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ABSTRACT. Given a semisimple element in the loop Lie algebra of a reductive group, we construct a quasi-coherent
sheaf on a partial resolution of the trigonometric commuting variety of the Langlands dual group. The construction uses
affine Springer theory and can be thought of as an incarnation of 3d mirror symmetry. For the group GLn, the corre-
sponding partial resolution is Hilbn(C× × C). We also consider a quantization of this construction for homogeneous
elements.
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1. INTRODUCTION

Let k = k be an algebraically closed field of characteristic zero or large enough positive characteristic. We fix
a connected reductive group G/k and a maximal torus T ⊂ G. We let Lie(G) =∶ g ⊃ t ∶= Lie(T ), and denote by Ǧ
the Langlands dual group over C (or Q`).

In this paper we explain how one can naturally associate to an affine Springer fiber for G, or rather to a
conjugacy class of the loop Lie algebra g((t)), a quasi-coherent sheaf on a partial resolution of the commuting
variety (henceforth PRCV) associated to Ǧ × ǧ. We prove that the sheaves constructed this way are coherent in
a number of cases and conjecture they are coherent in general. The sheaf on the PRCV remembers homological
invariants of the affine Springer fiber, and we expect that our construction provides a unified perspective on the
affine Springer fibers and their various functorial properties.

Our first main character is a partial resolution of the trigonometric version of the commuting variety for Ǧ,
which we denote by C̃Ǧ = ̃T ∗T ∨/W . It is in general a singular Poisson variety which we conjecture to locally
agree with those constructed in [53, 1, 66]. There is a natural map C̃Ǧ → Proj⊕d≥0A

d
Ǧ

where AǦ ⊂ C[T ∗T ∨]
is the subspace of antisymmetric polynomials with respect to the diagonal Weyl group action, and Ad

Ǧ
= (AǦ)d.

For G = GLn this is an isomorphism, so that we recover the Hilbert scheme of points on C∗ × C [64]. A more
detailed construction is given in Section 3.

Let GrG be the affine Grassmannian of G. On the level of k-points this is G(K)/G(O), where O = kJtK and
K = k((t)) = kJtK[t−1]. Our second main character is the affine Springer fiber Spγ ⊂ GrG, γ ∈ g(K), defined as
the fixed locus of the vector field γ. More precisely, let γ ∈ g(K) be a compact semisimple element. On the level
of R-points

Spγ(R) ∶= {gG(RJtK)∣Ad(g−1)γ ∈ Lie(G)(RJtK)} ⊂ GrG(R).
Under these assumptions, Spγ is a nonempty ind-scheme over k. If γ is also regular, Spγ is finite-dimensional
and locally of finite type. We will only be interested in the étale or singular cohomologies of the Spγ , so will be
writing Spγ for the k-points Spγ(k). If k = C we will use the analytic topology and if k = Fq we will use the
étale topology. Our main result is the following.

Theorem 1.1. Let γ ∈ g(K) be a semisimple element and Kγ = StabG(K) its centralizer. Then for every compact
(in the t−adic sense) subgroup Lγ ⊆Kγ , there exists a quasi-coherent sheaf Fγ ∈ QCohGm(C̃Ǧ) such that:

(1) Ftγ = L⊗Fγ where L = O(1) is the Serre twisting sheaf coming from the Proj-construction of C̃Ǧ.
(2) There exists an integer M such that for m >M we have

H0(Ftmγ , C̃Ǧ) =HLγ
∗ (Sptmγ)

Moreover, the homological grading on the affine Springer fiber side can be recovered from the torus action dilating
the cotangent fibers on the coherent sheaf side.

We conjecture below that Fγ is actually coherent (see Conjecture 1.7) and prove it in some cases.

Remark 1.2. Note that the quasicoherent sheaf Fγ only depends on the reduced structure of Spγ .

Remark 1.3. Here and in the rest of the paper, H∗(−) denotes Borel-Moore homology, defined as H∗(X) ∶=
H−∗(X,ωX). The Borel-Moore homology of an ind(-proper) variety X = limÐ→Xi will be defined as H∗(X) =
limÐ→H∗(Xi).

It is natural to wonder what kind of sheaves Fγ Theorem 1.1 yields. For G = GLn and γ homogeneous, we
have the following.

Theorem 1.4 (Proposition 8.10). If G = GLn and γ homogeneous of slope kn+1
n

then Fγ agrees with the restric-
tion of O(k) to the punctual Hilbert scheme at (1,0).
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Theorem 1.5. ForG = GLn and γ of integral slope k, the sheaf Fγ agrees with P⊗O(k), where P is the Procesi
bundle restricted to Hilbn(C× ×C).

Remark 1.6. For arbitrary G and homogeneous γ of integral slope, we also get an explicit description of Fγ , see
Theorem 8.12.

We also prove a noncommutative version of the above results. The ring of functions on C̃Ǧ admits a deforma-
tion, or quantization known as the spherical trigonometric or graded Cherednik algebra (or graded DAHA). By
the work of Yun [88, 89], this algebra acts in homology of Spγ .

The sheaf L = O(1) and its powers are quantized to bimodules between two trigonometric Cherednik algebras
with different values of quantization parameters. These algebras and modules are assembled to a large Z-algebra,
and one of the main results of the paper (Theorem 7.9) associates a module over this Z-algebra to a collection
of affine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .}. Roughly speaking, considering the bimodules between different
algebras allows one to move between different affine Springer fibers. For G = GLn, the Z-algebra is similar to the
one considered by Gordon and Stafford for rational Cherednik algebras of GLn in [35, 36].

The main tool we use is a novel construction of Z-algebras related to Coulomb branches of 3d N = 4 theories.
These (but not the Z-algebras we construct) were defined by Braverman, Finkelberg, Nakajima [9, 10] and further
explored by Webster [85]. This algebra is defined as the convolution algebra in the equivariant Borel-Moore ho-
mology of certain spaced related to the affine Grassmannian of G. This construction admits a natural quantization
by considering additional equivariant parameters, and one can study both commutative and quantized versions.
We use the machinery of Coulomb branches to achieve the following goals:

● We realize the full graded DAHA as the Coulomb branch algebra associated to the affine flag variety and
construct its Dunkl-Cherednik embedding to h̵-difference operators on the Lie algebra of the torus T ∨.

● We give explicit formulas for the Coulomb branch Z-algebra in difference presentation.
● We prove the shift isomorphisms for the spherical/anti-spherical subalgebras of the graded DAHA, in the

difference-operator representation. This allows us to define the shift bimodules and Z-algebras associated
to graded DAHA in all types.

● In the commutative version, the Coulomb branch Z-algebra is equivalent to a graded algebra which we
identify explicitly. This allows us to define C̃Ǧ using Proj construction.

● Finally, we prove that a collection of affine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .} yields a module over
the Coulomb branch Z-algebra. This is done similarly to “BFN Springer theory” developed by Hilburn,
Kamnitzer and Weekes [42], and Garner and the second author [26].

We give a more detailed outline of the results and arguments in Section 1.4. We also comment on various
conjectures and connections to physics of “3d Mirror Symmetry” and link homology (for G = GLn).

We note that the technology of Coulomb branches works in far greater generality than the ”adjoint matter” case
studied in this paper. The associated Z-algebras and their modules can be defined and studied as well [50]. It is
likely that their representation theory would be very interesting as well.

1.1. 3d Mirror Symmetry. The construction can be thought of as a part of the 3d mirror symmetry of 3d N = 4
gauge theories [45]. In particular, it is known that the Higgs branch of the mirror of the (G,Ad)-theory is a partial
resolution of T ∗T ∨/W . In physics terms, our construction starts with a ”boundary condition” for the category
of line operators in the A-twist of the (G,Ad)-theory (skyscraper sheaf on the stack of conjugacy classes in the
loop Lie algebra) and produces another line operator in the B-twist of the dual theory (a (quasi-)coherent sheaf
on the Higgs branch) [21]. While the present construction is far from giving any sort of categorical equivalence
(even definitions of the categories involved is delicate), it gives an explicit ”mirror map” for some of the boundary
conditions and exchanges the algebras of local operators on a resolved Higgs branch and on a resolved Coulomb
branch. We hope this construction gives a starting point for rigorous constructions of 3d mirror symmetry for line
operators. The fact that these categories have putative definitions in terms of vertex operator algebras [20] is an
interesting topic for further investigations.

1.2. Conjectures. The main construction of the paper produces a C∗-equivariant quasi-coherent sheaf

Fγ ∈ QCohC∗(CǦ)
for γ ∈ g(K). Quasi-coherence of the sheaf follows directly from our construction, but we suspect that a stronger
statement is in fact true:

Conjecture 1.7. For any regular semisimple γ ∈ g(K) the sheaf Fγ is coherent:

Fγ ∈ CohC∗(CǦ).
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The coherence conjecture already has interesting numerical corollaries. It is known that H∗(Spγ) is finite-
dimensional if γ is elliptic and G is simply connected. Thus the conjecture above implies an estimate on the
growth of the dimensions of these cohomology spaces, as we multiply γ by tm.

Conjecture 1.8. For any elliptic regular semisimple γ ∈ g(K) with G being simple and simply connected there
are ci ∈ Q and M ∈ Z such that

dim(H∗(Sptmγ)) =
r

∑
i=0

cim
i, m >M, r = rank(g).

In the case of homogeneous elliptic γ it was shown in [83] that the conjecture is true, the left-hand side being
given by variants of rational Coxeter-Catalan numbers, in particular the ci can be explicitly computed.1 Many
low-rank examples are treated in a lot of detail in [72]. More complicated non-homogeneous elliptic cases for
G = SLn were studied in [75].

1.3. Relation to conjectures stemming from knot theory. The case of G = GLn, SLn is of special interest
because of the applications to knot theory [33, 31, 32, 71, 70, 68]. In particular, the characteristic polynomial of
γ ∈ gln(K) defines an germ of planar curve singularity and the link of this singularity is the closure of the braid
(conjugacy class) β(γ) ∈ Brn. When G = SLn, the conjecture [70, Conjecture 2 and Proposition 4] predicts an
isomorphism between the (reduced) triply graded homology of β(γ) and H∗(Spγ) enhanced with the perverse
filtration [61, 60, 62]. Notice that these papers use cohomology whereas the present work uses BM homology, but
this distinction is immaterial for these numerical comparisons of multiply graded finite dimensional vector spaces.

