In the non-isolated setting, we see that HRHx(Z) can also guarantee irreducibility, as well as
vanishing of some higher local cohomology spaces of Z at x. Before stating the theorem, we introduce
the link invariants, as they are closely related to the mixed Hodge structures on H•

{x}(Z).

The cohomology of the link Lx of Z at x can be described, following [DS90], by the cohomology
of the cone

cone(i!xQH
Z → i∗xQH

Z ) ∈ Db(MHM({x})).

In other words, if U = Z \ {x} with inclusion j : U → Z, we have equality

Hk(Lx) = Hki∗xj∗(QH
U ).

Immediately from the definition, we get a long exact sequence of mixed Hodge structures [DS90,
Prop. 3.5]:

· · · → Hk
{x}(Z) → Hk({x}) → Hk(Lx) → . . . .

As {x} is simply a point, we get isomorphisms of mixed Hodge structures

Q ∼= H0(Lx), H1
{x}(Z) = 0, Hk(Lx) ∼= Hk+1

{x} (Z) for all k ≥ 1.

Proof of Theorem F. Apply i!x to the triangle

QH
Z [d] → DZ(QH

Z [d])(−d) → S• +1−−→,

which gives

i!xQH
Z [d] → QH(−d)[−d] → i!xS

• +1−−→,

and thus, by the long exact sequence in cohomology, we get an exact sequence

0 → Hd−1i!xS
• → H2d

x (Z) → Q(−d) → Hdi!xS
• → 0



A HODGE THEORETIC GENERALIZATION OF Q-HOMOLOGY MANIFOLDS 29

and for i ≥ 2, we get isomorphisms

Hd−ii!xS
• ∼= H2d−i+1

x (Z).

By Lemma 1.10 and Lemma 6.2 we get (using that HRHx(Z) ≥ 0):

Hji!xS
• = 0 for all j ≥ d− 2HRHx(Z)− 2,

and so we get the desired vanishing. □

Theorem 6.5. Let Z be a complex variety of pure dimension d and let x ∈ Z be a point. Then the
following are equivalent for k ∈ Z≥0:

(1) HRH(Z) ≥ k

(2) Fk−dH
i
{x}(Z) =

{
0 i < 2d

Q i = 2d.

(3) Fk−dH
i−1(Lx) =

{
0 0 < i < 2d

Q i = 2d.

Proof. As the claim is local, we can assume Z is embeddable into a smooth variety. Let ix : {x} → Z
be the inclusion of a point x.

We have HRHx(Z) ≥ 0 iff in a neighborhood of x, the map

Fk−dψZ : Fk−dQH
Z [d] → Fk−d(DZ(QH

Z [d])(−d))

is a quasi-isomorphism, which is equivalent to Fk−dS
• = 0.

By Lemma 1.10, we have Fk−dS
• = 0 if and only if Fk−di

!
xS

• = 0 for all x ∈ Z, and the latter
claim is true if and only if Fk−di

!
xQH

Z [d] → Fk(QH [−d]) is a quasi-isomorphism, giving the result. □

The above proposition gives a descent result for HRH(Z), and hence for pre-k-rational singularities
which should be compared to [SVV23, Prop. 4.2 (2)].

Corollary 6.6. let π : Z →W be the quotient of a variety Z by the action of a finite group G. Then,

HRH(W ) ≥ HRH(Z).

In particular, if Z and W are in addition normal, and Z has pre-k-rational singularities, then the
singularities of W are also pre-k-rational.

Proof. Let x ∈ Z such that π(x) is singular. Using [Bri99, Proof of Prop. A1], we have the
isomorphisms

H i
{x}(Z)

Gx ∼= H i
Gx(Z)

G ∼= H i
{π(x)}(W ).

The assertion follows by taking Hodge pieces and applying Theorem 6.5.

The last assertion follows by combining this with [SVV23, Prop. 4.2 (1)]. □

In [FL24a], the link invariants of Z at x are defined by

(6.7) ℓp,q = dimCGrpFH
p+q(Lx).

We can restate the condition HRHx(Z) ≥ k in terms of these invariants, and give a generalization
of [FL24a, Thm. 1.15(i)].
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Proof of Theorem E. The first statement trivially implies the second.

For the first statement, note that ℓd−i,q−d+i = 0 for all i ≤ k if and only if F d−iHq(Lx) = 0 for
all i ≤ k if and only if Fk−dH

q(Lx) = 0. Similarly, ℓd−i,d−1+i = 0 for all 1 ≤ i ≤ k is equivalent to
Fk−dH

q(Lx) = Q. So this shows that HRHx(Z) ≥ k implies those vanishings.

For the converse, we need to also check that Fk−dH
p(Lx) = 0 for p ∈ [d − a, d − 1]. We apply

[FL24a, Prop. 2.8] and Serre duality [FL24a]. The duality says that ℓp,q = ℓd−p,d−q−1.

Thus, our assumption ℓd−i,q−d+i = 0 gives ℓi,2d−q−i−1 = 0 for all i ≤ k and q ∈ [d, d+ a]. In other
words, for p ∈ [d− a− 1, d− 1], we have ℓi,p−i = 0 for all i ≤ k. Then [FL24a, Prop. 2.8] gives

k∑
i=0

ℓp−i,i ≤
k∑
i=0

ℓi,p−i = 0

and so ℓp−i,i = 0 for all i ≤ k, too. Thus,

Fk−dH
p(Lx) ⊆ Fk−pH

p(Lx) = 0,

where the first containment uses that p ≤ d− 1. This completes the proof. □

Remark 6.8. If x ∈ Z is an isolated singular point and Z has local complete intersection singularities
near x, [FL24a, Thm. 1.15(i)] says that Z is k-rational near x if and only if Z is k-Du Bois near x
and ℓk,d−k−1 = 0.

In the local complete intersection setting, lcdefx(Z) = 0 and H2d−1(L) = Q. Thus, the condition
that ℓd−i,d−1+i = 0 for all 1 ≤ i ≤ k is true. Moreover, by the Serre duality relation ℓp,q = ℓd−p,d−q−1,
the condition is equivalent to ℓd−i,i = 0.

In fact, this argument shows that for any Z with an isolated singular point at x and satisfying
lcdefx(Z) = 0, the result of Friedman-Laza holds.

Using the criteria for HRH(Z) ≥ k in terms of H•
{x}(Z), we see easily that HRH is preserved under

étale morphisms.

Lemma 6.9. Let φ : Z1 → Z2 be a surjective étale morphism. Then we have HRH(Z1) = HRH(Z2).

Proof. We have an isomorphism of mixed Hodge structures for any x ∈ Z1

H i
x(Z1) ∼= H i

f(x)(Z2),

and so the claim follows from Theorem 6.5. □

Lemma 6.10. Let φ : Z1 → Z2 be a smooth morphism. Then HRH(Z1) = HRH(Z2).

Proof. As the question is local, we can reduce to the previous lemma and Lemma 4.10. □

In a similar vein, we have the following about pre-k-Du Bois singularities under smooth morphisms.

Lemma 6.11. Let φ : Z1 → Z2 be a smooth morphism. Then Z1 is pre-k-Du Bois if and only if Z2

is.

Proof. The question is local, so we can prove the claim in two steps. First of all, if φ is an étale
morphism, then ΩpZ1

= φ∗(ΩpZ2
), and because φ is faithfully flat, we see that the claim is true in this

setting.
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On the other hand, if φ : Z1 = Z2 × Y → Z2 is a smooth projection, where Y is a smooth variety,
we want to understand ΩpZ1

in terms of Ω•
Z2

and Ω•
Y = Ω•

Y . To do this, locally embed i : Z2 ⊆ W
with W a smooth variety. Let π : W ×Y →W be the smooth projection and let i : Z2×Y →W ×Y
be the closed embedding.

One can check the following: given M• ∈ Db(MHM(W )) and N• ∈ Db(MHM(Y )), there is a
natural quasi-isomorphism

GrFk DR(M• ⊠N•) ∼=
⊕
i+j=k

GrFi DR(M•)⊠GrFj DR(N•).

Applying this with M• = i∗QH
Z2

and N• = QH
W , we get

ΩkZ2×Y =
⊕
i+j=k

ΩiZ2
⊠ ΩjY =

⊕
i+j=k

ΩiZ2
⊠ ΩjY ,

where the latter equality is due to the smoothness of Y . This follows from the fact that

i∗QH
Z2×Y = π∗(i∗QH

Z2
) = i∗QH

Z2
⊠QH

W

and the equalities

ΩkZ2×Y = GrF−kDR(QH
Z2×Y )[k],

ΩiZ2
= GrF−iDR(QH

Z2
)[i],

ΩjY = GrF−jDR(QH
Y )[j].

As ΩjY is a sheaf, we see that ΩℓZ2×Y is a sheaf for all ℓ ≤ k if and only if ΩℓZ2
is a sheaf for all

ℓ ≤ k, proving the claim by definition of pre-k-Du Bois. □

We immediately obtain the following

Corollary 6.12. Let φ : Z1 → Z2 be a smooth morphism between normal varieties. Then Z2 is
pre-k-rational if and only if Z1 is pre-k-rational.

7. Partial Poincaré duality. This short subsection proves a partial Poincaré duality result under
the assumption HRH(Z) ≥ k. Our goal is to understand how the condition that Fk−dψZ is a
quasi-isomorphism behaves under the direct image (aZ)∗.

Proposition 7.1. Let f : X → Y be a morphism of embeddable algebraic varieties. Let φ : M• → N•

be such that Fpφ is a quasi-isomorphism. Then Fpf∗φ is a quasi-isomorphism.

Proof. By [Par23, Lem. 3.4], if C• is the cone of φ, then our assumption implies

GrFℓ DRY (f∗C
•) = 0 for all ℓ ≤ p,

and so, by Lemma 1.6, we get

Fpf∗C
• = 0.

Finally, as f∗ is an exact functor between triangulated categories, we have the exact triangle

f∗M
• → f∗N

• → f∗C
• +1−−→,

and the result follows by looking at the long exact sequence in cohomology, using strictness of
morphisms between Hodge modules. □
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We can now prove the main result concerning Poincaré duality. We state the result using decreasing
Hodge filtrations, as is the convention for the mixed Hodge structure on singular cohomology.

Theorem 7.2. Let Z be an embeddable complex algebraic variety and assume HRH(Z) ≥ k. Then
for any i ∈ Z, the natural map

Hd−i(Z) → IHd−i(Z) → (Hd+i
c (Z)∨)(−d)

induces isomorphisms

F d−kHd−i(Z) → F d−kIHd−i(Z) → F−kHd+i
c (Z)∨.

Proof. This follows by applying H−i(aZ)∗ to the map ψZ , where aZ : Z → pt is the constant map.

After taking some embedding i : Z → X into a smooth variety, the condition HRH(Z) ≥ k implies
that the maps

Fk−dQH
Z [d] → Fk−dIC

H
Z → Fk−dDZ(QH

Z [d])(−d),
are quasi-isomorphisms. Applying (aZ)∗ and using Proposition 7.1, we get that

Fk−d(aZ)∗QH
Z [d] → Fk−d(aZ)∗IC

H
Z → Fk−d(aZ)∗DZ(QH

Z [d])(−d)
are quasi-isomorphisms, too. By taking H−i, we get the desired claim. □

8. Generic local cohomological defect. We provide in this section a generalization of Re-
mark 4.8(4)(c) in the embedded setting. The key idea is that one can improve the important
codimension bound on the non-rational homology manifold locus in [PP24] by incorporating the
“generic” local cohomological defect, which we introduce next.

Let Z ⊆ X be an embedding of the purely d-dimensional variety Z into a smooth connected variety
X.

Recall that K•
Z is the RHM defect object, which lies in the exact triangle

K•
Z → QH

Z [d] → ICHZ
+1−−→ .

Let S = {Sα}α∈I be a Whitney stratification of X such that Z is a union of strata and so that we
have containment

Ch(K•
Z) =

⋃
ℓ∈Z

Ch(HℓK•
Z) ⊆

⋃
α∈I

T ∗
Sα

(X),

where K•
Z is the underlying complex of DX -modules for K•

Z .

This implies for all j, ℓ ∈ Z and α ∈ I, we have

HjDRSα(i
∗
αHℓK•

Z)

is locally constant, where iα : Sα → X is the locally closed embedding. Then the function

x 7→ lcdefx(Z)

is constructible with respect to this stratification.

Definition 8.1. Let S = {Sα}α∈I be a Whitney stratification as above and lcdefSα(Z) the value of
lcdef on Sα. We denote

lcdefgen(Z) = max
dimSα=dimZnRS

lcdefSα(Z).

This invariant can be detected through local cohomology in our embedded setting.
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Lemma 8.2. Let Z ⊆ X be an embedding into a smooth variety X with codimX(Z) = c. Let {Sα}
be a Whitney stratification of X as above. Then

lcdefSα(Z) = max{i | Sα ⊆ SuppHc+i
Z (OX)}.

Proof. This is immediate by choice of stratification. □

This invariant can also be detected without mention of a Whitney stratification.

Lemma 8.3. Let Z ⊆ X be an embedding into a smooth variety X, with codimX(Z) = c. For i ≥ 0,
define

d(i) =

{
dimSuppHc+i

Z (OX) i > 0

dimSuppHc
Z(OX)/IC

H
Z i = 0

.

Then

lcdefgen(Z) = max{i | d(i) ≥ d(j) for all j ≥ 0}.

Proof. By definition, we have

ZnRS = Supp(K•
Z) = Supp(DZ(K

•
Z)) = Supp(Hc

Z(OX)/IC
H
Z ) ∪

⋃
i>0

SuppHc+i
Z (OX).

Note that, for any i which satisfies d(i) ≥ d(j) for all j ≥ 0, we have d(i) = dimZnRS. Thus,
the claim is immediate by the previous lemma and the fact that the support of ZnRS is a union of
strata. □

Now, we show that the value lcdefx(Z) for x ∈ Sα is unchanged upon taking a normal slice.

Proposition 8.4. Let {Sα} be a Whitney stratification of X as above and fix x ∈ Sα. Let Tα ⊆ X
be a normal slice through x, meaning a smooth subvariety of dimension dimX − dimSα such that
Tα ∩ Sα = {x} is a transverse intersection. Then

lcdefx(Z) = lcdefx(Z ∩ Tα).

Proof. By replacing X with a neighborhood of x, we can assume the stratification {Sα} is finite. By
further replacing X by X \

⋃
β∈B Sβ, where B = {γ | Sα ̸⊆ Sβ}, we can assume Sα is a minimal

stratum in the sense that Sα ⊆ Sγ for all γ. As the support of each local cohomology is a union of
strata and closed, we see then that after this restriction, we have

lcdefx(Z) = lcdefSα(Z) = lcdef(Z).

In this case, Whitney’s condition (a) implies that the normal slice Tα has transverse intersection
with all strata. If ι : Tα → X is the closed embedding, this implies that ι is non-characteristic with
respect to Hj(K•

Z) for all j ∈ Z.
Thus, the spectral sequence

Ei,j2 = Hiι∗Hj(K•
Z) =⇒ Hi+jι∗(K•

Z)

degenerates at E2, because the only non-zero terms must have i = −dimSα, the relative dimension
of the embedding ι. This gives equality

Hj−dimSαι∗(K•
Z) = HjK•

Z ⊗OX
OTα .
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Again using that ι is non-characteristic, we have

ι∗(K•
Z) = K•

Z∩Tα [dimSα].

Finally, using that lcdef(Z) = max{i | H−iK•
Z ̸= 0} and the same formula for lcdef(Z ∩ Tα), we

get the desired equality. □

Putting these together, we can show that the bound codimZ(ZnRS) ≥ 2HRH(Z) + 3 can be
improved if one has knowledge of the “generic” local cohomological defect. This method of proof is
inspired by [Sai94, Rmk. 2.11].

Proposition 8.5. Let Z be a purely d-dimensional complex algebraic variety and let {Sα} be a
Whitney stratification as above. Then for all x ∈ Sα, we have

lcdefSα(Z) ≤ max{codimZ(Sα)− 2HRHx(Z)− 3, 0}.

In particular, we have

lcdefgen(Z) ≤ max{codimZ(ZnRS)− 2HRH(Z)− 3, 0}.

Proof. The first claim implies the second by first taking α such that lcdefSα(Z) = lcdefgen(Z) and
dimSα = dimZnRS, and then noting that HRH(Z) ≤ HRHx(Z). So it suffices to prove the first
claim.

For x ∈ Sα, take a normal slice Tα through x. The first claim is then immediate from the fact
that HRHx(Z) ≤ HRHx(Z ∩ Tα) and the inequality

lcdefSα(Z) = lcefx(Z) = lcefx(Z ∩ Tα) ≤ max{dim(Tα)− 2HRHx(Z ∩ Tα)− 3, 0}.

This completes the proof.

As an alternative proof, one can use Lemma 6.2. Indeed, assuming HRH(Z) ≥ 0 this lemma tells
us that

dimSuppHiDZ(K
•
Z) ≤ dim(Z)− 2HRH(Z)− 3− i,

and so choosing i maximal so that Sα ⊆ Supp(HiDZ(K
•
Z)), we get

dimSα ≤ dimHiDZ(K
•
Z) ≤ dim(Z)− 2HRH(Z)− 3− i,

but by definition, such an i is lcdefSα(Z). □

Remark 8.6. When ZnRS locus is isolated, we have lcdefgen(Z) = lcdef(Z) (in particular, if dimZ ≤
3 and HRH(Z) ≥ 0, we always have equality). However, equality can also hold even when ZnRS is
non-isolated, see the examples in §14.

D. Local Complete Intersection Case

In this section, we discuss the invariant HRH(Z) of a variety Z that is locally a complete inter-
section. We introduce invariants of the singularities that partially capture the degree to which Z is
rational homology. Before that, we discuss the case of a hypersurface to illustrate how the vanishing
cycles capture the whole picture in this case. The results beyond this case are different ways of
generalizing these results.
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9. Hypersurfaces. Let Z be a hypersurface of an n-dimensional smooth variety X defined by f .
Let

Bf =
⊕
j≥0

OX∂
j
t δ

as defined in §2, and
Fk−nBf =

⊕
j≤k

OX∂
j
t δ.

Recall that by Theorem B, Z is k-Hodge rational homology if

Fk−nWn+1H1
Z(OX) = Fk−nH1

Z(OX).

The local cohomology is captured by the unipotent nearby and vanishing cycles and their corre-
sponding filtrations. More precisely, we have a short exact sequence

0 → Gr0V (Bf )
t·−→ Gr1V (Bf ) → H1

Z(OX) → 0,

which is bi-strict with respect to the Hodge filtration and the weight filtration, where the weight
filtration of the first two terms is induced by their monodromy operators, and underlies the sequence
of mixed Hodge modules (see, for example, [Ola23, Thm. A])

0 → φf,1QH
X [n]

V ar−−→ ψf,1QH
X [n](−1) → H1

Z(QH
X [n]) → 0.

Recall the convention for the Hodge filtration on nearby cycles, when indexing the Hodge filtration
as for right D-modules, is as follows:

Fpψf,1(OX) = Fp−1Gr1V (Bf ),
and that the weight filtration is defined as the monodromy filtration for the nilpotent operator (N
or t∂t) centered at n− 1. In general, the monodromy filtration satisfies (see [SZ85, Rmk. 2.3])

Wn−1+iGr1V (Bf ) =
∑

ℓ≥max{0,−i}

(t∂t)
ℓ ker((t∂t)

1+i+2ℓ).

However, in our situation, (t∂t)
ℓ : (Gr1V (Bf ), F ) → (Gr1V (Bf ), F [−ℓ]) is strict for all ℓ ≥ 1. It is an

easy exercise, then, to see

FpWn−1+iGr1V (Bf ) =
∑

ℓ≥max{0,−i}

(t∂t)
ℓFp−ℓ ker((t∂t)

1+i+2ℓ).

This discussion, by taking i = 0, gives the containments

Fp ker(t∂t) ⊆ FpWn−1Gr1V (Bf ) ⊆ Fp ker(t∂t) + t(FpGr0V (Bf )),
and hence, the formula

FpWn+1H1
Z(OX) =

FpWn−1Gr1V (Bf ) + t(FpGr0V (Bf ))
t(FpGr0V (Bf ))

=
Fp ker(t∂t) + t(FpGr0V (Bf ))

t(FpGr0V (Bf ))
.

Proof of Theorem H. Assume first that Fk−nGr0V (Bf ) = 0. This means that every element in

Fk−1−nGr1V (Bf ) = Fk−1−n(ψf,1(OX)(−1)) lies in the subset ker ∂t = ker t∂t ⊆ Wn−1Gr1V (OX) =

Wn+1(ψf,1(QH
X [n])(−1)), where the containment follows by definition of the monodromy filtration

centered at n− 1. This implies that

Fk−1−nH1
Z(OX) ⊆Wn+1H1

Z(OX),
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and therefore, HRH(Z) ≥ k − 1.

Suppose now that Fk−1−nWn+1H1
Z(OX) = Fk−1−nH1

Z(OX). By induction on k, we have that

Fk−1−nGr0V (Bf ) = 0. Thus, we have an isomorphism

Fk−1−nGr1V (Bf ) ∼= Fk−1−nH1
Z(OX).

To prove the claim, it suffices by strict surjectivity of ∂t : (Gr1V (Bf ), F ) → (Gr0V (Bf ), F [−1]) to

prove that Fk−1−nGr1V (Bf ) ⊆ ker(∂t) = ker(t∂t). As Fk−1−nGr0V (Bf ) = 0, we get

Fk−1−nH1
Z(OX) = Fk−1−n ker(N),

which finishes the proof. □

Suppose now that Z has an isolated singularity. Let F be the Milnor fiber of Z. It is well-known
that

DR(Gr0V (Bf ))
∼= Hn−1(F )1

supported on the singular point. Moreover, the dimension of the Hodge filtration of this cohomology
is controlled by the spectral numbers. More precisely, if αf,i are the spectral numbers, then

#{i | αf,i = k} = dimGrpF H
n−1(F )1

for p = n − k (and similarly for non-integer ones, see e.g., [Sai07, §3]). By using induction and
the definition of the Hodge filtration and the de-Rham functor, the following result follows from
Theorem H.

Corollary 9.1. Let Z be a hypersurface of a smooth variety that has an isolated singularity at x ∈ Z.
Then,

HRH(Z) = Spmin,Z(Z, x)− 2.

Remark 9.2. The results in this section can be proved with the techniques of the upcoming sections.
The hypersurface case is a good illustration of objects introduced in the case of local complete
intersections. See Remark 11.7.