In this paper, we enrich the algebro-geometric side of the above conjectures by considering an infinite family
of affine Springer fibers {Spγ ,Sptγ ,Spt2γ , . . .}. It is easy to see that multiplication of γ by tm corresponds to the
multiplication of the braid β(γ) by FTm, the m-th power of the full twist braid FT. Since FT is central in the
braid group, the conjugacy class of β(γ) ⋅ FTm is determined by the conjugacy class of β(γ).

By construction of triply graded homology HHH(−), there are natural multiplication maps

(1) HHH(β(γ)) ⊗HHH(FTm) → HHH(β(γ) ⋅ FTm), HHH(FTm) ⊗HHH(FTm
′

) → HHH(FTm+m′

),
and hence ⊕mHHH(β(γ) ⋅ FTm) has a structure of a graded module over the graded algebra ⊕mHHH(FTm).
The latter graded algebra, as conjectured in [31] and proved in [32], is closely related to the homogeneous coor-
dinate ring of Hilbn(C2), and to the Z-algebras appearing in this paper. In other words, in this paper we establish
a precise analogue of multiplication maps (1) on the affine Springer side by means of geometric representation
theory.

In a series of papers [68, 69] the third named author and Rozansky took a different approach to knot invariants
and defined a C∗ ×C∗-equivariant complex of coherent sheaves

Gβ ∈Db
C∗×C∗(Coh(Hilbn(C2)))

such that the hypercohomology H∗(Gβ) is isomorphic as a bigraded vector space to the ”lowest row” of the
triply-graded homology of β.

To connect these constructions with the present one, note that the natural inclusion map iC∗ ∶ C∗ × C → C2,
iC∗(x, y) = (x−1, y) induces an inclusion iC∗ ∶ Hilbn(C∗×C) → Hilbn(C2) which identifies the punctual Hilbert
schemes at (1,0) and (0,0).

Conjecture 1.9. For any regular semisimple γ ∈ glnJtK there is an isomorphism of C∗-equivariant sheaves

Fγ ≃ i∗C∗(Gβ), β = β(γ).

Let us point out that the results of Maulik [58], the aforementioned [60, 61, 62], and the results of the third
author with Rozansky in [69] can be combined to show that the conjecture is true on the level of Euler character-
istics:

χ(Spγ) = χC∗(i∗C∗(Fβ)), β = β(γ),
for γ ∈ slnJtK elliptic regular semisimple.

In particular, we derive an Euler characteristics version of the weak coherence conjecture:

Corollary 1.10. For any elliptic regular semisimple γ ∈ slnJtK there are ci ∈ Q and M ∈ Z such that

χ(H∗(Sptmγ)) =
n−1

∑
i=0

cim
i, m >M.

1For S̃ptmγ i.e. the version in affine flags, the result is easier to state and simply says ci = 0, i < r
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Finally, note that Maulik’s result actually keeps track of the Euler characteristics of the Hilbert schemes of
points on the germ defined by γ and hence the perverse filtration [60, 61]. In particular, for elliptic γ we may also
conjecture that there exists a Springer-theoretic construction of a sheaf grP Fγ ∈ CohC××C×(Hilbn(C2)) which
agrees with Fβ C× ×C×-equivariantly.

It is interesting to consider the extension of the conjecture to other than elliptic elements. While the homology
in this case is always infinite-dimensional, one has promising results for for instance the lattice quotients Spγ .
In the unramified case, the paper [16] proves that the multivariate generating function (over root valuations) of
the weight polynomials is rational. On the other hand, the second author has computed in [51] the equivariant
cohomology of the affine Springer fibers in the unramified case and related them to the Procesi bundle on the
Hilbert scheme of points.

1.4. Outline.

1.4.1. Outline of the argument. The key ingredients of the construction are 1) the technology developed by
Braverman, Finkelberg and Nakajima [9] on the affine Springer side (Topology) and 2) noncommutative geometry
methods akin to the work by [35] on the Hilbert scheme side (Algebraic Geometry). The theory of the 3) Double
affine Hecke algebras (Algebra) links these two theories together. Our work provides a dictionary between objects
in the three theories. A part of this dictionary is as follows2:

Topology Algebra Algebraic Geometry

iAi ∶=HG̃O⋊C×
∗ (iRi) eHc+ih̵,h̵e C[T ∗T ∨/W ]

i−1Ai ∶=HG̃O⋊C×
∗ (i−1Ri) i−1Bi = e−Hc+ih̵,h̵e O(1)

iÃi ∶=H ĨO⋊C×
∗ (iR̃i) Hc+ih̵,h̵ H0 ( ̃T ∗T ∨/W,P)

i−1Ãi ∶=H ĨO⋊C×
∗ (i−1R̃i) i−1B̃i H0 ( ̃T ∗T ∨/W,P ⊗O(1))

HC×
∗ (S̃pnk+1

n
) Hc+kh̵,h̵ ↷ Lnk+1

n
(C) Oπ−1(1,0)(k)

In the Algebra column of the table we have the algebraic objects related to the representation theory of the graded
double affine Hecke algebra Hc,h̵ defined in Definition 4.1. This algebra is also known under the names trigono-
metric or degenerate DAHA. The algebra Hc,h̵ contains the finite Weyl group W and e,e− ∈W are the projectors
for the trivial and sign representations. We define an explicit representation of these algebras using difference
operators and use it to prove the following:

Theorem 1.11. (Theorem 4.12) The spherical subalgebra eHc,h̵e is isomorphic to the anti-spherical subalgebra
e−Hc−h̵,h̵e− with shifted parameter.

Similar shift isomorphisms are well known in the theory of rational Cherednik algebras and for the Dunkl
differential-difference representation [4, 43, 74], but it appears to be new for the difference representation of
trigonometric DAHA.

Thus e−Hc+ih̵,h̵e naturally has left eHc+(i−1)h̵,h̵e and right eHc+ih̵,h̵e action and we set:

iBi = eHc+ih̵,h̵e, iBi+1 = e−Hc+ih̵,h̵e, iBj+1 = iBj ⊗jBj jBj+1.

The direct sum ●B● = ⊕i≤j iBj is an example of a Z-algebra, introduced by Polischuk and Bondal [8] and
studied in a setting relevant to us by Gordon and Stafford [35, 36, 76].

We now explain how the above mentioned structures exist in the affine Springer theory, which corresponds to
the Topology column. The key geometric object is an ind-scheme iR̃j , a variant of ”the space of triplesR” central
to the work of Braverman, Finkelberg and Nakajima on Coulomb branches:

jR̃i = {(g, v) ∈ G(K) × ti Lie(I)∣g ⋅ v ∈ tj Lie(I)} /I,

where I is the Iwahori subalgebra. On the level of sets, the quotient space I/0R̃0 is the quotient S̃t/G(K) of the
affine Steinberg space S̃t as also explained in the introduction to [10].

It was explained by Varagnolo and Vasserot [82] that the equivariant homology group of the affine Steinberg

variety H Ĩ⋊C∗rot
∗ (0R̃0) is isomorphic to Hc,h̵, here the parameter c depends on our choice of the equivariant struc-

ture with respect to the loop rotation group C∗
rot. Their work however uses localization techniques which we are

able to avoid, thereby providing an isomorphism over the full parameter space, see Theorem 6.1.

2For simplicity of introduction we discuss the type A case, for other types see section 8
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Similarly, one can define the affine Grassmannian version iRj of the above spaces. Since the fibers of the
projection iR̃j → iRj are classical Springer fibers, we have a geometric model for the spherical algebra eH(c)e =
H
G(O)⋉C∗rot
∗ (0R0). Thus, it is natural to define

iAj =H
G(O)⋉C∗rot
∗ (iRj), ●A● =⊕

i≤j
iAj .

As explained in [11, 21, 85], there is a natural convolution product

H
G(O)⋉C∗rot
∗ (iRj) ⊗H

G(O)⋉C∗rot
∗ (jRk) →H

G(O)⋉C∗rot
∗ (iRk).

By associativity the convolution descends to give bilinear product maps

iAj ⊗
jAj

jAk → iAk.

One of our main results partially identifies the Coulomb branch Z-algebra ●A● in terms of the algebraic Z-algebra
●B●.

Theorem 1.12. The Coulomb branch Z-algebra ●A● satisfies the following properties:
(a) For all i the algebras iAi and iBi are isomorphic.
(b) For all i the bimodules iAi+1 and iBi+1 are isomorphic.
(c) For G = GLn, the bimodules iAj and iBj are isomorphic for all i ≤ j. Moreover, the Z-algebras ●A●

and ●B● are isomorphic.

We prove part (a) as Theorem 6.1, part (b) as Theorem 6.5 and part (c) as Theorem 6.21. In Proposition 6.10
we also provide an explicit basis for the associated graded of ●A● with respect to Bruhat filtration in all types, see
in particular Theorem 6.8 for G = GLn.

The main difficulty in proving part (c) is that ●B● is generated by the “degree one bimodules” iBi+1 by defi-
nition, while this is not clear at all for ●A●. For G = GLn, we resolve this difficulty by a careful combinatorial
analysis of the basis in Theorem 6.8, and using deep results of Gordon and Stafford on Z-algebras for rational
Cherednik algebras [35, 36].

Next, we turn to the Algebraic Geometry column of the table. In the commutative limit c = h̵ = 0 the Z-algebra
●Ah̵=0

● becomes a graded commutative algebra, as iAh̵=0
j only depends on the difference d = j − i. For d = 0

the algebra 0Ah̵=0
0 can be identified with the algebra of symmetric polynomials on T ∗T ∨, or, equivalently, the

algebra of functions on T ∗T ∨/W . For d = 1 the module 0Ah̵=0
1 can be identified with the space of antisymmetric

polynomials on T ∗T ∨. We can then define an algebraic variety

(2) C̃Ǧ ∶= Proj
∞
⊕
d=0

0Ah̵=0
d

which is a partial resolution of Spec 0Ah̵=0
0 = T ∗T ∨/W . In other words, we identify the above graded algebra

with the homogeneous graded ring of C̃Ǧ. Our next main result identifies this graded algebra explicitly.