10. Reinterpretation using specialization. We now focus on the local complete intersection
case. Let Z = V (f1, . . . , fr) ⊆ X be a complete intersection subvariety of pure codimension r,
where X is a smooth irreducible variety of dimension n. We introduce in this section several integer
invariants associated to Z and show how they relate to each other. In the hypersurface case, we
will see that these numbers are all essentially the same, except for the invariant defined using the
Bernstein-Sato polynomial.

We have the short exact sequence of monodromic mixed Hodge modules on X × Arz,
0 → L→ Sp(Bf )

Z → QZ → 0,

which in this case encodes the morphism i∗ψZ . To see this, let σ : X → X × Arz be the inclusion
of the zero section. By Proposition 2.6 above, we see that σ!(M) = σ!(MZ) for any monodromic
module M (for example, Sp(Bf ) and Q).

We have by [Sai90, Pg. 269] that

σ!(Sp(Bf )) = σ!(Bf ) ∼= i∗i
!QH

X [n],

where we also use σ to denote the zero section in X ×Art for the middle term, and the last equality
follows by Base Change (Example 1.3).
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Applying σ! to the short exact sequence, we get an exact triangle

σ!L→ i∗i
!QH

X [n] → σ!Q
+1−−→ .

Recalling that L = i∗QZ×Ar
z
[n], it is a simple computation to check that

σ!L = i∗QH
Z [n− 2r](−r) = (i∗QH

Z [d])[−r](−r),
and so the morphism χ : σ!L→ i∗i

!QH
X [n] is (up to non-zero scalar multiplication on the irreducible

components of Z) the map ψZ [−r](−r). By looking at the long exact sequence in cohomology, the
only non-zero terms are the rightmost four:

0 → Hr−1(σ!Q) → (i∗QH
Z [d])(−r)

χ−→ Hr
Z(QH

X [n]) → Hr(σ!Q) → 0.

Proposition 10.1. In the notation above, we have the following:

(1) Fk−dγZ is an isomorphism if and only if Fk−nHr−1(σ!Q) = 0.
(2) Fk−dγ

∨
Z is an isomorphism if and only if HRH(Z) ≥ k if and only if Fk−nHr(σ!Q) = 0

In particular, Fk−nHr(σ!Q) = 0 implies Fk−nHr−1(σ!Q) = 0.

Proof. Recall that Fk−dγZ is an isomorphism if and only if it is injective. This is true if and only
if Fk−dψZ is injective. As ψZ(−r) and χ agree up to non-zero scalar multiples, this is equivalent to
Fk−nχ being injective, which by the exact sequence is equivalent to the vanishing Fk−nHr−1(σ!Q).

The other claim is shown similarly. □

We can rephrase the results of the proposition purely in terms of the V -filtration.

Proposition 10.2. In the notation above, we have the following:

(1) The map Fk−dγZ is an isomorphism if and only if(
r∑
i=1

tiFk−nGrr−1
V (Bf )

)
∩

(
r⋂
i=1

ker(∂ti : Fk−nGrrV (Bf ) → Fk−n+1Grr−1
V (Bf ))

)
= 0.

(2) The map Fk−dγ
∨
Z is an isomorphism if and only if HRH(Z) ≥ k if and only if(

r∑
i=1

tiFk−nGrr−1
V (Bf )

)
+

(
r⋂
i=1

ker(∂ti : Fk−nGrrV (Bf ) → Fk−n+1Grr−1
V (Bf ))

)
= Fk−nGrrV (Bf ).

In particular HRH(Z) ≥ k if and only if

Fk−nGrrV (Bf ) =

(
r∑
i=1

tiFk−nGrr−1
V (Bf )

)
⊕

(
r⋂
i=1

ker(∂ti : Fk−nGrrV (Bf ) → Fk−n+1Grr−1
V (Bf ))

)

Proof. These are immediate restatements of the conditions in the previous proposition, using the
definition of the underlying filtered D-module of Q. □

Thus, we get a V -filtration characterization of rational smoothness in the local complete intersec-
tion case.

Corollary 10.3. In the above notation, Z is a rational homology manifold if and only if

GrrV (Bf ) =

(
r∑
i=1

tiGrr−1
V (Bf )

)
⊕

(
r⋂
i=1

ker(∂ti : GrrV (Bf ) → Grr−1
V (Bf ))

)
.
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In fact, we can say the following:

Theorem 10.4. Let Z ⊆ X be a complete intersection defined by f1, . . . , fr ∈ OX(X). The following
are equivalent:

(1) Sp(Bf )
Z is a pure Hodge module of weight n.

(2) N = 0 on Sp(Bf )
Z.

(3) Q is a pure Hodge module of weight n.

Moreover, any of those equivalent conditions implies the following (all of which are equivalent to
each other):

(1) Z is a rational homology manifold.
(2) Z × Ar is a rational homology manifold.
(3) L = QH

Z×Ar [n] is a pure Hodge module of weight n.

If r = 1, the converse holds.

Proof. The equivalence of the second collection of three conditions is obvious.

The equivalence of the first and second conditions follows from the fact that the weight filtration
on Sp(Bf )

Z is the monodromy filtration for N centered at n. Either condition implies the third,
because Q is a quotient of Sp(Bf ) by definition.

To see that the third implies the first, recall that WnL = L. Thus, for all i ∈ Z, we have a short
exact sequence,

0 → GrWn+iL→ GrWn+iSp(Bf )
Z → GrWn+iQ

Z → 0,

and for i > 0, we have an isomorphism GrWn+iSp(Bf )
Z = GrWn+iQ

Z. Thus, WnQ = Q implies Sp(Bf )
is pure.

We see that the condition that Sp(Bf )
Z is pure of weight n implies L is pure of weight n.

To prove the converse, assume r = 1. Then Z = {f = 0} is a rational homology manifold if and
only if φf,1(OX) = 0 if and only if N = 0 on ψf,1(OX). But then

Sp(Bf )
Z =

⊕
ℓ≥1

Gr1V (Bf )

clearly has N = 0. □

Remark 10.5. The difficulty in proving the converse of the above theorem in r > 1 is the fact that
we do not know if the inequality

min{i | (s+ r)iGrrV (Bf ) = 0} ≥ min{ℓ | (s+ r − 1)ℓGrr−1
V (Bf ) = 0}

is strict. This is true when r = 1.

The inequality cannot be strict in general: indeed, if Z is a rational homology manifold, then by
Corollary 10.3, we have

GrrV (Bf ) = ker(s+ r) +

r∑
i=1

tiGrr−1
V (Bf ),

and so there are two possibilities: Grr−1
V (Bf ) = 0, in which case QZ = 0, or the inequality is an

equality.
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11. Integer invariants and relations among them. We can now introduce the second integer
invariant of our interest, which is p(QZ, F ). Immediately we obtain the following:

Proposition 11.1. We have an inequality

p(QZ, F ) + n− 1 ≤ HRH(Z).

Proof. By definition, Fp(QZ,F )−1Q
Z = 0, so Fp(QZ,F )−1Hrσ!(Q) = 0 by Proposition 2.6. □

Before introducing the next integer invariant, we study how the invariant p(QZ, F ) relates to the
invariants p(Qk, F ) = min{p | FpQk ̸= 0}.

Lemma 11.2. The following hold:

(1) p(QZ, F ) = p(Qr, F ) = p(Qℓ, F ) for all ℓ ≥ r.
(2) p(Q1−ℓ, F ) = p(Q1, F ) + ℓ for all ℓ ≥ 0.
(3) For all k ∈ [1, r) ∩ Z, we have

p(Qk+1) ≤ p(Qk) ≤ p(Qk+1) + 1.

Proof. The filtered acyclicity of Bj(Q, F ) for j > 0, given by Proposition 2.5 above, tells us that
there are surjections

r⊕
i=1

FpQr+j−1 zi−→ FpQr+j ,

which inductively proves p(Qℓ, F ) ≥ p(Qr, F ) for all ℓ ≥ r. The same filtered acyclicity tells us that
the map

FpQj zi−→
r⊕
i=1

FpQj+1

is injective for all j > 0, so that

p(Qj , F ) ≥ p(Qj+1, F ) for all j > 0.

These together show that p(Qr, F ) = p(Qℓ, F ) for all ℓ ≥ r.

The filtered acyclicity of Cj(Q, F ) for all j < 0 gives surjections

r⊕
i=1

FpQj+1 ∂zi−−→ Fp+1Qj ,

for all j < 0, which gives p(Qj , F ) ≥ p(Qj+1, F ) + 1 for all j < 0. Moreover, it gives injections

FpQj+r ∂zi−−→ Fp+1Qj+r−1

so that p(Qj , F ) ≤ p(Qj+1, F ) + 1 for all j < r.

This proves almost all claims, except we need to show that p(Q0, F ) = p(Q1, F ) + 1.

The long exact sequence in cohomology for σ∗ applied to the short exact sequence (2.8) gives
isomorphisms

H0σ∗(Q) ∼= H0σ∗(Sp(Bf )) ∼= H0σ∗(Bf ).
and all three modules vanish, because Bf has no quotient object supported on X × {0}.
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Thus, H0(C0(Q, F )) = 0, giving a surjection

r⊕
i=1

FpQ1 ∂zi−−→ Fp+1Q0,

and proving the last remaining claim. □

This leads to a natural condition for equality in Proposition 11.1.

Proposition 11.3. Assume p(Qr−1, F ) = p(QZ, F ) + 1. Then

HRH(Z) = p(QZ, F ) + n− 1.

Proof. The assumption tells us that Fp(QZ,F )Qr−1 = Fp(QZ,F )Grr−1
V (Bf ) = 0. Then

Fp(QZ,F )Hr(σ!(Q)) = Fp(QZ,F )Qr/
r∑
i=1

ziFp(QZ,F )Qr−1 = Fp(QZ,F )Qr ̸= 0,

proving that HRH(Z) < p(QZ, F ) + n. □

The next integer invariant is the minimal integer spectral number of Z at a point x ∈ Z, which
we denote by Spmin,Z(Z, x).

An immediate application of Lemma 2.9 above gives the following lower bound. Here

p(QZ
x , F ) = min{p ∈ Z | (FpQZ)x ̸= 0}

is the lowest non-vanishing index of the stalk of the Hodge filtration at x.

Proposition 11.4. Let x ∈ Z be a point in the local complete intersection variety Z. Then

Spmin,Z(Z, x) ≥ p(QZ
x , F ) + n+ 1.

The same condition in Proposition 11.3 above gives a condition which allows us to ensure equality
in the proposition above in the isolated singularities case.

Proposition 11.5. Let x ∈ Z be an isolated singular point. Assume p(Qr−1
x , F ) = p(QZ

x , F ) + 1.
Then

Spmin,Z(Z, x) = p(QZ
x , F ) + n+ 1.

Proof. The assumption allows us to use [Dir23, Lem. 2.6], which tells us that

SuppAr
z
(Fp(Q,F )QZ) = Arz.

Then the proof goes through in exactly the same way as the last step of the proof of [Dir23, Thm.
1.1]. □

Remark 11.6. We have the following: QZ = 0 if and only if p(QZ, F ) = +∞, which implies that
Spmin,Z(Z, x) = +∞ and that Z is a rational homology manifold.

It is easy to check that QZ = 0 if and only if Grr−1
V (Bf ) = 0. Example 16.2 below shows, then,

that QZ = 0 is too strong: there is a complete intersection variety Z which is a rational homology
manifold but with QZ ̸= 0.
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Remark 11.7. In the hypersurface case, the situation simplifies immensely. Let Z = V (f) ⊆ X. It
is well known that Z is a rational homology manifold if and only if φf,1(OX) = 0, see, for example,

[JKSY22, Thm. 3.1]. By the previous remark, this is true if and only if QZ = 0. In this remark, we
give another proof of that fact.