Theorem 1.13. (Theorem 3.8) Let ε be the sign representation of C[W ] and ed be the idempotent corresponding
to ε⊗d. We have

0Ah̵d ≃ ed ⋂
α∈Φ+

⟨1 − α∨, yα⟩d

where in the right hand side we have an intersection of ideals in C[T ∗T ∨]. The isomorphism agrees with the
convolution structure on the left hand side and the multiplication on the right hand side.

By the work of Haiman [40], for G = GLn this implies the following:

Theorem 1.14. For G = GLn, we get

Proj
∞
⊕
d=0

0Ah̵=0
d = Hilbn(C∗ ×C),

in particular, it is a smooth resolution of T ∗T ∨/W ≃ (C∗ ×C)n/Sn.

Remark 1.15. A different proof of Theorem 1.14 essentially follows from [11, Theorem 3.10], which identifies a
resolution of the Coulomb branch for (GLn,gln⊕Cn), constructed using flavor symmetry, with Hilbn(C2). The
same proof in loc. cit. applied to (GLn,gln) yields Theorem 1.14.

Another proof can be extracted from more general results of Nakajima and Takayama [65, 80] which identify
the resolved Coulomb branches of quiver gauge theories of affine type A with certain Cherkis bow varieties [19],
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and certain moduli spaces of parabolic sheaves on P1 × P1. See, in particular, [11, Theorem 4.9] for more context
and details.

Next, we study graded modules over all of the above Z-algebras and graded algebras. The convolution structure
of spaces iR̃j allows us to define a correspondence between the affine Springer fibers in the affine flag variety
S̃ptiγ , S̃ptjγ ⊂ G(K)/Ĩ . Similarly, we prove in Theorem 7.9 that ⊕j≥0H∗(Sptjγ) is a module over Z-algebra
●A●. This is very similar to the BFN Springer theory developed in [42, 26]. In the commutative variant, we obtain
a graded module over the graded algebra, and hence a quasi-coherent sheaf over its Proj construction defined by
(2), which proves Theorem 1.1.

Finally, we outline a simple construction of the above action. Recall that the homology of the affine Grassma-
nian version of the Springer fibers Sptjγ ⊂ G(K)/G(O) can be described in terms of the action of the finite Weyl
group:

(3) H∗(Sptjγ) =H∗(S̃ptjγ)W , H∗(Sptj−1γ) =H∗(S̃ptjγ)ε[−2 dimG/B].

where ε is the sign representation of W and [−2 dimG/B] denotes shift in homological degree. We explain the
details of the isomorphisms in the Lemma 2.2. Given a class in H∗(Sptj−1γ), we can identify it with a class in
H∗(Sptjγ)ε, then act by an antisymmetric polynomial (using the commutative version of the double affine action
of [88]) and get a class in H∗(Sptjγ)W =H∗(Sptjγ). This construction gives a map

(4) AG ⊗H∗(Sptj−1γ) →H∗(Sptjγ)

where AG = 0Ah̵=0
1 is the space of antisymmetric polynomials.

It is unclear if this approach can be used to define the action of the full graded algebra ⊕∞
d=0 0Ah̵=0

d , the main
obstacles are:

● It is unclear how to verify the relations between the products of elements of 0Ah̵=0
1 inside 0Ah̵=0

d

● For G ≠ GLn, it is unclear if the algebra is generated in degree 1.
To avoid these obstacles, we have abandoned this approach altogether and instead used the machinery of

Coulomb branches throughout the paper. Nevertheless, a posteriori we conclude that the action of the degree
1 part of the algebra agrees with (4), and hence all necessary relations are satisfied.

1.4.2. Outline of the paper. In Section 2 we define the affine Springer fibers and some background material. The
sheaves we construct live on a partial resolution of T ∗T ∨/W , which is introduced in Section 3. In Section 4, we
study the trigonometric Cherednik algebra and a natural Z-algebra built out of it, which is the algebraic main part
of the construction. In Sections 5,6 and 7 we study the affine Springer fibers using Coulomb algebra machinery,
in particular constructing a geometric Z-algebra action and comparing it to the one in Section 4. In Section 8
we prove that the sheaves we construct are coherent whenever γ is homogeneous. In Section 8.2, we study some
homogeneous examples in detail.
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2. AFFINE SPRINGER FIBERS

2.1. Definitions. Let G/k be a reductive group over a field k. We assume k = k and that the characteristic is zero
or large enough (no attempt will be made to give bounds). Fix some pinning T ⊂ B ⊂ G of the root system of G.
Define N = dim(G/B). Let K = k((t)) and O = kJtK. Write G((t)) = G(K) and GJtK = G(O). Denote also
g = Lie(G) and g((t)) = g(K),gJtK = g(O).

Let P be a standard parahoric subgroup of G(K). Let FlPG = G(K)/P be the corresponding partial affine flag
variety. When P = I is the Iwahori subgroup of G(K) corresponding to B, we simply write FlG ∶= FlI for the
affine flag variety and when P = G(O) we write GrG ∶= FlG(O) for the affine Grassmannian. Since it will usually
be clear from the context, we will also omit the subscript G.
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For any P and γ ∈ g(K) , define the affine Springer fiber

SpP
γ ∶= {gP∣Ad(g−1)γ ∈ Lie(P)} ⊂ FlP .

When P = G(O) we omit the superscript and when P = I we write S̃pγ = SpI
γ .

The space SpP
γ is a sub-ind-scheme of FlP. It is always nonreduced, but since it makes no difference to us, we

will only work with the reduced structure of SpP
γ . SpP

γ is finite-dimensional if and only if γ is regular semisimple
[47]. We shall mostly focus on the case γ is regular semisimple from now on. We also assume γ is compact, i.e.
contained in some Iwahori subgroup, or equivalently that the affine Springer fiber is nonempty. The ind-scheme
Spγ is locally of finite type, and by results of [47] there exists a free abelian group L acting on SpP

γ freely and a
projective scheme S ⊂ SpP

γ such that L ⋅S = SpP
γ . The free abelian group L can be identified with the cocharacter

lattice X∗(CG(K)(γ)). In particular, L is trivial if and only if γ is elliptic. In this case, SpP
γ is a projective variety.

Remark 2.1. By the Jordan decomposition, we can write any γ as the sum of commuting semisimple and nilpotent
elements: γ = γs + γn. Therefore, we can reduce the study of general γ to nilpotent and semisimple γ, as
Spγ = Spγs ∩ Spγn . While it is also interesting to study non-regular semisimple elements, much about this case
can in principle be extracted from the regular semisimple case by the fact that the centralizer of a semisimple
element is a reductive group over K. In the present work, we are mostly concerned with HLγ

∗ (Spγ) for Lγ a
compact subgroup of the centralizer of γ. For example, the natural action of the dDAHA on the coordinate ring of
the universal centralizer in Theorem 3.21 can be interpreted as taking γ = 0 and Lγ = GO ⊆ GK.

However, the nilpotent elements seem more mysterious from our point of view. It is clear e.g. by the conver-
gence of the corresponding orbital integrals that the centralizers of nilpotent elements are quite large. In the case
where γ is nilpotent, it is not even known if there is a Levi factor of the centralizer. It does make sense to ignore
the centralizer (or at most use compact subgroups thereof) and use finite-dimensional approximation to study the
Borel-Moore homology of Spγ even in the nilpotent cases.

2.2. The Springer action. Assume for now that k = C or that we are using étale cohomology over Q` ≅ C
for ` ≠ char(p). One of the remarkable things about S̃pγ is that H∗(S̃pγ) = H∗(S̃pγ ,C) has an action of the
extended affine Weyl group W̃ = W ⋉X∗(T ) as shown by Lusztig [57] (in the adjoint case) and Yun [88] (in
general), analogously to the Weyl group action in the cohomology of classical Springer fibers.

Lemma 2.2. Let γ ∈ g(K) be an element such that γ = tγ0 for a regular semisimple compact element γ0 ∈ g(K).
Then under the Springer action of W ⊂ W̃ on H∗(S̃pγ), we have a natural identification

(5) H∗(S̃pγ)W =H∗(Spγ)
and an isomorphism

(6) H∗(S̃pγ)ε ≅H∗(Spγ0)[−2N].

Here [−2N] means a shift in homological degree and N = dimG/B.

Proof. The first part is due to [89, Section 2.6], and the second part is well-known but not found in the literature,
so we give a proof here.

First recall the construction of the Springer action for the subgroup W ⊂ W̃ . Since I ⊂ GJtK, we have natural
projections Fl→ Gr and S̃pγ → Spγ . For any P, write P = P/tP and p for its Lie algebra. There are natural maps
of fpqc sheaves SpP

γ → [p/P ], which send the cosets gP to the respective images of g−1γg under the projections
Lie(P) → p. In particular there is a cartesian diagram

(7)

S̃pγ [g̃/G] = [b/B]

Spγ [g/G]

ϕ′

π π′

ϕ

where the right-hand side is naturally identified with the Grothendieck-Springer resolution for G. Since γ = tγ0, it
is clear that the image of ϕ will be contained in [N/G] ⊂ [g/G] and the image of ϕ′ will be contained in [Ñ /G].
The restriction S ∶= π′∗C∣N is perverse, and is called the Springer sheaf. It is in fact isomorphic to a direct sum of
IC complexes on nilpotent orbits, and it is known by classical Springer theory that

EndPervG(N)(S) ≅ C[W ].
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In particular, there is a map
C[W ] → EndPerv(Spγ)(ϕ

∗S)

and hence an action of W on H∗(S̃pγ). Decomposing the regular representation of W , we see that there is some
IC complex F on [N/G] corresponding to the sign representation ε. From classical Springer theory it follows
that this complex is isomorphic as a perverse sheaf to the shifted skyscraper sheaf C{0}[−2N].

By proper base change,

H∗(S̃pγ)ε = Hom(ϕ∗F , π∗C) ≅ Hom(ϕ∗F , ϕ∗S).
Now note that

ϕ−1(0) = {gG(O) ∈ Spγ ∣g−1γg ≡ 0 (mod t)} = Spγ0 .

This is a closed subspace, so ϕ∗F is isomorphic to the (shifted) extension by zero of the constant sheaf on Spγ0 .
In particular, RΓ(ϕ∗F) ≅H∗(Spγ0). On the other hand, by the adjunction

Hom(ϕ∗F , ϕ∗S) = Hom(F , ϕ∗ϕ∗S)

it is clear that Hom(ϕ∗F , ϕ∗S) ≅ RΓ(ϕ∗C{0})[−2N]. Thus H∗(S̃pγ)ε ≅H∗(Spγ0)[−2N].
�

We can rephrase Lemma 2.2 as follows. We have the Leray filtration on the Borel-Moore homology of S̃pγ
such that

(8) grHk(S̃pγ) = ⊕
i+j=k

Hi(Spγ ,R
jπ∗C), 0 ≤ j ≤ 2N.

Corollary 2.3. a) The W -invariant part of the homology of S̃pγ is canonically isomorphic to the j = 0 part of
(8):

Hk(S̃pγ)W =Hk(Spγ ,R
0π∗C) =Hk(Spγ ,C).

b) The associated graded of the W -antiinvariant part is isomorphic to the j = 2N part of (8). In other words,
the restriction of the obvious map

Hk(S̃pγ)ε →Hk−2N(Spγ ,R
2Nπ∗C) ≅Hk−2N(Spγ0)

is an isomorphism.

Remark 2.4. The result is also true in cohomology, cohomology with compact supports and BM homology (where
we replace the constant sheaf by ωS̃pγ

) by identical reasoning.

Remark 2.5. The stabilizerKγ ∶= StabG(K)(γ) acts naturally on S̃pγ , inducing an action of the component group
in cohomology. In particular, we have the Springer action for equivariant versions of any of the above theories, as
well as a commuting action of the component group of the centralizer.

2.3. Extended symmetry. In addition to the action of W̃ onH∗(S̃pγ) there is a degenerate action of the character
lattice X∗(T ) on H∗(S̃pγ) defined as follows. There is a natural map I→ T realizing T as the reductive quotient
of I. In particular, each character χ ∶ T → Gm gives a map I→ Gm and in particular a Gm-torsor L(χ) on Fl. As
a line bundle, we can write this as

G ×I,χ A1 → Fl .

Cap product with c1(L(χ)) defines an action of X∗(T ) ⊗Z C on H∗(S̃pγ).

Theorem 2.6. LetX∗(T ) ⊂ W̃ be the translation part of the extended affine Weyl group. Then the Springer action
of X∗(T ) and the action of X∗(T ) defined above commute.

Proof. This is proved in [88, Corollary 6.1.7]. �

Remark 2.7. Note that this is not true in equivariant Borel-Moore homology, as one gets essentially relations in
the degenerate DAHA.

Note that we can identify the action of X∗(T ) with the action of C[T ∨] and the action of X∗(T ) ⊗Z C with
the action of C[t], and summarize the above results in the following

Proposition 2.8. The non-equivariant Borel-Moore homology H∗(S̃pγ) is a (right) module over C[T ∗T ∨] ⋊W .

Proposition 2.9. The non-equivariant Borel-Moore homology H∗(Spγ) is a module over C[T ∗T ∨]W .



10 EUGENE GORSKY, OSCAR KIVINEN, AND ALEXEI OBLOMKOV

Proof. By Lemma 2.2 we have H∗(Spγ) = H∗(S̃pγ)W , and by Proposition 2.8 H∗(S̃pγ) has an action of
C[T ∗T ∨]. By symmetrizing, we get the action of C[T ∗T ∨]W on H∗(Spγ). �

We record the following lemma here.

Lemma 2.10. The action of X∗(T )⊗Z C on H∗(Spγ) from Section 2.3 decreases the Leray filtration (8) by two.

Proof. This follows from the fact that the action comes from cap product with Chern classes of the line bundles
L(χ) constructed in the beginning of this section. �

Let ∆ be the top-dimensional class in H2N(G/B). By the isomorphism H∗(G/B) ≅ C[t]W , we can iden-
tify ∆ with an antisymmetric polynomial in C[t], namely ∆ = ∏α∈Φ+ yα. Moreover, note that we may write
antisymmetric polynomials as C[t]ε = ∆ ⋅C[t]W .

Lemma 2.11. We have that
i∗(Hk−2N(Spt−1γ)) = ∆ ⋅Hk(S̃pγ)ε.

where i ∶ Spt−1γ → Spγ is the natural inclusion.

Proof. By Lemma 2.10 the operator ∆ preserves the decomposition (8) and decreases the j-grading by 2N . Since
j ≤ 2N , the action of ∆ kills all the summands in (8) with j < 2N , so that

∆ ⋅Hk(S̃pγ)ε = ∆ ⋅Hk−2N(Spγ ,R
2Nπ∗C).

At p ∈ Spγ where π−1(p) is a proper subset in the flag variety, R2Nπ∗C∣p = 0. On the other hand, π−1(p) is the
full flag variety if and only if p ∈ i(Spt−1γ) and in this case ∆ ∶ R2Nπ∗C→ R0π∗C is the isomorphism. Therefore

∆ ⋅Hk−2N(Spγ ,R
2Nπ∗C) = i∗(Hk−2N(Spt−1γ)).

�

2.4. The lattice action. Let Gγ be the stabilizer of γ in G(K). Obviously, Gγ acts on Spγ , giving an action (of
its component group) on the homology of Spγ . Since the action in this case is proper [47], we also get an action
on the Borel-Moore homology H∗(Spγ).

TheW -invariant translation part of the stabilizer action restricts to an action of the ”spherical part” C[X∗(T )]W
on H∗(S̃pγ). This action commutes with the Springer action, and the local main theorem of [89] identifies the
spherical part of the Springer action with the spherical part of the lattice action. More precisely,

Theorem 2.12. [89] One can define a canonical homomorphism C[X∗(T )]W ↠ C[π0(Gγ)] and the spherical
part of the Springer action on H∗(S̃pγ) factors through this map.

By Propositions 2.8 and 2.9, the (BM) homology of Spγ and the homology of S̃pγ define quasicoherent sheaves
F ′γ and F̃ ′γ on (T ∗T ∨)/W .

Lemma 2.13. These quasicoherent sheaves are actually coherent, and set-theoretically supported on the La-
grangian subvariety {0}×T ∨ ⊂ T ∗T ∨. Moreover, the dimension of their support equals the rank of the centralizer.

Proof. It is clear that the action of t is nilpotent, and symmetric functions in t act by 0, as they do in H∗(G/B).
By Theorem 2.12 the homology of Spγ is finitely generated over C[T ∨] and the lattice part of the centralizer

acts freely on the components by Kazhdan-Lusztig [47]. Therefore the support is exactly {0}×T ∨γ /W , which has
dimension the rank of the cocharacter lattice of the centralizer of γ. �

2.5. Equivariant versions, endoscopy. We can in fact upgrade this construction with the addition of equivari-
ance to the picture. The centralizer Gγ/K has a smooth integral model Jγ over O, see e.g. [67]. The stabilizer
action factors through the local Picard group Pγ = Gγ(K)/Jγ(O) whose underlying reduced scheme is finite-
dimensional and locally of finite type. Consider the connected component of the identity P 0

γ of this group scheme.
This is a linear algebraic group over C whose maximal reductive quotient contains a split maximal torus of rank
rank(X∗(Gγ)). Call this torus Tγ . It also acts on Spγ , and we may take the equivariant BM homology as in
[51, Section 3]. The construction of the Springer action etc. from this section go through Tγ-equivariantly. For
simplicity, assume Tγ ↪ T . Then we have:

Proposition 2.14. The equivariant BM homology HTγ
∗ (Spγ) is a quasi-coherent sheaf on T ∗T ∨/W . Its support

is contained in the subvariety T ∗T ∨γ /W ⊂ T ∗T ∨/W . In particular, if γ is elliptic, the support is zero-dimensional.



THE AFFINE SPRINGER FIBER – SHEAF CORRESPONDENCE 11

Proof. The equivariant cohomology of a point H∗
Tγ

(pt) acts on HTγ
∗ (Spγ), giving that the support is contained

in tγ ×T ∨/W . Results of Yun [89] then imply that the spherical part of the Springer action is given by C[Λγ]W ≅
C[T ∨γ ]W just as in Theorem 2.12. This gives that the support lies in T ∗T ∨γ /W (and in fact projects surjectively to
T ∨γ /W ). �

Remark 2.15. For split equivalued elements, or whenever we have equivariant formality of the H∗
Tγ

(pt)-action,
the proof shows the support is all of T ∗T ∨γ /W .

If G ≠ GLn, we note that in the determination of the above support we run into issues of endoscopy. Already
for G = SLn, the center µn will be contained in Tγ for any γ. For example for elliptic γ, we get support at n
points in T ∗T ∨/W . Let us now illustrate how this plays out in the case of general G and γ elliptic. Recall that we
may decompose

H
Kγ
∗ (Spγ) = ⊕

κ∈X∗(T )
H
Kγ
∗ (Spγ)κ

where either Kγ = {1} or Kγ = Tγ (or any subgroup of Gγ for which the definitions make sense) as above. The
homological statement of the Fundamental Lemma, proved by Ngô, is essentially that

(9) H
Kγ
∗ (Spγ)κ ≅H

Kγ
∗ (SpHγH )st

for some affine Springer fiber SpHγH of an endoscopic group of G. Here ”st” denotes the stable part, or in other
words the part of the BM homology where the lattice acts unipotently (see e.g. [89]). Since H∗(Spγ) is finite-
dimensional, by using Lemma 2.13, the above κ-decomposition and Eq. (9), we deduce the following version of
the fundamental lemma.