We use the following notation as we have fixed a defining function for Z:

Spmin,Z(Z, x) = Spmin,Z(f, x),

HRH(Z) = HRH(f).

IfQZ ̸= 0, then in this case we have p(Gr0V (Bf ), F ) = p(QZ, F )+1. Indeed, this follows immediately
from the fact that

can = ∂t : Gr1V (Bf , F ) → Gr0V (Bf , F [−1])

is strictly surjective.

By Proposition 11.3, we see that HRH(f) = p(QZ, F ) + n − 1 = p(φf,1(OX), F ) + n − 2, which
shows that HRH(f) = +∞ if and only if p(φf,1(OX), F ) = +∞, proving the equivalence mentioned
at the beginning of the remark. Moreover, if Z has an isolated singularity at x ∈ Z, then we get

Spmin,Z(Z, x) = p(QZ, F ) + n+ 1 = p(φf,1(OX), F ) + n.

This gives another proof of the equality noted in [JKSY22, Formula (13)].

In [CDMO24], when defining the minimal exponent for the complete intersection subvariety
Z = V (f1, . . . , fr) ⊆ X, an auxiliary construction is used. This is the general linear combina-
tion hypersurface, defined by g =

∑r
i=1 yifi on Y = X × Ary. Let U = Y \ (X × {0}) with open

embedding j : U → Y and let σ : X × {0} → Y be the inclusion of the zero section. Then we have
the exact triangle

σ∗σ
!φg,1(QH

Y [n+ r]) → φg,1(QH
Y [n+ r]) → j∗φg|U ,1(Q

H
U [n+ r])

+1−−→

In [Dir23], the D-module φg,1(OY ) is compared to the Fourier-Laplace transform of Sp(Bf ). This
comparison implies that σ∗σ

!φg,1(QH
Y [n+ r]) has a unique non-vanishing cohomology module in the

local complete intersection case, namely, the 0-th one. This is due to the fact that σ∗σ
∗Sp(Bf ) has a

unique non-vanishing cohomology module, and the Fourier-Laplace transform interchanges the two
types of restriction to the zero section.

Thus, this exact triangle is actually a short exact sequence

0 → σ∗σ
!φg,1(QH

Y [n+ r]) → φg,1(QH
Y [n+ r]) → j∗φg|U ,1(Q

H
U [n+ r]) → 0.

Each term in the short exact sequence is monodromic along the variables y1, . . . , yr. In fact, this
is the Fourier-Laplace transform of the short exact sequence (2.8). As a corollary of this fact, we get
the following.

Corollary 11.8. In the above notation, we see

QZ = 0 if and only if φg|U ,1(OU ) = 0 if and only if V (g|U ) ⊆ U is a rational homology manifold.

In particular, V (g|U ) being a rational homology manifold implies Z is one, too.
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As explained in the proof of [Dir23, Prop. 3.4], there is an isomorphism

Fpφg,1(OY )
r−k ∼= Fp−k+rGrkV (Bf ),

where the left hand side is the corresponding monodromic piece. By the short exact sequence and
strictness of morphisms with respect to the Hodge filtration, there is also an isomorphism

(11.9) Fpj∗φg|U ,1(OU )
r−k ∼= Fp−k+rQk,

which we can use to prove the following.

Proposition 11.10. Let p(φg|U (OU )) = min{p | Fpφg|U (OU ) ̸= 0} = min{p | Fpj∗(φg|U (OU )) ̸= 0}.
Then

p(φg|U (OU )) = min
ℓ∈[0,r−1]

{p(Qr−ℓ, F )− ℓ} = p(Q1, F )− r + 1.

Proof. The last equality follows from Lemma 11.2, which implies

p(Q1, F ) ≤ p(Qℓ, F ) + ℓ− 1 for all ℓ ∈ [1, r] ∩ Z,
and so p(Q1, F )− r + 1 ≤ p(Qr−ℓ, F )− ℓ for all ℓ ∈ [0, r − 1].

Note that p(j∗φg|U ,1(OU ), F ) = p(φg|U ,1(OU ), F ).

We have the formula (11.9) from above

Fpj∗φg,1(OU )
r−k ∼= Fp−k+rQk,

and so by definition, we get

p(φg|U (OU )) = min
k∈Z

{p(Qr−k, F )− k}.

Thus, we need to check that this minimum is achieved for k ∈ [0, r − 1] ∩ Z. For k ≥ r, we have

p(Qr−k, F ) = p(Q1, F ) + 1 + k − r,

and so
p(Qr−k, F )− k = p(Qr−(r−1), F )− (r − 1),

and we get that p(φg|U (OU )) = mink∈Z<r p(Qr−k, F )− k.

For k ≤ 0, we have
p(Qr−k, F ) = p(Qr, F ),

and so
p(Qr−k, F )− (r − k) > p(Qr, F )− r,

proving the desired equality. □

Remark 11.11. Another way to phrase the result is the following: let

j(Z) = #{ℓ ∈ [1, r − 1] ∩ Z | p(Qr−ℓ, F ) = p(Qr−ℓ+1, F )}
be the number of times when the lowest Hodge piece doesn’t jump in the interval [1, r − 1]. Then

p(QZ, F ) = p(φg|U (OU )) + j.

Indeed, this follows from the observation

p(Qr−ℓ, F ) = p(QZ, F ) + ℓ− |{j ≤ ℓ | p(Qr−j , F ) = p(Qr−j+1, F )}|,
so that p(Qr−ℓ, F )− ℓ = p(QZ, F )− (the number of missed jumps up to ℓ). The minimum of this is
clearly when ℓ is maximal, proving the claim.
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Corollary 11.12. Let j(Z) be the number of missed jumps in the interval [1, r−1] as defined above.
Then

(1) HRH(Z) ≥ HRH(g|U )− r + j(Z) + 1.
(2) If p(Qr−1, F ) = p(QZ, F ) + 1 (which is true if j(Z) = 0), then 0 ≤ j(Z) < r− 1 and we have

equality

HRH(Z) = HRH(g|U )− r + j(Z) + 1.

Proof. We have equality

p(Q,F ) = p(φg|U ,1(OU ), F ) + j(Z),

and by Remark 11.7 the right hand side is equal to HRH(g|U )− (n+ r) + 2 + j(Z). Thus, we have

HRH(Z) ≥ p(Q,F ) + n− 1 = HRH(g|U )− r + j(Z) + 1,

as claimed.

For the last claim, equality holds by Proposition 11.3. □

We now describe the relation of the Bernstein-Sato polynomial to the G-filtration when r = 1.
Let f ∈ OX(X) define a non-empty hypersurface. The module Bf =

⊕
k∈N OX∂

k
t δf admits an

exhaustive filtration G•Bf indexed by Z (defined below also for r ≥ 1). This has the property that

the Bernstein-Sato polynomial bf (s) of f is the minimal polynomial of the action of −∂tt on Gr0G(Bf ).
As f defines a non-empty hypersurface, it is easy to see that (s+1) | bf (s) using the usual description
in terms of functional equations:

bf (s)f
s = P (s)fs+1 for some P (s) ∈ DX [s].

The reduced Bernstein-Sato polynomial b̃f (s) = bf (s)/(s + 1) is an invariant of the singularities
of f . The minimal exponent (as mentioned in Remark 3.5 above) is

α̃(f) = min{λ ∈ Q | b̃f (−λ) = 0},
and so we can consider a similar formula, only considering integer roots:

α̃Z(f) = min{j ∈ Z | b̃f (−j) = 0}.

We clearly have an inequality α̃(f) ≤ α̃Z(f).

The G-filtration has the property that

GrλVGr0G(Bf ) ̸= 0 if and only if (s+ λ) | bf (s).

To study the reduced polynomial, Saito [Sai94] introduced the microlocalization B̃f = Bf [∂−1
t ].

This object carries a microlocal V -filtration and a G-filtration. Importantly, these filtrations satisfy:

the minimal polynomial of −∂tt on Gr0G(B̃f ) is b̃f (s) by [Sai94, Prop. 0.3], and

GrλVGr0G(B̃f ) ̸= 0 if and only if (s+ λ) | b̃f (s).

Using the isomorphisms ∂jt : GrλVGrkG(B̃f ) ∼= Grλ−jV Grk−jG (B̃f ), we see then that

α̃Z(f) ≥ j if and only if G−j+1Gr0V (B̃f ) = 0.

Another important aspect of the microlocalization functor is that the natural map

Gr0V (Bf , F ) → Gr0V (B̃f , F )
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is an isomorphism, where F•B̃f =
⊕

k≤•+n OX∂
k
t δf .

Using this property and the fact that Fk−nB̃f ⊆ G−kB̃f , it follows that p(Gr0V (Bf ), F ) ≥ α̃Z(f)−n.
By Proposition 11.4, we get

α̃Z(f) ≤ Spmin,Z(f, x).

Even in the isolated hypersurface singularities case, strict inequality α̃Z(f) < Spmin,Z(f, x) is
possible [JKSY22, Rmk. 3.4d].

Remark 11.13. In Remark 3.5 above, we mentioned that there exists a notion of minimal exponent
for local complete intersection subvarieties. In fact, when Z = V (f1, . . . , fr) ⊆ X is defined by a
regular sequence, the definition is

α̃(Z) = α̃(g|U ),
where the minimal exponent for hypersurfaces was just defined. Associated to the tuple f1, . . . , fr,
there is a Bernstein-Sato polynomial [BMS06]. It is related to the reduced Bernstein-Sato polynomial
of g, by [Mus22]:

b̃g(s) = bf (s).

Moreover, (s+r) | bf (s), so we can consider the reduced Bernstein-Sato polynomial b̃f (s) = bf (s)/(s+

r). Then the minimal exponent satisfies α̃(Z) = min{λ ∈ Q | b̃f (−λ) = 0} ([Dir23]).

One might ask whether α̃Z(g|U ) satisfies a similar formula, that is, whether it is equal to

α̃Z(Z) = min{j ∈ Z | b̃f (−j) = 0}.

This would be beneficial to rewrite the results of Corollary 11.12 in terms of invariants of Z rather
than invariants of g|U .

It is not true, however, that b̃f (s) = b̃g|U (s), and so the question is slightly subtle. In general, we
have [Dir23, Lem. 5.2]:

bf (s) = b̃g(s) = b̃g|U (s)
∏
i∈I

(s+ r + i),

where I ⊆ Z≥0 is some finite subset. So we can see that we have equality α̃Z(Z) = α̃Z(g|U ) if either
one is strictly less than r.

There are two cases: either 0 ∈ I or 0 /∈ I. If 0 ∈ I, then we get

b̃f (s) = b̃g|U (s)
∏

i∈I\{0}

(s+ r + i),

and so we have inequality α̃Z(Z) ≤ α̃Z(g|U ).
In the other case, we get

b̃f (s) =
b̃g|U (s)

(s+ r)

∏
i∈I

(s+ r + i),

and so we only get
α̃Z(g|U ) = min{r, α̃Z(Z)}.

This case is possible, as Example 11.21 shows below.

Corollary 11.14. In the above notation, let j(Z) be the number of missed jumps. Then

(1) HRH(Z) ≥ α̃Z(g|U )− r + j(Z)− 1.
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(2) If α̃Z(g|U ) > r, then we have inequality

HRH(Z) ≥ α̃Z(Z)− r + j(Z)− 1.