Theorem 2.16. The sheaf F ′γ is supported at finitely many points. Each stalk (F ′γ)(0,κ) is isomorphic to the stalk
at (0,1) of an ”endoscopic sheaf” on T ∗T ∨H/WH for some endoscopic group H of G.

3. THE COMMUTING VARIETY

3.1. The commuting scheme. In this section, we introduce the partial resolution of the commuting variety we
will be considering. The construction is algebraic in nature. We show the partial resolution coincides with
Hilbn(C× × C) in the case G = GLn. In general, we show it is a normal variety and conjecture that locally
its singularities are modeled by the Q-factorial terminalizations constructed by Losev in [54, 1]. Finally, we intro-
duce a certain open chart of the partial resolution, which turns out to be isomorphic to the universal centralizer of
Ǧ.

As above, let ǧ be the Lie algebra of Ǧ, ť = t∗ is the Lie algebra of Ť and W is the Weyl group. We define two
versions of the commuting scheme: C′ǧ is a subscheme of ǧ× ǧ cut out by the equation [x, y] = 0, while C′

Ǧ
= C′

Ǧ,ǧ

is a subscheme of Ǧ × ǧ∗ cut out by the equation Adg(x) = x.
Define Cǧ ∶= C′ǧ//Ǧ = Spec C[C′ǧ]Ǧ and CǦ = C′

Ǧ
//Ǧ = Spec C[C′

Ǧ
]Ǧ. It is a long-standing open question if

these schemes are reduced. We collect some facts about Cg and C here.
There are natural restriction maps C[Cǧ] → C[t∗ × t∗]W and C[CǦ] → C[Ť × t]W , which induce maps

(t∗ × t∗)/W → Cǧ and (T ∗Ť )/W → CǦ. The former is surjective by the result of Joseph [46] and defines an
isomorphism (t∗ × t∗)/W ≃ [Cǧ]red.

In [12, Proposition 5.24], the following is proved by essentially reducing to Joseph’s results in the rational case:

Theorem 3.1. The restriction of functions induces an isomorphism (T ∗Ť )/W ≃ [CǦ]red.

We note that there are alternative proofs of the theorem, such as the one given by Gan-Ginzburg in type A:

Theorem 3.2 ([25]). For G = GLn the scheme Cg is reduced.

From this it is easy to deduce

Corollary 3.3. For G = GLn the scheme CG is reduced.

Proof. For G = GLn we have a natural embedding G ⊂ g which induced embedding C′ ⊂ C′g and CG ⊂ Cg. Since
Cg is reduced, CG is reduced too. �

Recently, Chen-Ngô [17] proved that Cg is reduced for g = sp2n and subsequently, Losev [56] showed that C′g
for g = sp2n is reduced as well.
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3.2. Partial resolutions. In this subsection we define several graded commutative algebras closely related to the
commuting variety. By applying Proj construction to these graded algebras, we recover partial resolutions of CǦ.
We summarize various maps between the algebras in the following commutative diagram:

(10)
⊕Jd ⊕ I(d)

⊕ 0Ah̵=0
d ⊕Ad ⊕edI

(d).a
b

All direct sums are over d ≥ 0. Next, we define all of the entries in this diagram, starting with the middle
column.

We denote by ε the one-dimensional sign representation of W . We define At, respectively A, as the subspace
of W -antiinvariant functions (that is, ε-isotypic component) in C[t∗ × t], respectively C[T ∨ × t]. Also, let Jt,
respectively J be the ideal in C[t∗ × t] (resp. C[T ∨ × t∗]) generated by At (resp. A). Now Ad and Jd are
the powers of A and J inside the respective polynomial rings, with the assumption that A0 = C[T ∨ × t]W and
J0 = C[T ∨ × t].

In the right column we have a family of ideals I(d) ∶= ⋂α∈Φ+⟨1 − α∨, yα⟩d. In particular, for d = 1 we get the
defining ideal of the union of the codimension 2 hyperplanes corresponding to the roots of g. It is easy to see that
I(d1) ⋅ I(d2) ⊂ I(d1+d2), so we have a graded algebra structure on the direct sum of all I(d). Furthermore, let ed
denote the projector to the representation εd in C[W ], that is, symmetrizer e for d even and antisymmetrizer e−
for d odd.

Lemma 3.4. a) We have edJ
d = Ad for all d ≥ 0.

b) There are natural inclusions bd ∶ Jd → I(d),Ad → edI
(d).

Proof. a) For d = 0 this is clear from the definition, so we focus on d > 0. Since J is the ideal generated by A, it
is spanned by elements of the form a ⋅ f for a ∈ A and f ∈ C[T ∨ × t], and Jd is spanned by elements of the form
a1⋯ad ⋅ f for a1, . . . , ad ∈ A and f ∈ C[T ∨ × t]. Since a1, . . . , ad are antisymmetric, we get

eda1⋯ad ⋅ f = a1⋯ade(f) ∈ Ad.
b) It is easy to see that an antisymmetric polynomial vanishes on all codimension 2 hyperplanes, so we get

A ⊂ I(1) and hence J ⊂ I(1). Therefore Jd ⊂ (I(1))d ⊂ I(d) and the result follows. �

Finally, in the left column we have commutative Coulomb branch Z-algebra⊕ 0Ah̵=0
d to be defined in Section

6. It is a generalization of the commutative Coulomb branch appearing in the work of Braverman, Finkelberg and
Nakajima [9, 10]. It is defined as the convolution algebra in the equivariant Borel-Moore homology of a certain
space related to the affine Grassmannnian of G, and we postpone its definition to Section 6. Here we summarize
some of its basic properties with pinpoint references to the proofs later in the paper.

Theorem 3.5. The algebras 0Ah̵=0
d have the following properties:

a) For all d the module 0Ah̵=0
d is free over C[t]W and embeds into edC[T ∨ × t].

b) For d = 0, we have 0Ah̵=0
0 = C[T ∨ × t]W .

c) For d = 1, we have 0Ah̵=0
1 = A.

d) In type A, we have 0Ah̵=0
d = (0Ah̵=0

1 )d = Ad for all d.

Proof. a) We regard C[t]W as the equivariant cohomology of the point, and 0Ah̵=0
d is realized as the equivariant

Borel-Moore homology of a certain space which admits an affine paving by Bruhat cells. Therefore it is equiv-
ariantly formal and its equivariant cohomology is a free module over H∗

G(pt). The embedding to C[T ∨ × t] is
realized by the inclusion to equivariant Borel-Moore homology of the fixed point set. See Section 6 for more
details. That we land in the ed-isotypic component follows from the fact that the localization is defined using
T -equivariant cohomology and to pass to G-equivariant cohomology we take W -invariants. See for instance [9,
Remark 5.23].

b) This is a specialization of Corollary 6.3 at h̵ = 0.
c) By part (a) we have inclusion 0Ah̵=0

1 ⊂ e−C[T ∨ × t] = A. By Theorem 6.5 (specialized at h̵ = 0) this is an
isomorphism.

d) This is a specialization of Theorem 6.21 at h̵ = 0. �
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Note that part (c) of the theorem yields the map A → 0Ah̵=0
1 and hence a family of maps Ad → 0Ah̵=0

d . These
are denoted by ad in the commutative diagram (10).

Corollary 3.6. If G has rank 1 then Ad ≃ 0Ah̵=0
d ≃ edI

(d) for all d.

Proof. By Theorem 3.5(d) we get Ad ≃ 0Ah̵=0
d . On the other hand, in rank 1 we have only one codimension 2

hyperplane and it is easy to see that I(d) = Ad. �

Lemma 3.7. There is a natural inclusion 0Ah̵=0
d → edI

(d) corresponding to the dotted arrow in (10).

Proof. By Theorem 3.5(a) we know that 0Ah̵=0
d is contained in the ed-isotypic component, so it is sufficient to

check that it is contained in I(d) or, equivalently, in ⟨1 − α∨, yα⟩d for all α. For this it is sufficient to restrict to a
rank 1 subgroup of G, similarly to [11] and [59, Section 3].

On the other hand, if G has rank 1 then the result follows from Corollary 3.6. �

Theorem 3.8. We have 0Ah̵=0
d ≃ edI

(d) for all d.

Proof. By Lemma 3.7 we have an inclusion of 0Ah̵=0
d into edI

(d). Since 0Ah̵=0
d is free over C[t]W and edI

(d) is
torsion free, it is sufficient to prove that the inclusion is an isomorphism outside of codimension 2 subset.

Both C[t]W -modules are supported on the union of the root hyperplanes in t∗/W . If we specialize to a generic
point in one of the hyperplanes, we can replaceG by its rank 1 subgroup, and the isomorphism follows from Corol-
lary 3.6. Therefore the two modules are isomorphic outside of the union of pairwise intersections of hyperplanes,
which has codimension 2. �

We can use the above graded algebras to construct projective varieties

C̃Ǧ ∶= Proj⊕
d

0Ah̵=0
d ≃ Proj⊕

d

edI
(d), YG = Proj⊕

d

I(d).

By the work of Haiman [40] for G = GLn we have C̃Ǧ = Hilbn(C∗ ×C) and YG is isomorphic to the isospectral
Hilbert scheme of C∗ ×C:

YG (C∗ ×C)n

Hilbn(C∗ ×C) Sn(C∗ ×C).

We claim that the varieties C̃Ǧ and YG can be considered as the partial resolutions of the commuting variety which
we identify with T ∗T ∨/W .

Remark 3.9. In [27], Ginzburg defines and studies the isospectral commuting variety for general G. On the other
hand, the variety YG = Proj⊕d≥0 I

(d)
G is another candidate for the isospectral commuting variety. It is natural to

wonder how the two constructions are related.

Remark 3.10. In [29], Ginzburg-Kaledin prove that there are no crepant resolutions of T ∗t/W for W outside
types A,B,C. Their definition of symplectic resolution includes the crepant condition, so their statement is non-
existence of symplectic resolutions. Indeed, these conditions are equivalent in this case. This non-existence of a
symplectic resolution is thus likely the case for T ∗T /W as well. We note however that from the results of [7], it
follows that T ∗t/W and T ∗T /W admit birational maps from the universal centralizer group schemes appearing
Theorem 3.21, which are smooth for simply connected groups in any type. Note that these are not resolutions of
singularities in the usual sense, since they are not proper.

Proposition 3.11. YG is normal.

Proof. We will prove the homogeneous coordinate ring⊕J(d) is integrally closed. Indeed, 1−α∨, yα is a regular
sequence. The powers of an ideal generated by a regular sequence are integrally closed, and intersection preserves
integral closedness. So the symbolic blow-up considered here is integrally closed. �

Corollary 3.12. C̃Ǧ is normal.

Proof. If a normal variety Y is acted upon by a finite group Γ, Y /Γ is normal [77, Chapter II.5., top of page
128] (note that Shafarevich assumes that Y is affine, but the argument works for any variety since this is a local
property). �
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In addition to normality, we have

Proposition 3.13. The variety C̃Ǧ has only terminal singularities.

Proof. This follows from [87, Theorem 15]. �

Remark 3.14. An alternative proof of normality of C̃Ǧ follows from [87, Theorem 14].

Remark 3.15. Fix some symplectic Q-factorial terminalization of T ∗T ∨/W , as constructed in [2, 66]. Denote it
by X̃Ǧ. The formal Poisson deformations of X̃Ǧ are parameterized by H2(X̃reg

Ǧ
,C). There is a Lie algebra ver-

sion X̃ǧ → t⊕ t∗/W where X̃ǧ is the Q-factorial terminalization constructed in [54]. This is a conical symplectic
partial resolution with Q-factorial singularities such that codim(X̃ǧ − X̃reg

ǧ ) ≥ 4. By [66], this implies that X̃ǧ is
terminal. In this case, it is possible to prove [66, 54] that the filtered quantizations of X̃ǧ are also parametrized by
H2(X̃reg

ǧ ,C). We do not know if this is the case for X̃Ǧ, since the results in the Lie algebra case heavily use the
fact that t⊕ t∗/W has conical symplectic singularities.

Finally, we note that similar to [1, Proposition 2.1.] the normal intermediate partial resolutions

X̃Ǧ →XǦ → T ∗T ∨/W

are classified by faces of the ample cone of X̃ such that for a given face F and a rational point f ∈ F a positive
rational multiple of f is the first Chern class of an ample line bundle on the corresponding partial resolution.

It seems reasonable thus to expect that P =H2(X̃reg

Ǧ
,C) parametrizes both the filtered quantizations of X̃Ǧ as

well as the partial resolutions between X̃Ǧ → T ∗T ∨/W , just as it does in the Lie algebra case. Further, it seems
by Corollary 3.12 and Proposition 3.13 reasonable to expect that C̃Ǧ equals a partial resolution constructed this
way, and that the singularities of X̃Ǧ → T ∗T ∨/W are locally modeled on those of X̃ǧ.

To support this remark, we note the following about the local structure of our algebras.

Lemma 3.16. Upon completion at a ∈ T ∨, the Coulomb branch algebra (iAh̵d)∧a ≅ H∧a
G,c+ih̵,h̵ is isomorphic to

Hrat,∧a
g,c+ih̵,h̵ for some g coming from the Borel-de Siebenthal algorithm for G.

Proof. The first part is [22, Proof of Theorem 3.2.]. Since we are dealing with the equal parameters case, as in
e.g. [1], and the parameters behave as in [23, Section 2.8.] upon completion, the result follows. �

3.3. The universal centralizer. In the above, we have defined the partial resolution C̃Ǧ using Proj construction,
and have limited understanding of its geometry outside of type A. Nevertheless, in this subsection we define an
affine open chart in C̃Ǧ and prove that it coincides with the trigonometric version of the universal centralizer of
[7, 67]. It also appears as a Coulomb branch for zero matter, and will be used later in Section 8.

We let G be arbitrary for now. Let ∆ ∶= ∏α∈Φ yα ∈ AG be the Vandermonde determinant.

Definition 3.17. Let
U∆ ⊂ C̃Ǧ

be defined as the distinguished open subset given by the element ∆ ∈ AG. By definition, U∆ is the affine variety
whose coordinate ring is the degree zero part of the localization of⊕∞

d=0 0Ad in ∆.

Remark 3.18. Note that this is different from the preimage of of {∆ ≠ 0} under the natural composition of maps
C̃Ǧ → T ∗T ∨/W → t/W . On this locus the first map is an isomorphism.

We now describe this chart. In [7], two trigonometric versions of the universal centralizer are studied. The one
of interest to us is defined as follows, see loc. cit. for more details.

Definition 3.19. The universal centralizer of Ǧ is the variety

BǦ
ǧ ∶= {(g, s) ∈ Ǧ × ǧ∗∣adg(s) = s, g is regular }� Ǧ

Remark 3.20. In [7], this variety is denoted ZǦǧ . There is also another version of the trigonometric universal cen-
tralizer Zǧ

Ǧ
with the roles of g,G swapped. It has the nicer geometric property of being symplectically isomorphic

to T ∗(T ∨/W ) when G is adjoint (so Ǧ is simply connected).

In [7] explicit description of the coordinate ring of ZǦǧ is given. We also have the following Coulomb branch
description of ZǦǧ .
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Theorem 3.21. C[BǦ
ǧ ] ≅HG(O)

∗ (GrG), which is also the Coulomb branch for (G,0) (see Section 5.)

We now state and prove the main theorem of this section. The reader may want to skip the proof at a first
reading and see Section 5 first.

Theorem 3.22. We have

C[BǦ
ǧ ] ≅ ((⊕

d
0Ah̵=0

d )
∆

)
0

.

In particular, there is a natural isomorphism BǦ
ǧ ≅ U∆.

Proof. By [9, 4(vi)] there is a natural inclusion of the Coulomb branch algebra for (G,g) to the Coulomb branch
algebra for (G,0). Using the same geometric argument, which is essentially the the pullback map in BM homol-
ogy under GrG ↪ iRj , we also get a map iAh̵=0

j ↪HGO
∗ (GrG) for any i, j.

Both the left and right hand sides are equipped with a Bruhat filtration coming from the interpretation as Hom-
spaces in the category of line operators, cf. Section 5 and Theorem 3.21. Both of these spaces have bases over
H∗
Ǧ
(pt) indexed by λ ∈ X∗(T ), which up to leading order are given by the formulas in Theorem 6.16 and [9,

3(x)(a) and Prop. 6.6.]. Since the generalized root hyperplanes in the adjoint case are just the root hyperplanes, it
is clear that upon localization outside these hyperplanes the two spaces have the same bases.

But we have even more control over the pole orders at the root hyperplanes. Namely, the coefficient of uλ in
[R≤λ

G,0], meaning the class associated to λ for zero matter in the analog of Lemma 6.7 is just 1

∏α y
max(0,α(λ))−1
α

, and

the coefficient in front of uλ in the analogous expression for adjoint matter only has yα vanishing to order at most
d in the numerator. Dividing elements of 0Ah̵=0

d by ∆d for d ≥ 0 then gives an injective map to the zero matter
Coulomb branch algebra, and multiplying by f ∈ H∗

G(pt) if necessary, we see that we get all the H∗
G(pt)-basis

elements of HGO(GrG), so that this is an isomorphism.
�

Remark 3.23. Alternatively, one can use the blow-up description of BǦ
ǧ [7, Section 4] to get a more geometric

proof of this result.

Remark 3.24. We can interpret the proof of this Theorem as follows. As stated in the proof, there are natural
embeddings

jAh̵=0
i ↪H

G(O)
∗ (GrG)

see for example Section 6.2 or [9, Lemma 5.11]. These embeddings realize rational functions of the form
f(x, y)/∆j−i, where f ∈ jAh̵=0

i , as functions on the open chart U∆.
WhenG = GLn, this construction is closely related to the construction of the open chart ”U(1n)” on Hilbn(C2)

given by Haiman in [41, Corollary 2.7.].

3.4. Explicit antisymmetric polynomials. In Theorem 6.21 we will need an explicit construction of a C-basis
in the space A of antisymmetric (Sn-antiinvariant) polynomials for G = GLn, in order to compare our Coulomb
branch construction with the one above. The exposition follows ideas of Haiman in [41]. The reader is advised to
skip this section on a first reading.

We denote by Alt the action of the antisymmetric projector e− on polynomials. Let S = {(a1, b1), . . . (an, bn)}
be an arbitrary n-element subset of Z≥0 ×Z. We define

∆S(y1, u1, . . . , yn, un) = Alt (ya11 ub11 ⋯y
an
n ubnn ) = 1

n!
det (yaji u

bj
i ) .

For a composition α with ∑αi = n, we can consider the set

Sα = {(0,0), . . . , (α1 − 1,0), (0,1), . . . (α2 − 1,1), . . .}
and denote ∆Sα = ∆α. In particular,

∆ =∏
i<j

(yi − yj) = ∆(n).

Given a composition α, write λ(α) = (0α1 ,1α2 , . . .). More generally, for any subset S = {(ai, bi)} ⊂ Z≥0 × Z,
let λ(S) = sort(bi) where we sort in non-decreasing order. Clearly, λ(Sα) = λ(α). Furthermore, we define a
collection of subsets

Sk = {ai ∶ (ai, k) ∈ S} = {a
i
(k)
1

< . . . < a
i
(k)
rk

}

and a partition
µk(S) = (a

i
(k)
1

, a
i
(k)
2

− 1, . . . , a
i
(k)
rk

− rk + 1).
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Finally, we define yk = (yi ∶ λi = k).

Lemma 3.25. (a) The determinants ∆S span the vector space A.
(b) We have the following formula for the determinant ∆α:

∆α = c ⋅Alt

⎡⎢⎢⎢⎢⎣
uλ ∏

r<s,λr=λs
(yr − ys)

⎤⎥⎥⎥⎥⎦
.

where λ = λ(α).
(c) More generally, we have the following formula for the determinant ∆S:

∆S = c ⋅Alt

⎡⎢⎢⎢⎢⎣
∏
k

sµk(yk)u
λ ∏
r<s,λr=λs

(yr − ys)
⎤⎥⎥⎥⎥⎦

where sµk are Schur polynomials, λ = λ(S) and c is some nonzero scalar factor depending on the size of stabilizer
of λ.