Proof. We have
α̃Z(g|U ) ≤ p(φg|U ,1(OU ), F ) + (n+ r),

and so we get that
p(QZ, F )− j(Z) + (n+ r) ≥ α̃Z(g|U ),

giving p(QZ, F ) + n− 1 ≥ α̃Z(g|U ) + j(Z)− r − 1. Then the claim follows from Proposition 11.1.

If we assume α̃Z(g|U ) > r, this implies that (s+r) ∤ b̃g|U (s), and so we are in the case 0 ∈ I. Thus,
we have inequality α̃Z(Z) ≤ α̃Z(g|U ). □

As a consequence of these results, we obtain Theorem K and Corollary L.

Proof of Theorem K. The first statement is Corollary 11.8. The first inequality follows from the proof
of Corollary 11.14, and the second inequality from the statement of the same corollary. Finally, the
last inequality follows from Corollary 11.12. □

Proof of Corollary L. The inequalities follow from Theorem K and the last line of Corollary 11.14.

The implication α̃Z(Z) = +∞ implies rational homology manifold follows from the inequality
α̃Z(Z)− r − 1 ≤ HRH(Z). In the hypersurface case, the converse follows from the observation that

α̃Z(Z) = +∞ if and only if for all j ∈ Z, we have GrjGGr0V (Bf ) = 0, but then by exhaustiveness of

the filtration G, this is true if and only if Gr0V (Bf ) = 0, which is equivalent to the rational homology
manifold condition for hypersurfaces. □

Remark 11.15. As noted in Remark 4.8 above, we have

HRH(Z) < +∞ if and only if HRH(Z) ≤ d− 3

2
.

Combined with the inequality above, we see that if

α̃Z(g|U ) >
d− 3

2
+ r − j(Z) + 1 =

n+ r − 1

2
− j(Z),

then Z is a rational homology manifold.

Example 11.16. The previous remark is most clear when r = 2. Indeed, in that case, we have
j ∈ {0, 1}. If j = 0, then by Proposition 11.3, we see that HRH(Z) = p(QZ, F ) + n− 1. Otherwise,
if j = 1, then we see that if Z is not a rational homology manifold, we have the inequality

α̃Z(g|U ) ≤
n− 1

2
.

Now, we give some partial results on the invariant α̃Z(Z). As in the hypersurface case above, the
polynomial bf (s) is controlled by the G-filtration on Bf . This is defined as follows: the ring DT has
a Z-indexed filtration

V kDT =

∑
β,γ

Pβ,γt
β∂γt | Pβ,γ ∈ DX , |β| ≥ |γ|+ k

 ,

and so we can define an exhaustive filtration

G•Bf = (V •DT ) · δf .
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Then bf (s) is the minimal polynomial of the action of s = −
∑r

i=1 ∂titi on Gr0G(Bf ). Moreover,
we have

(11.17) GrλVGr0G(Bf ) ̸= 0 if and only if (s+ λ) | bf (s).

Thus, it is worthwhile to study the induced G-filtration on Sp(Bf )Z. We define it as

G•Sp(Bf )Z =
⊕

G•+kGrr+kV (Bf ),

where the shift by k is to make it so that G•Sp(Bf )Z is a filtration by sub-DT -modules. This induces
G-filtrations on L and Q by the short exact sequence 2.8. The G-filtration on L is rather simple by
[Dir23, Lem. 5.1]: it satisfies G0L = L. In particular, for all j > 0, we have an isomorphism

Gr−jG (Sp(Bf )) ∼= Gr−jG (Q).

This immediately leads to the following:

Proposition 11.18. Assume (s+ r + j) | bf (s) for some j > 0. Then QZ ̸= 0.

Proof. As (s + r + j) | bf (s), this means that Gr0GGrr+jV (Bf ) ̸= 0. This is the r + jth monodromic

piece of Gr−jG (Sp(Bf )), proving that

Gr−jG (Sp(Bf )Z) = Gr−jG (QZ) ̸= 0,

and so QZ ̸= 0. □

Remark 11.19. The result is a bit surprising, in view of the equality

bf (s) = b̃g|U (s)
∏
i∈I

(s+ r + i).

Indeed, the claim says that if there is any factor (s+ r + j) | bf (s) with j > 0, then there is also

an integer root in b̃g|U (s), because V (g|U ) is not a rational homology manifold in this case. So any

non-zero element of I implies the existence of an integer root in b̃g|U (s), and hence the existence of
another integer root in bf (s).

This remark naturally leads to the following conjecture:

Conjecture 11.20. For any f1, . . . , fr ∈ OX(X) a regular sequence, we have

bg(s) =

{
bg|U (s)(s+ r)

bg|U (s)
.

In other words, the set I is either empty or equal to the singleton {0}.

If r = 1, then we always have bg(s) = bg|U (s)(s+1) by [Lee24]. For r > 1, the case bg(s) = bg|U (s)
is possible, as we see in the following example.

Example 11.21. There is a reduced, irreducible complete intersection variety Z = V (f1, f2) with
bg(s) = bg|U (s). Indeed, if we let f1 = x2 + y3 and f2 = xy + zw, then Macaulay2 shows that

bg(s) = bg|U (s) = (s+ 1)(s+ 2)2
(
s+

5

2

)(
s+

7

3

)(
s+

8

3

)(
s+

11

6

)2(
s+

13

6

)2

.

Note that, in this example, Z is not normal.
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Remark 11.22. Note that if Z has rational singularities, then 0 ∈ I. Indeed, [CDMO24] tells us
that Z having rational singularities is equivalent to α̃(Z) = α̃(g|U ) > r. But if

bg(s) = bg|U (s)
∏
i∈I(s+ r + i) with I ⊆ Z>0,

then we have
(s+ r) | bf (s) = b̃g(s) = b̃g|U (s)

∏
i∈I

(s+ r + i),

which forces (s+ r) | b̃g|U (s) and so α̃(g|U ) ≤ r, a contradiction.

Corollary 11.23. Assume Z has rational singularities. Then

HRH(Z) ≥ α̃Z(Z)− r + j(Z)− 1,

where j(Z) is the number of missed jumps.

Proof. As Z has rational singularities, we have α̃(Z) = α̃(g|U ) > r. Moreover, by the discussion
above, α̃Z(Z) = α̃Z(g|U ) ≥ α̃(g|U ) > r. So the result follows by Corollary 11.14. □

In any case, we can collect our findings in the following corollary.

Corollary 11.24. The following hold:

(1) If (s+ ℓ) | bf (s) for some integer ℓ ̸= r, then QZ ̸= 0.

(2) If bg(s) = bg|U (s)(s+ r), then α̃Z(Z) < +∞ if and only if QZ ̸= 0.

(3) If bg(s) = bg|U (s), then Q
Z ̸= 0.

Proof. For the first claim, if ℓ > r, then this is the result of Proposition 11.18.

For ℓ < r, use the equality

bf (s) = b̃g|U (s)
∏
i∈I

(s+ r + i),

where I ⊆ Z≥0 implies that (s + ℓ) | b̃g|U (s). Then we use Corollary 11.8 and Remark 11.7 to
conclude.

For the second claim, we have b̃f (s) = b̃g(s)/(s + r) = b̃g|U (s), and so α̃Z(Z) = α̃Z(g|U ). So the
claim follows by Corollary 11.8 and Remark 11.7.

For the last claim, we have (s + r) | bf (s) = b̃g|U (s), so that α̃Z(g|U ) < +∞ and again we use
Corollary 11.8 and Remark 11.7. □

12. The case of isolated singularities. In this section, we discuss a deeper relation between the
spectrum of an isolated local complete intersection singularity and the Hodge Rational Homology
degree.

Recall that, in this case, we have the Milnor fiber, which can be defined in the following way. Let
(Z, x) be the germ of the isolated singularity, and ρ : (X , x) → ∆ a smoothing with central fiber Z.
We then let the Milnor fiber F be the topological space Xt, for t ̸= 0, and note that its cohomology
can be endowed with a mixed Hodge structure. The cohomology is nonzero only in degrees 0 and
d = dimZ, and is independent of the smoothing along with its Hodge filtration. For more details,
see [FL24a, §2.2 and §4].

Following Steenbrink and the notation in [FL24a], let

sp = dimGrpF H
d(F ).
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These invariants are deeply connected to the link invariants and can be used to describe HRH(Z).

Proposition 12.1. Let (Z, x) be a normal isolated local complete intersection singularity. Then
HRH(Z) ≥ k if and only if sd−p − sp = 0 for all 0 ≤ p ≤ k.

Proof. We will use that

(12.2) sd−p − sp = ℓp,d−p−1 − ℓp,d−p

[FL24a, Prop. 2.11 ii)], and

(12.3)
k∑
p=0

sd−p ≥
k∑
p=0

sp

and if equality holds, then ℓd−k−1,k = ℓk+1,d−k−1 = 0 [FL24a, Prop. 2.12].

Suppose HRH(Z) ≥ k. Then by Theorem E, 0 = ℓd−p,p = ℓp,d−p−1 for p ≤ k, and by combining
(12.2), (12.3), and using induction on k implies sd−p − sp = 0 for all 0 ≤ p ≤ k.

Conversely, suppose sd−p − sp = 0 for all 0 ≤ p ≤ k. We proceed by induction. For k = 0,

0 = sd − s0 = ℓ0,d−1 − ℓ0,d = ℓd,0,

since ℓ0,d = 0. By Theorem E, we obtain the conclusion. Suppose now that we know the result up
until degree (k − 1). Then

sd−k − sk = ℓk,d−k−1 − ℓk,d−k = ℓd−k,k − ℓ(k−1)+1,d−(k−1)−1.

By the second part of (12.3), we obtain that ℓd−k,k = 0, and by Theorem E we conclude. □

We note that in this setting, the spectral numbers are identified with the cohomology of the Milnor
fiber. Indeed,

mα,x = dimGrpF H
d(F )λ,

where p = ⌊d+ 1− α⌋, and λ = exp(−2πα), since the pullback to a point ξ ∈ {x} × Ar corresponds
to picking a nearby fiber of a 1-parameter smoothing of Z (see [DMS11, Rmk. 1.3 (i)] for more de-
tails). Furthermore, spectral numbers partially recover the duality classically known for hypersurface
singularities.

Proposition 12.4. Let (Z, x) be an isolated local complete intersection singularity. Then, for α /∈ Z,
mα,x = md+1−α,x.

Proof. This is a consequence of duality applied to the module Q. We also show in the proof what
the construction yields for α ∈ Z.

Since we are working locally around isolated singularity x ∈ Z, we have that Q is supported on
{x} × Ar, hence Q = ix∗N and so if jξ : {ξ} → {x} × Ar, we have the identification

i∗ξQ = j∗ξN ,

and
i∗ξDQ = j∗ξ (DN ) = Dj!ξN = D(j∗ξN )(r)[2r],

the last equality following from the fact that jξ is non-characteristic.

We get

mα,x(Q) =
∑
k∈Z

(−1)k dimGrF⌈α⌉−d−1H
k−ri∗ξ(Qα+Z)
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=
∑
k∈Z

(−1)k dimGrF⌈α⌉−d−1H
k−rj∗ξ (Nα+Z).

Note that for any mixed Hodge structure H, have the relation

GrF• D(H) = DGrF−•(H),

and in particular,

dimGrF• D(H) = dimGrF−•(H).

Hence, we have

mα,x(DQ) =
∑
k∈Z

(−1)k dimGrF⌈α⌉−d−1H
k−ri∗ξ((DQ)α+Z)

=
∑
k∈Z

(−1)k dimGrF⌈α⌉−d−1H
k−r(D(j∗ξ (N−α+Z))(r)[2r])

=
∑
k∈Z

(−1)k dimGrF⌈α⌉−d−r−1H
k+r(D(j∗ξ (N−α+Z)))

=
∑
k∈Z

(−1)k dimDGrFd+r+1−⌈α⌉H
−k−r(j∗ξ (N−α+Z)).

=
∑
k∈Z

(−1)k dimGrFd+r+1−⌈α⌉H
k−r(j∗ξ (N−α+Z)).

Write d+ r + 1− ⌈α⌉ = ⌈µ⌉ − d− 1 where µ+ α ∈ Z. Thus,

2d+ r + 2− ⌈α⌉ = ⌈µ⌉.

If α ∈ Z, then µ ∈ Z and we get µ = d+ n+ 2− α.

Otherwise, we write α = p− ε with ε ∈ (0, 1), then ⌈α⌉ = p and so we must have

µ = ⌊µ⌋+ ε = 2d+ r + 2− p− 1 + ε = 2d+ r + 1− p+ ε = d+ n+ 1− α.

Hence, we get

mα,x(DQ) =

{
md+n+2−α(Q) α ∈ Z
md+n+1−α(Q) α /∈ Z

.

Using the isomorphism Q̸=Z ∼= Sp(Bf )̸=Z and D(Q ̸=Z) ∼= Sp(Bf ) ̸=Z(n), we have

Ŝp(Q̸=Z, x) = Ŝp(Sp(Bf )̸=Z, x) = t−nŜp(Sp(Bf )̸=Z(n), x) = t−nŜp(DQ̸=Z, x).

The result follows. □

Remark 12.5. The same duality might not hold for mk,x, k ∈ Z [DMS11, Rmk. 1.3 (iv)], and
depends on the Milnor fiber of a generic 1-parameter smoothing of the 1-parameter smoothing of
Z. Furthermore, to compare the integer spectrum numbers using the proof above, we would need to
consider the spectral numbers of L and its dual.
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Proof of Theorem J. We show that if Spmin,Z(Z, x) ≥ k + 2, then HRH(Z) ≥ k around x. By
Proposition 12.1, it is enough to verify sd−p − sp = 0 for all p ≤ k. It is immediate to see that

sp =
∑

α∈(d−p,d−p+1]

mα,x.

Therefore,

sd−p − sp =
∑

β∈(p,p+1]

mβ,x −
∑

α∈(d−p,d−p+1]

mα,x = mp+1,x −md−p+1,x,

where the last equality follows from Proposition 12.4.

Suppose Spmin,Z(Z, x) ≥ k + 2, that is, m1,x = · · · = mk+1,x = 0. Then by (12.3) we have

0 ≤
k∑
p=0

sd−p −
k∑
p=0

sp = −(md+1,x + · · ·+md−k,x),

and thus, md+1,x = · · · = md−k,x = 0. Therefore, sd−p = sp = 0 for all p ≤ k. □

E. Examples

This section is devoted to providing various examples with different features.

13. Affine cones, toric and secant varieties. We first calculate the HRH level of affine cones
over smooth projective varieties following the treatment of [SVV23].

Proposition 13.1. Let X be a smooth projective variety of dimension n, and L be an ample line
bundle on X. Let

Z = C(X,L) := Spec

⊕
m≥0

H0(X,Lm)


be the affine cone with conormal bundle L. Then HRH(Z) ≥ k for some k ≤ n+1

2 if and only if the
following two conditions are satisfied:

(1) H i(ΩpX) = 0 for all i ̸= p, 0 ≤ p ≤ k,

(2) H0(OX)
∪c1(L)−−−−→ H1(Ω1

X)
∪c1(L)−−−−→ · · · ∪c1(L)−−−−→ Hk(ΩkX) are all isomorphisms.

Proof. The blow up f : Z̃ → Z at the cone point v is a strong log resolution of Z with E ∼= X.
Note that by our assumption, k < codimZ(Zsing) = n + 1, whence the bottom map in (4.7) is an
isomorphism by [SVV23, Lem. 2.4]. In what follows, we use (4.7) without any further reference.

Let us first prove the assertion when k = 0. We have the distinguished triangle

Ω0
Z → Rf∗OZ̃ ⊕Ov → Rf∗OX

+1−−→ .

Since Z is affine, using the arguments of [SVV23, Appendix A.1], we see that the above induces

(13.2) 0 → Γ(H0(Ω0
Z)) → H0(OZ̃)⊕ C → H0(OX) → 0,

(13.3) 0 → Γ(Hi(Ω0
Z)) → H i(OZ̃) → H i(OX) → 0 ∀i ≥ 1.
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By loc. cit., H0(OZ̃) =
⊕

m≥0H
0(Lm) and the map H0(OZ̃) ⊕ C → H0(OX) in (13.2) sends

(x, α) 7→ φ(x)− α where φ :
⊕

m≥0H
0(Lm) → H0(OX) is the projection. Thus the composed map

Γ(H0(Ω0
Z)) → H0(OZ̃)⊕ C → H0(OZ̃)

is an isomorphism. Finally, by (13.3), for i ≥ 1, Γ(Hi(Ω0
Z)) → H i(OZ̃) is an isomorphism if and only

if H i(OX) = 0, which concludes the proof for k = 0.

We use induction on k. Assume k ≥ 1 and note the distinguished triangle induced by the residue
sequence on Z̃:

(13.4) Rf∗Ω
k
Z̃
→ Rf∗Ω

k
Z̃
(logX) → Rf∗Ω

k−1
X

+1−−→ .

It is shown in [SVV23, Appendix A.2] that

(13.5) H i(Ωk
Z̃
) =

⊕
m≥0

H i(ΩkX ⊗ Lm)⊕
⊕
m≥1

H i(Ωk−1
X ⊗ Lm)

and the map

(13.6) Γ(Hi(ΩkZ)) → H i(Ωk
Z̃
)

induced from

ΩkZ → Rf∗Ω
k
Z̃
→ Rf∗Ω

k
X

+1−−→

realizes Γ(Hi(ΩkZ)) as the following direct summand of H i(Ωk
Z̃
) through (13.5):

Γ(Hi(ΩkZ)) =
⊕
m≥1

H i(ΩkX ⊗ Lm)⊕
⊕
m≥1

H i(Ωk−1
X ⊗ Lm).

Thus, we are reduced to showing that the composition

(13.7) Γ(Hi(ΩkZ)) ↪→ H i(Ωk
Z̃
) → H i(Ωk

Z̃
(logX))

(the first map is (13.6) and the second one is induced by (13.4)) is an isomorphism for all i if and only
if the two conditions in the statement are satisfied. If i ̸= k − 1, k, then we see from our induction
hypothesis and (13.4) that the second map above is an isomorphism, whence the composition is an
isomorphism if and only if H i(ΩkX) = 0. Note that the connecting map

H i(Ωk−1
X ) → H i+1(Ωk

Z̃
)

arising from (13.4) is the cup product ∪c1(L) map and lands in the direct summand H i(ΩkX). This
is injective for i = k − 1 by Hard Lefschetz, by our assumption on k. Thus the second map in
(13.7) is an isomorphism for i = k − 1, whence the composition is an isomorphism if and only if
Hk−1(ΩkX) = 0. Finally, by the above argument, (13.4) induces the exact sequence

0 → Hk−1(Ωk−1
X ) → Hk(Ωk

Z̃
) → Hk(Ωk

Z̃
(logX)) → 0.

It follows immediately from the description of Γ(Hi(ΩkZ)) as a direct summand of H i(Ωk
Z̃
) that the

composed map (13.7) is an isomorphism for i = k if and only if

Hk−1(Ωk−1
X )

∪c1(L)−−−−→ Hk(ΩkX)

is an isomorphism. That completes the proof. □



52 B. DIRKS, S. OLANO, AND D. RAYCHAUDHURY

Remark 13.8. As before, let X be a smooth projective variety of dimension n, L be an ample line
bundle on X, and Z = C(X,L). Since Z is singular only at the cone point, we have

lcdefgen(Z) = lcdef(Z)

= min

{
c ∈ N

∣∣∣∣ H i(X,C) ∪c1(L)−−−−→ H i+2(X,C) are isomorphisms for all− 1 ≤ i ≤ n− 3− c,
and injective for i = n− 2− c with the convention that H−1(X,C) = 0

}
where the last equality comes from [PS24, Thm. 6.1]. In fact, when X ⊆ PN , setting Z = C(X) ⊆
AN+1 to be the affine cone, we have the following by [PS24, Thm. A]

lcdefgen(Z) = lcdef(Z) = min
c∈N

{
H i(PN ,C) ∼−→ H i(X,C)∀ i ≤ n− 1− c

}
.

Example 13.9. Here are two explicit examples of affine cones with interesting properties:

(1) There are varieties with k-Du Bois singularities that satisfy HRH(Z) ≥ k but their singularities
are not k-rational (in the sense of [SVV23]). For example, consider Z = C(P2,OP2(2)). Then Z is
a rational homology manifold by the above proposition, but according to [SVV23, Prop. F], its
singularities are 1-Du Bois but not 1-rational.

(2) Let X be a Godeaux surface. These are surfaces with pg = q = 0, h1,1(X) = 9 and ample
canonical bundle ωX . Thus Z = C(X,ωX) satisfies HRH(Z) = 0 by the above proposition. But
their singularities are not pre-0-Du Bois by [SVV23, Prop. F] as h2(ωX) ̸= 0. This is an example of
a variety with HRH(Z) strictly higher than its Du Bois level.

Example 13.10 (Normal affine toric varieties). Let Z be a normal affine toric variety. By [SVV23,
Prop. E] and Remark 4.8, we obtain

HRH(Z) =

{
+∞ if Z is simplicial,

0 otherwise.

Example 13.11 (Secant varieties). Let X ⊂ PN be a smooth projective variety embedded by the
complete linear series of a sufficiently positive line bundle (i.e. one that satisfies (Q1)-property as
per [ORS24, Def. 3.1]). Let Σ be its secant variety. Then by [ORS24] and Remark 4.8,

HRH(Σ) =


+∞ if X ∼= P1,

0 if H i(OX) = 0 for all i ≥ 1 and X ≇ P1,

−1 otherwise.

14. Ideals of generic, symmetric and skew-symmetric minors. In this subsection, we show
how the main theorem of [RW16] can be used to compute lcdefgen(−) and to give a bound on HRH(−)
for determinantal varieties.

We will be interested in subspaces defined by matrices of appropriate ranks of the following spaces:

(1) (Generic) X = Matm,n(C) with m ≥ n,

(2) (Odd skew) X = Matn(C)skew, n odd,
(3) (Even skew) X = Matn(C)skew, n even,
(4) (Symmetric) X = Matn(C)sym.

In cases (1) and (4), we let Zp denote the subvariety of matrices of rank ≤ p and in cases (2) and
(3), we let Zp denote the subvariety of matrices of rank ≤ 2p. In every case, Zp is known to have
rational singularities by [Bou87]. Thus, HRH(Zp) ≥ 0.
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Following [RW16], we let Dp be the intersection homology DX -module associated to the trivial
local system on Zp,reg. We let Γ(X) denote the Grothendieck group of holonomic DX -modules. For
p fixed, we write

Hp(q) =
∑
j≥0

[
Hj
Zp
(OX)

]
· qj ∈ Γ(X)[q].