Proof. (a) The space C[T ∗T ∨] is spanned by the monomials ya11 ub11 ⋯yann ubnn , so A = e−C[T ∗T ∨] is spanned by
their antisymmetrizations (recall that ui are invertible, so bi are allowed to be negative). If some of pairs (aj , bj)
coincide, then the antisymmetrization vanishes, so it is sufficient to assume that (aj , bj) are pairwise distinct and
form an n-element subset S.

Clearly, (b) follows from (c) since for S = Sα we have Sk = 0,1 . . . , αk − 1 and µk = (0).
To prove (c), observe that the function ∆S is antisymmetric and all possible monomials in u are in the Sn-orbit

of λ, so it is sufficient to compute the coefficient at uλ. This coefficient is proportional to

AltStab(λ)(ya11 ⋯yann ) =∏
k

AltSk

⎡⎢⎢⎢⎣
∏
λi=k

yaii

⎤⎥⎥⎥⎦
=∏

k

⎡⎢⎢⎢⎢⎣
sµk(yk) ⋅ ∏

r<s,λr=λs=k
(yr − ys)

⎤⎥⎥⎥⎥⎦
.

�

Example 3.26. For α = (1,2,1) we have S = {(0,0), (0,1), (1,1), (0,2)}, λ = (0,1,1,2) and

∆S = Alt [(y2 − y3)u0
1u

1
2u

1
3u

2
4]

For S = {(5,0), (3,1), (7,1), (2,2)} we have λ = (0,1,1,2), µ0 = (5), µ1 = (3,6), µ2 = (2) and

∆S = Alt [s5(y1)s6,3(y2, y3)s2(y4)(y2 − y3)u0
1u

1
2u

1
3u

2
4] .

Note that s5(y1) = y5
1 , s2(y4) = y2

4 and

s6,3(y2, y3) =

y7
2 y7

3

y3
2 y3

3

y2 − y3
= −Alt(y3

2y
7
3)

y2 − y3
.

4. TRIGONOMETRIC CHEREDNIK ALGEBRA

4.1. Definitions. We define the extended torus T̃ = T ×G∗
m and the corresponding Lie algebra t̃ = t ⊕ Ch̵. The

extended affine Weyl group W̃ ∶= W ⋉ X∗(T ) is generated by the affine Weyl group W aff = W ⋉ Q∨ and an
additional abelian group Ω = X∗(T )/Q∨ where Q∨ is the coroot lattice. We use the affine action of W ⋉X∗(T )
on the cocharacter lattice X∗(T ) depending on h̵. The action of w ∈ W̃ on ξ ∈X∗(T ) will be denoted by wξ. We
will denote the longest element in W by w0.

Definition 4.1. The trigonometric DAHA of G is the C[h̵, c]-algebra, which as a vector space looks like

HG = Hc,h̵ = C[W̃ ] ⊗C[X∗(T ) ⊗Z C] ⊗C[c] ⊗C[h̵]

and the algebra structure is determined as follows:
(1) Each of the tensor factors is a subalgebra, and c, h̵ are central. We denote by σi the simple reflections in

the copy of W̃ ⊂ HG.
(2) σiξ − siξσi = c⟨ξ,α∨i ⟩ for all simple reflections σi ∈ W̃ and ξ ∈X∗(T ).
(3) For any ω ∈ Ω ⊂ W̃ , ωξ = ωξω

Note that here the pairing ⟨, ⟩ ∶ t̃ × t̃→ C[h̵] depends on h̵.
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Example 4.2. For G = GLn the group W̃ is generated by simple reflections σ1, . . . , σn−1 (which generate W )
and an additional element π (which generates Ω). The lattice part of W̃ is generated by

Xi = σi−1⋯σ1πσn−1⋯σi.
The algebra Hc,h̵ is generated by σi, π and commuting variables y1, . . . , yn, with the following relations:

σiyi = yi+1σi − c, σiyi+1 = yiσi + c, σiyj = yjσi (j ≠ i, i + 1),
πyi = yi+1π(1 ≤ i ≤ n − 1), πyn = (y1 + h̵)π.

Remark 4.3. We will also use specializations of this algebra, to be called trigonometric DAHAs as well when
there is no risk of confusion. Let us explain how this relates to parameter conventions in the literature. In [72],
the trigonometric DAHA is defined as above but with parameters δ = h̵, c = u. These correspond to the generators
of H∗

Grot
m

(∗) and H∗
Gdil
m

(∗), respectively. In [72], the relations c + νδ = c + νh̵ = 0 and h̵ = 1 are imposed for
ν ∈ C. This specialization of parameters is often called ”the” trigonometric DAHA with parameter ν. We will
denote it by Hν . If we want to emphasize the role of G instead of the parameters, we will write HG for any of the
specializations of the Cherednik algebra.

Remark 4.4. It is common in Cherednik algebra literature to specialize h̵ to 1 as above, so that the algebra Hh̵=1
c,h̵

admits a natural filtration in powers of h̵, making the full Hc,h̵ the Rees construction for this filtration. In this
language, Hc=h̵=0

c,h̵ is the associated graded of Hh̵=1
c,h̵ , since Hc,h̵ is flat over C[c, h̵]. With this in mind, we will use

the specialization c = h̵ = 0 and the associated graded interchangeably.

Remark 4.5. Later on, we shall be interested in the family of Cherednik algebras Hc+ih̵,h̵ for i ≤ 0 as well, and
the specializations c + (ν + i)h̵ = 0, h̵ = 1, i.e. c = −m+in

n
.

We introduce the symmetrizer e = 1
∣W ∣ ∑w∈W w and the antisymmetrizer e− = 1

∣W ∣ ∑w∈W (−1)`(w)w in the
group algebra of W . We define the spherical and antispherical subalgebras in HG as eHGe and e−HGe−.

Note that in the specialization c = h̵ = 0 the structure of the algebra simplifies dramatically: Hc=h̵=0
G = C[W ] ⋉

C[T ∨ × t], so
eHc=h̵=0

G e ≅ C[T ∨ × t]W .
We will refer to this as the commutative limit, although this only gives the limit of the spherical subalgebra the
structure of a commutative algebra.

The algebra HG has a representation

(11) Hc,h̵ ↪ Diffh̵(treg) ⋊C[W ]
defined e.g. in [18, Section 2.13]. Here Diffh̵(treg) is the algebra of h̵−difference operators on the Lie algebra
t, possibly with poles along the root hyperplanes. In this representation, the generators of HG corresponding to
simple reflections act by

σi = si +
c

yαi
(si − 1)

and Ω acts by difference operators in a standard way.

Example 4.6. For G = GLn, we get σi = si + c
yi−yi+1 (si − 1) and π ⋅ f(y1, . . . , yn) = f(y2, . . . , yn, y1 + h̵).

4.2. Shift isomorphism. We will need several involutions on the algebra Hc.

Lemma 4.7. The map Φ ∶ w ↦ (−1)`(w)w0w
−1w0, ξ ↦ w0ξ, h̵ → −h̵ for w ∈ W̃ defines an involutive anti-

automorphism of HG.

Proof. Suppose that w0 sends the simple root αi to −αj for some j, then w0si = sjw0. The map Φ sends σi to
−σj , so we get: Φ(σiξ) = −w0ξσj , Φ(siξσi) = −σjw0siξ and

Φ(σiξ − siξσi) = σjsjw0ξ − w0ξσj

while ⟨ξ,α∨i ⟩ = ⟨sjw0ξ,α∨j ⟩, so the equation (2) is preserved. For the equation (3), observe that w0ω
−1w0 = ω

since we assume that h̵↦ −h̵. �

Example 4.8. For G = GLn we have

Φ(σi) = −σn−i, Φ(yi) = yn+1−i, Φ(π) = π, Φ(h̵) = −h̵

Observe that Φ(e) = e− and Φ(e−) = e. In particular, Φ exchanges spherical subalgebra eHce with the
antispherical subalgebra e−Hce−.
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Theorem 4.9. a) Let λ be a minuscule dominant coweight, then

Eλ ∶= eXλe = e ∏
⟨λ,α⟩=1

yα − c
yα

uλe

and
Fλ ∶= eX−λe = e ∏

⟨λ,α⟩=1

yα + c
yα

u−λe

Here uλ is the translation by h̵λ.
b) For arbitrary dominant coweight λ we get

Eλ = e ∏
α(λ)>0

α(λ)−1

∏
`=0

(yα + `h̵ − c)
(yα + `h̵)

uλe + lower order terms.

Proof. We prove (b) using geometric realization of HG as the Coulomb branch algebra, see Proposition 6.10
below. The operator Eλ corresponds (up to lower order terms) to a certain class z∗ι−1

∗ gr[R≤λ] which agrees with
the formula in (b) after localization to fixed points. See Proposition 6.10 for all details.

Alternatively, one can prove (b) using a tedious but explicit computation in the affine Hecke algebra, see [49,
Example 5.4,Theorem 5.9] and [52, Proposition 5.13]. The translation Xλ can be written as a product of elements
of Ω and simple reflections σi in some order, and one can control the leading term of each factor. This leads to a
formula for the leading term for Xλ, and its symmetrization.

In part (a) the coweight λ is minuscule, and the formula from (b) simplifies. First, we have either (α∨, λ) = 1
or (α∨, λ) = 0 for all α∨, so ` = 0 for all nontrivial factors. Second, λ is minimal in Bruhat order, so there cannot
be any lower order terms and the formula is exact. �

Lemma 4.10. Suppose that λ is an (anti)dominant coweight which is minimal in the Bruhat order. Then

Φ(Eλ,c)∆ = ∆Eλ,c−h̵.

Remark 4.11. If λ is minuscule, then it is indeed minimal in the Bruhat order. The converse is not true: indeed,
there are no minuscule coweights at all for root systems E8, F4,G2.