Finally, for a ≥ b ≥ 0, let
(
a
b

)
q
be the q-binomial coefficient, defined by(
a

b

)
q

=
(1− qa) . . . (1− qa−b+1)

(1− qb) . . . (1− q)
.

The following computation will be important below:

Lemma 14.1. Let a ≥ b ≥ 0. Then(
a

b

)
q−4

= q−4b(a−b) + higher order terms.

Proof. We can write (
a

b

)
q−4

=
(1− q−4a) . . . (1− q−4(a−b+1))

(1− q−4b) . . . (1− q−4)

=
q−4(

∑b
i=1(a−b+i))

q−4(
∑b

i=1 i)
· (q

4a − 1) . . . (q4(a−b+1) − 1)

(q4b − 1) . . . (q4 − 1)

= q−4b(a−b)(1 + higher order terms)

which completes the proof. □

Now, we can state the main result of [RW16], which gives a formula for Hp(q) ∈ Γ(X)[q].

Theorem 14.2 ([RW16, Main Thm.]). In the notation above, we have the following formula for
Hp(q) in the cases (1)-(4).

(1) (Generic) For all 0 ≤ p < n, we have

Hp(q) =

p∑
s=0

[Ds] · q(n−p)
2+(n−s)(m−n)

(
n− s− 1

p− s

)
q2
.

(2) (Odd skew) Write n = 2m+ 1, then for all 0 ≤ p < m, we have

Hp(q) =

p∑
s=0

[Ds] · q2(m−p)2+(m−p)+2(p−s)
(
m− 1− s

p− s

)
q4
.

(3) (Even skew) Write n = 2m, then for all 0 ≤ p < m, we have

Hp(q) =

p∑
s=0

[Ds] · q2(m−p)2−(m−p)
(
m− 1− s

p− s

)
q4
.

(4) (Symmetric) For all 0 ≤ p < n, we have

Hp(q) =

⌊ p
2
⌋∑

ℓ=0

[Dp−2ℓ] · q1+(
n−p+2ℓ+1

2 )−(2ℓ+2
2 )
(
⌊n−p+2ℓ−1

2 ⌋
ℓ

)
q−4

.
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As min{j | Hj
Zp
(OX) ̸= 0} = codimX(Zp), these expressions immediately imply the following

well-known formulas for the (co)dimension of Zp in X (see [BV88] and [Wey03]).

Corollary 14.3. In the notation above, we have the following formulas in cases (1)-(4).

(1) (Generic) In this case, we have

codimX(Zp) = (m− p)(n− p), and dim(Zp) = p(m+ n− p).

(2) (Odd skew) In this case, we have

codimX(Zp) = (m− p)(2(m− p) + 1), and dim(Zp) = p(2(n− p)− 1).

(3) (Even skew) In this case, we have

codimX(Zp) = (m− p)(2(m− p)− 1), and dim(Zp) = p(2(n− p)− 1).

(4) (Symmetric) In this case, we have

codimX(Zp) =

(
n− p+ 1

2

)
, and dim(Zp) =

1

2
p(2n− p+ 1).

We ignore p = 0 as in this case Zp is smooth, and everywhere below we assume p ≥ 1. In fact,
in case (4), when p = 1, Theorem 14.2 implies Z1 is a rational homology manifold (it is known

that lcdef(Z1) = 0, and by the argument of Proposition 14.4, ICZ1 = HcodimX(Z1)
Z1

(OX) which by

Theorem B implies Z1 is Q-homology) so we will assume in case (4) that p ≥ 2. More precisely, in
what follows, our assumptions are as follows:

• In case (1), 1 ≤ p < n.
• In cases (2), (3), 1 ≤ p < m.
• In case (4), 2 ≤ p < n.

By definition,Dp = ICZp , and so we can study for which Zp we have equality ICZp = HcodimX(Zp)
Zp

(OX).

Proposition 14.4. In the notation above, let cp = codimX(Zp).

(1) (Generic) We have equality ICZp = Hcp
Zp
(OX) if and only if m > n.

(2) (Odd skew) We have equality ICZp = Hcp
Zp
(OX) for every 1 ≤ p < m.

(3) (Even skew) We have inequality ICZp ̸= Hcp
Zp
(OX) for every 1 ≤ p < m.

(4) (Symmetric) We have equality ICZp = Hcp
Zp
(OX) if and only if n ≡ p mod 2 (when p ≥ 2).

Proof. By definition, one needs only check for which s < p the summand [Ds] appears as a coefficient
of qcp using Theorem 14.2. The first three claims are immediate, using that the lowest degree term
of the q-binomial coefficient in each expression is the constant term. Note that in case (1), when

m = n, every [Ds] appears as a coefficient of qcp = q(m−p)(n−p).

For the case of symmetric matrices, we look at the lowest degree term in

q1+(
n−p+2ℓ+1

2 )−(2ℓ+2
2 )
(
⌊n−p+2ℓ−1

2 ⌋
ℓ

)
q−4

,

which by Lemma 14.1, is at degree

(14.5) 1 +

(
n− p+ 2ℓ+ 1

2

)
−
(
2ℓ+ 2

2

)
− 4ℓ

(⌊
n− p+ 2ℓ− 1

2

⌋
− ℓ

)
.
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We break into two cases depending on the class of n− p mod 2. We write the difference as

n− p =

{
2k

2k + 1
,

so that the expression in (14.5) can simplify into{
1 +

(
2k+2ℓ+1

2

)
−
(
2ℓ+2
2

)
− 4ℓ(k − 1) when n− p = 2k

1 +
(
2k+2ℓ+2

2

)
−
(
2ℓ+2
2

)
− 4ℓk when n− p = 2k + 1

,

and these are easily seen to simplify to{
2ℓ+ k(2k + 1) when n− p = 2k

(k + 1)(2k + 1) when n− p = 2k + 1
.

This proves the claim, as the expression in the second case doesn’t depend on ℓ, meaning all [Dp−2ℓ]

appear in Hcp
Zp
(OX), and the first case is minimized for ℓ = 0. □

Now we can compute lcdefgen(Zp). To do this, in cases (1)-(3), we look for the highest index such
that [Dp−1] appears with non-zero coefficient. In case (4), we look for the highest index with [Dp−2]
having non-zero coefficient. To get the defect, we subtract the codimension.

Proposition 14.6. In the notation above, we have the following formulas for lcdefgen(Zp).

(1) (Generic) lcdefgen(Zp) = m+ n− 2p− 2.
(2) (Odd skew) lcdefgen(Zp) = 4(m− p− 1) + 2.
(3) (Even skew) lcdefgen(Zp) = 4(m− p− 1).
(4) (Symmetric) lcdefgen(Zp) = 2(n− p− 1) (we assume p ≥ 2).

Proof. In the first three cases, we take s = p− 1 and use that

(Generic) :

(
n− s− 1

1

)
q2

=
(1− q2(n−p))

(1− q)
= 1 + q2 + · · ·+ q2(n−p−1).

(Skew) :

(
m− s− 1

1

)
q4

=
(1− q4(m−p))

(1− q)
= 1 + q4 + · · ·+ q4(m−p−1).

In the symmetric case, we take ℓ = 1 and use that the maximal degree term in the q-binomial
coefficient (evaluated at q−4) is the constant term, so the q-binomial coefficient can be ignored in
this case.

In summary, the highest degree with [Dp−1] (in cases (1)-(3)) or [Dp−2] (in case (4)) is

• (Generic) (n− p)2 + (n− p+ 1)(m− n) + 2(n− p− 1),
• (Odd skew) 2(m− p)2 + (m− p) + 2 + 4(m− p− 1),
• (Even skew) 2(m− p)2 − (m− p) + 4(m− p− 1),

• (Symmetric) 1 +
(
n−p+3

2

)
−
(
4
2

)
=
(
n−p+3

2

)
− 5.

The claim then follows by subtracting codimX(Zp) from each of these expressions. □

In [RW16], a formula for the the local cohomological dimension

lcd(X,Zp) = max{j | Hj
Zp
(OX) ̸= 0}
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is given. Using this and the computation at the end of the previous proof, we can compute the
difference lcdef(Zp)− lcdefgen(Zp).

Proposition 14.7. In the notation above, we have the following formulas.

(1) (Generic) lcdef(Zp)− lcdefgen(Zp) = (p− 1)(m+ n− 2p− 2).
(2) (Odd skew) lcdef(Zp)− lcdefgen(Zp) = 2(p− 1)(2(m− p− 1) + 1).
(3) (Even skew) lcdef(Zp)− lcdefgen(Zp) = 4(p− 1)(m− p− 1).

(4) (Symmetric) lcdef(Zp)− lcdefgen(Zp) =

{
(n− p− 1)(p− 2) p even

(n− p− 1)(p− 3) p odd and p ≥ 3
.

Proof. This follows immediately from the computations of lcd(X,Zp) in [RW16], which is as follows:

• (Generic) lcd(X,Zp) = mn− (p+ 1)2 + 1,

• (Odd skew) lcd(X,Zp) =
(
2m+1

2

)
−
(
2p+2
2

)
+ 1

• (Even skew) lcd(X,Zp) =
(
2m
2

)
−
(
2p+2
2

)
+ 1

• (Symmetric) lcd(X,Zp) =

{
1 +

(
n+1
2

)
−
(
p+2
2

)
p even

1 +
(
n
2

)
−
(
p+1
2

)
p odd

.

The assertion follows by combining the above with Proposition 14.6. □

Using this, we can characterize which Zp are rational homology manifolds. Indeed, by Theorem B
this is equivalent to lcdef(Zp) = 0 and ICZp = Hcp

Zp
(OX). The inequality lcdefgen(Zp) ≤ lcdef(Zp)

shows that if lcdef(Zp) = 0, then the difference lcdef(Zp)− lcdefgen(Zp) is also 0, and so we can use
the previous proposition to simplify our computations.

Recall that in the next proposition we assume p ≥ 1 in cases (1)-(3) and we assume p ≥ 2 in case
(4).

Proposition 14.8. In all cases (1)-(4), the variety Zp is not a rational homology manifold.

Proof. For case (1), the difference lcdef(Zp) − lcdefgen(Zp) and lcdefgen(Zp) vanish if and only if
m+ n = 2p+2. As p ≤ n− 1, this gives 2p+2 ≤ 2(n− 1) + 2 = 2n, so this equality is only possible
if m = n and p = n− 1. But for m = n, we have observed that Hcp

Zp
(OX) ̸= ICZp .

For case (2), we have that lcdefgen(Zp) ≥ 2 > 0, so Zp can never be a rational homology manifold.

In case (3), ICZp ̸= Hcp
Zp
(OX), so Zp cannot be a rational homology manifold.

For case (4), lcdefgen(Zp) = 0 if and only if p = n− 1. But then ICZp ̸= Hcp
Zp
(OX) as in this case,

p ̸≡ n mod 2. □

We conclude this subsection with an application of Theorem G to give bounds on HRH(Zp). To
do this, we must compute codimZp(Zp,nRS). Note that Zp,nRS is equal to Zp−1 in cases (1)-(3) and
Zp−2 in case (4).

Lemma 14.9. In the notation above, we have the following formula for codimZp(Zp,nRS).

(1) (Generic) codimZp(Zp,nRS) = m+ n− 2p+ 1.
(2) (Odd skew) codimZp(Zp,nRS) = 4(m− p) + 3.
(3) (Even skew) codimZp(Zp,nRS) = 4(m− p) + 1.
(4) (Symmetric) codimZp(Zp,nRS) = 2(n− p) + 3 (when p ≥ 2).
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Proof. This is immediate by computing the differences codimX(Zp−1)− codimX(Zp) in cases (1)-(3),
and codimX(Zp−2)− codimX(Zp) in case (4) using Corollary 14.3. □

Proposition 14.10. In the notation above, we have

(1) (Generic) HRH(Zp) = 0.
(2) (Odd skew) HRH(Zp) ∈ {0, 1}.
(3) (Even skew) HRH(Zp) ∈ {0, 1}.
(4) (Symmetric) HRH(Zp) ∈ {0, 1} (when p ≥ 2).

Proof. As Zp has rational singularities, we always have HRH(Zp) ≥ 0, and we know Zp is not a
rational homology manifold for all p, so HRH(Zp) <∞.

By Theorem G, we have inequality

lcdefgen(Zp) ≤ codimZp(Zp,nRS)− 2HRH(Zp)− 3.

The assertion follows from Proposition 14.6 and Lemma 14.9. □

Remark 14.11. In the generic determinantal case, HRH(Zp) = 0 also follows directly using Theo-
rem B and [Per24, Cor. 1.4]. For this reason, we believe it will be interesting to carry out a study
of the Hodge structures on the local cohomology modules analogous to [Per24] in the cases (2)-(4).

Remark 14.12. Some remarks are in order:

(1) Note that equality holds in Theorem G for generic determinantal varieties.
(2) We observed earlier that the equality lcdefgen(Z) = lcdef(Z) holds when ZnRS is isolated.

However, we see above that equality can also hold when ZnRS is non-isolated. Indeed, take
for example m = 3, p = 2 in case (3) and apply Proposition 14.7.

(3) We also note that Proposition 14.7 gives many examples when lcdefgen(Z) < lcdef(Z). The
smallest dimension of such Z that we have in these classes of examples is 10 (generic deter-
minantal with m = 4, n = 3, p = 2).

15. Examples concerning equality in Theorem G. Previously, we saw that equality holds in
Theorem G for generic determinantal varieties. We thank Mihnea Popa for the following classes of
examples where we also have equality:

• Any threefold with rational singularities which is not a rational homology manifold (equiva-
lently not locally analytically Q-factorial by [PP24, Thm. F], see also [GWS18, Thm. 5.8]).

• More generally, any local complete intersection (2k + 3)-fold Z with k-rational singularities
that is not a Q-homology manifold. In this case, HRH(Z) = k, as if HRH(Z) ≥ k + 1, this
would imply Z is a rational homology manifold. Thus, the non-rational homology manifold
locus is isolated, and we have by the LCI assumption that lcdefgen(Z) = lcdef(Z) = 0.

Here are two more examples of this phenomenon:

Example 15.1. Let f = x21 + · · ·+ x22m for m ∈ Z≥2. Then bf (s) = (s+ 1)(s+m), and we have

α̃Z(f) = m = Spmin,Z(f) = HRH(Z) + 2.

Let Z = {f = 0} ⊆ A2m. As Z is a hypersurface, we have

lcdef(Z) = lcdefgen(Z) = 0.

Thus, Theorem G gives
0 + 2(m− 2) + 3 ≤ codimZ(ZnRS).
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But the right hand side is dimZ = 2m − 1, as Z has isolated singularities and is not a rational
homology manifold. So again, we see that equality holds in Theorem G.

Example 15.2. Equality for Theorem G also holds in the example of [JKSY22, Rmk. 3.4d]. Indeed,
there it is shown that for h = x6 + y5 + x3y3 + z5 + w3, we have Spmin,Z(h) = 2, and so

HRH({h = 0}) = 0.

Equality holds because {h = 0} has dimension 3.

However, strict inequality is also possible in Theorem G:

Example 15.3 (An example of strict inequality). Let f =
∑2m

i=1 x
m
i for m > 2. This defines a

hypersurface Z of dimension 2m− 1 with an isolated singularity. Moreover, its minimal exponent is

α̃(f) =
2m∑
i=1

1

m
= 2,

so that Z is not a rational homology manifold. As f is weighted homogeneous, we have α̃(f) =
Spmin(f) = Spmin,Z(f), which gives

HRH(Z) = Spmin,Z(Z)− 2 = 0.

Thus, ZnRS has codimension 2m−1 in Z, which is strictly larger than lcdefgen(Z)+2HRH(Z)+3 = 3.

16. Thom-Sebastiani examples. Many of the singularity invariants are easier to control when
using defining equations in separate collections of variables (of “Thom-Sebastiani” type), as we see
now.

We will make use of the product formula for Verdier specializations, see [DMS11, Section 3] for
details. Given Zi ⊆ Xi, we consider the subvariety Z1 × Z2 ⊆ X1 ×X2. Let Z1 = V (f1, . . . , fr) and
let Z2 = V (g1, . . . , gρ), so that Z1 × Z2 = V (f1, . . . , fr, g1, . . . , gρ).

We consider modules Bf ,Bg and B(f,g). Then [DMS11, Prop. 3.2] gives an isomorphism

Sp(B(f,g), F ) = Sp(Bf , F )⊠ Sp(Bg, F ).

In particular, there are isomorphisms

(16.1) GrαV (B(f,g), F ) =
⊕

α1+α2=α

Grα1
V (Bf , F )⊠Grα2

V (Bg, F ).

Example 16.2 (An example of Torelli). In [Tor09], it is noted that there exists a complete inter-
section variety Z which is a rational homology manifold but such that α̃Z(Z) < +∞. The example
follows from the observation that if f = x2 + y2 + z2 and g = u2 + v2 + w2, then we have

bf (s) = bg(s) = (s+ 1)

(
s+

3

2

)
.

Hence, V (f) and V (g) are both rational homology manifolds, and their product Z = V (f)×V (g) =
V (f, g) ⊆ A6 is also a rational homology manifold.

The Thom-Sebastiani rule for the roots of the Bernstein-Sato polynomial [BMS06, Thm. 5] gives

b(f,g)(s) = (s+ 2)

(
s+

5

2

)
(s+ 3),
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and so b̃(f,g)(s) has an integer root. In this example, α̃Z(Z) = 3. As 3 ̸= 2, we see by Remark 11.19
above that this implies α̃Z(g|U ) < +∞ (it is not hard to check that it is also equal to 3 in this case).
Thus, QZ ̸= 0. Moreover, note that since α̃Z(g|U ) = 3, then Corollary 11.14 recovers the fact that Z
is a rational homology manifold.

In fact, we can be rather explicit using the Product Formula (16.1) above. First of all, as f, g
are homogeneous with an isolated singular point, their V -filtrations are easy to compute (see [Sai09,

(4.2.1)]). As V (f), V (g) are rational homology manifolds, we have that GrjV (Bf ) = GrjV (Bg) = 0 for
all j ≤ 0. Thus, we have

GrλV (Bf ) ̸= 0 =⇒ λ ∈ (
1

2
Z \ Z) ∪ Z≥1,

and similarly for GrλV (Bg).
Thus, we have

Gr1V (B(f,g)) =
⊕

α∈ 1
2
Z\Z

GrαV (Bf )⊠Gr1−αV (Bg),

where we know we cannot include any α ∈ Z in the direct sum because such an α would have to
satisfy α > 0 and 1− α > 0 in order to be non-zero.

By similar reasoning, we have

Gr2V (B(f,g)) =
⊕
α∈ 1

2
Z

GrαV (Bf )⊠Gr2−αV (Bg)

= (Gr1V (Bf )⊠Gr1V (Bg))⊕
⊕

α∈ 1
2
Z\Z

GrαV (Bf )⊠Gr2−αV (Bg).

The claim is that this is the decomposition in Corollary 10.3 above. It is not hard to see that

Gr1V (Bf )⊠Gr1V (Bg) =
2⋂
i=1

ker
(
∂ti : Gr2V (B(f,g)) → Gr1V (B(f,g))

)
,

using that Gr0V vanishes for both Bf and Bg.
Finally, for α ∈ 1

2Z \ Z, we have

t1Grα−1
V (Bf ) = GrαV (Bf ),

and similarly for Bg, showing that⊕
α∈ 1

2
Z\Z

GrαV (Bf )⊠Gr2−αV (Bg) = t1Gr1V (B(f,g)) + t2Gr1V (B(f,g)).

Recall from Remark 11.11, we say that the ℓ-th jump is missed for ℓ ∈ [1, r−1]∩Z if p(Qr−ℓ, F ) =
p(Qr−ℓ+1, F ). Note that in the above example, the first jump is missed: p(QZ, F ) = p(Qr−1, F ).

Example 16.3 (Failure of Thom-Sebastiani type rules). An example related to the above shows
that the property of being a (partial) rational homology manifold is not well-behaved under Thom-
Sebastiani sums of hypersurfaces.
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Indeed, if f = x21+ · · ·+x2n and g = y21+ · · ·+y2m with n,m both odd, then V (f), V (g) are rational
homology manifolds. However, their sum f + g has Bernstein-Sato polynomial

bf+g(s) = (s+ 1)

(
s+

n+m

2

)
,

and hence it has an extra integer root. In this way, the Thom-Sebastiani sum of two rational
homology manifold hypersurfaces need not remain a rational homology manifold.

17. Examples with liminal singularities. Recall that a local complete intersection Z is said
to have l-liminal singularities for some non-negative integer l if its singularities are l-Du Bois but
not l-rational (this is equivalent to α̃(Z) = r + ℓ). Below we study the jumps when Z has l-liminal
singularities, or more generally when α̃(Z) is an arbitrary integer.

Example 17.1. The jumps are rather explicit when α̃(Z) = r + ℓ ∈ Z.
For ℓ < 0, this condition is equivalent to δf ∈ V r+ℓBf \ V >r+ℓBf . In this case,

α̃(Z) = LCT(X,Z) = r + ℓ

(where LCT stands for log-canonical threshold) and we have

p(Qr+ℓ, F ) = p(Qr+ℓ+1, F ) = · · · = p(QZ, F ) = −n.

The claim is that p(Qr+ℓ−k, F ) = k − n for all k ≥ 0. Indeed, as δf ∈ V r+ℓBf , we see that

Fk−nBf ⊆ V r+ℓ−kBf using that Fk−nBf =
⊕

|α|≤k OX∂
α
t δf . As a result, F(k−1)−nBf ⊆ V >r+ℓ−kBf ,

and so we get the desired claim. Thus, in this case, the first −ℓ jumps are missed, and after that,
every jump is hit.

For ℓ ≥ 0, this condition is equivalent to Fℓ−nBf ⊆ V rBf and Fℓ+1−nBf ̸⊆ V >r−1Bf . The last

condition implies that Fℓ−nQr ̸= 0, and in fact, it is easy to see that in this case, ℓ− n = p(QZ, F ).
Moreover, by the same reasoning as above, we see that

p(Qr−k, F ) = p(QZ, F ) + k for all k ≥ 0,

proving that, in this example, no jumps are missed.

In the case α̃(Z) = r + ℓ ≥ r, the variety Z is ℓ-Du Bois but not ℓ-rational. As the difference
between these two is measured by the property that HRH(Z) ≥ ℓ, we know that HRH(Z) ≤ ℓ−1. By
Proposition 11.1, using that p(QZ, F ) = ℓ−n, we see that we actually have equality HRH(Z) = ℓ−1,
which is guaranteed in this case also by Proposition 11.3, once we know that the first jump is not
missed.
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