Proof. Since λ is minimal in Bruhat order, the formula for Eλ in Theorem 4.9(b) is exact. Now we write:

Φ(Eλ) = e−u
w0λ ∏

α∨(λ)>0

α(λ)−1

∏
`=0

(yα − `h̵ − c)
(yα − `h̵)

e−,

where we denote α = w0α. By replacing λ by λw0 (since we symmetrize anyway) and α by w0α (since we take
product over all roots α), we can rewrite this product as

Φ(Eλ) = e−u
λ ∏
α(λ)>0

α(λ)−1

∏
`=0

(yα − `h̵ − c)
(yα − `h̵)

e−.

Now uλyα = (yα + α(λ)h̵)uλ, therefore

Φ(Eλ) = e− ∏
α(λ)>0

α(λ)−1

∏
`=0

(yα − `h̵ − c + α(λ)h̵)
(yα − `h̵ + α(λ)h̵)

uλe− =

e−u
λ ∏
α(λ)>0

α(λ)
∏
`=1

(yα + `h̵ − c)
(yα + `h̵)

uλe−.

In the last step we changed index of summation from ` to α(λ) − `. Now we can compute

Φ(Eλ)∆ = e− ∏
α(λ)>0

α(λ)
∏
`=1

(yα + `h̵ − c)
(yα + `h̵)

uλ∆e =

e− ∏
α(λ)>0

α(λ)
∏
`=1

(yα + `h̵ − c)
(yα + `h̵)

(yα + α(λ)h̵)
yα

∆uλe =

e−∆ ∏
α(λ)>0

α(λ)−1

∏
`=0

(yα + `h̵ − (c − h̵))
(yα + `h̵)

uλe = ∆Eλ,c−h̵.

�
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Theorem 4.12. There is a filtered algebra isomorphism eHce ≅ e−Hc−h̵e−.

Proof. The spherical subalgebra eHc−h̵e is generated by the elements

Eλ[f] = ef(w)Xλe, Fλ[f] = ef(w)X−λe

where λ is a dominant coweight which is minimal in the Bruhat order, and f(w) is a polynomial in wi (see [9,
Proposition 6.8.]). Similarly to Lemma 4.10, one can check that

(12) Φ(Eλ,c[f])∆ = ∆Eλ,c−h̵[f ′], Φ(Fλ,c[f])∆ = ∆Eλ,c−h̵[f ′]

where f ′ is related to f by a certain shift by h̵.
Let G be an operator in eHc−h̵e, then we can consider the operator ∆G∆−1 acting on antisymmetric poly-

nomials. By (12) the operator ∆G∆−1 belongs to e−Hce−. Since Φ exchanges the spherical and antispherical
subalgebras, the operators ∆G∆−1 generate e−Hce−.

�

Remark 4.13. In [43, 74] a similar isomorphism between the spherical and antispherical subalgebras was obtained
using Dunkl representation by differential-difference operators. It is natural to ask if the two isomorphisms are the
same. They are not, for the isomorphism in loc. cit. is given by conjugation by the ”Vandermonde in X”, in other
words ∏α∈Φ+(1 − α∨) ∈ C[T ∨], which acts by identity on the operators Eλ,c[1] since X ↦ X in the differential
Dunkl representation. The two isomorphisms are related by the Harish-Chandra transform of [18]. This is similar
to the fact that in the rational case, there are two Dunkl embeddings, to Diff(hreg)⋊W and Diff((h∗)reg)⋊W in
which one gets similar shift isomorphisms by either conjugation by ∏α∈Φ+ yα or respectively by ∏xα∨ [4], and
the two isomorphisms are related by Cherednik’s Fourier transform.

4.3. Z-algebras. We now recall the definition of Z-algebras, as explained e.g. in [35, Section 5]. Note that our
conventions are exactly opposite to those of loc. cit. because it makes the Springer action in Section 7 a bit more
natural.

Definition 4.14. An associative (non-unital) algebraB = ⊕i≤j Bij is a Z-algebra ifBijBjk ⊆ Bik for all i ≤ j ≤ k,
BijBlk = 0 if j ≠ l, and each Bii is unital such that 1ibij = bij = bij1ij for all bij ∈ Bij .

The above definition ensures that Bii is a unital associative algebra for all i, and Bij is a (Bii,Bjj)-bimodule.
The Z-algebra multiplication factors though the convolution of bimodules:

Bij⊗CBjk Bik

Bij⊗Bjj Bjk

The simplest example of Z-algebras comes from Z-graded algebras.

Example 4.15. Suppose that S = ⊕dSd is an associative Z-graded algebra with multiplication SdSd′ → Sd+d′ .
Define Bij = Sj−i for all i and j, then B(S) = ⊕i≤j Bij is a Z-algebra. Note that in this example the algebras Bii
are all isomorphic to S0.

Our main source of Z-algebras will be a filtered deformation of Example 4.15. We say that a Z-algebra B is
of graded type if it has an algebra filtration (which we omit from the notations) such that grB = B(S) for some
commutative graded algebra S. Unpacking this definition, we get the following properties of grB:

● S0 ∶= grBii is a commutative algebra which does not depend on i up to isomorphism
● Sj−i ∶= grBij depends only on the difference j − i up to isomorphism
● For all i, j, k we have a commutative square

grBij⊗grBjk grBik

Sj−i⊗Sk−j Sk−i

● The left and right actions of S0 ≃ grBii ≃ grBjj on the bimodule grBij agree.
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The last bullet point is related to the Harish-Chandra property for the bimodules Bij , see [78, 55]. Namely, a
Harish-Chandra bimodule for a filtered algebra A is a bimodule B with an exhaustive filtration s.t. [A≤i,B≤j] ⊆
Bi+j−d s.t. grB is finitely generated. The commutator condition implies that the left and right actions of grA on
grB agree.

Also note that we can associate a pair of schemes to a Z-algebra of graded type: the affine scheme SpecS0 and
the scheme ProjS. We have a natural morphism ProjS → SpecS0.

Next, we define modules over a Z-algebra B. A graded vector space M = ⊕Mi is a B-module if for all i and j
we have multiplication maps Bij ⊗Mj →Mi such that we have a commutative diagram

Bij ⊗Bjk ⊗Mk Bij ⊗Mj

Bik ⊗Mk Mi.

In particular, Mi is a module over the algebra Bii for all i. If B is of graded type and M admits a filtration
compatible with a filtration on B then grM is graded S-module for the graded algebra S. In particular, grM
defines a quasicoherent sheaf on ProjS.

4.4. Z-algebras from Cherednik algebras. We now turn to defining a Z-algebra B = ●Bh̵● as follows. The
component iBh̵i is the spherical Cherednik algebra eHc+ih̵e with parameter c + ih̵. The component iBh̵i+1 is the
shift bimodule

iBh̵i+1 = eHc+(i+1)h̵,h̵e−

over the algebras i+1Bh̵i+1 = eHc+(i+1)h̵,h̵e and

iBh̵i = eHc+ih̵,h̵e ≃ e−Hc+(i+1)h̵,h̵e−.

The last isomorphism is given by Theorem 4.12. Finally, for more general i < j we define the shift bimodules

iBh̵j = iBh̵i+1⋯j−1Bh̵j
where ⋅ denotes the appropriate tensor product.

Lemma 4.16. At h̵ = c = 0 one has iBh̵=0
j = Aj−i, where A is the subspace of diagonally antisymmetric polyno-

mials in C[T ∗T ∨], and this is compatible with the multiplication. When i = j this is the subspace of diagonally
symmetric polynomials.

Proof. Let us prove that iBh̵=0
i+1 = A. Indeed, iBh̵=0

i+1 = e−He ≅ e−C[T ∗T ∨] is the space of antisymmetric polyno-
mials in C[T ∗T ∨]. Similarly, iBh̵=0

i ≅ eC[T ∗T ∨] = C[T ∗T ∨]W . Now

iBh̵=0
j = A⊗C[T ∗T∨]W ⊗⋯⊗C[T ∗T∨]W A = Aj−i.

�

Example 4.17. Consider the trigonometric Cherednik algebra for G = GL2. For ν = 1/2 it has a 1-dimensional
representation L1/2(triv) with invariant part eL1/2(triv) ≅ e−L3/2(triv). Using this isomorphism, the bimodule
eH3/2e− sends eH3/2e− ⊗e−H3/2e− e−L3/2(triv) ≅ eL3/2(triv). More generally,

eH(2k+1)/2e− ⊗e−H(2k+1)/2e− e−L(2k+1)/2(triv) ≅ eL(2k+1)/2(triv)
and the direct sum

⊕
k≥0

eL(2k+1)/2(triv)

is a module for the Z-algebra B.

4.5. Z-algebra for GLn. Consider now the Z-algebra as introduced above. We have

Theorem 4.18. For all i ≤ j the C[h̵] ⊗C[y1, . . . , yn]Sn -module iBh̵j is free.

Proof. The idea of the proof is to replace the trigonometric Cherednik algebra Hc,h̵ = Htrig
c,h̵ with the rational

Cherednik algebra Hrat
h̵ [39]. The algebra Hrat

h̵ is the quotient of C[X1, . . . ,Xn] ⊗ C[z1, . . . , zn] ⋊ Sn modulo
the relations:

[Xi, zi] = h̵ +∑
j≠i
σij i = 1, . . . , n,

[Xi, zj] = −σij , i ≠ j,
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where σij ∈ Sn is the transposition (the generators zi are usually called yi in the rational Cherednik algebra
literature).

For the rational Cherednik algebra the corresponding Z–algebra ●Brat,h̵=h̵0
● was constructed by Gordon and

Stafford [35, 36] who defined a filtration on iBrat,h̵=h̵0

j for any specialization of h̵ and proved that gr iBrat,h̵=h̵0

j ≃
Aj−irat using Haiman’s results. Note that this was achieved without relying on Haiman’s results in [28]. This implies
that iBrat,h̵

j is free over h̵. The freeness over C[y1, . . . , yn]Sn is e.g. [35, Lemma 6.11(2)]. We remark that this
freeness uses results of [4] about Morita equivalence of Cherednik algebras.

Now the trigonometric case is obtained by Ore localization in the central element X1⋯Xn, which commutes
with the action of h̵ and yi. This follows from

Lemma 4.19. There is a natural map

iBrat,h̵=h̵0

j → iBj
which becomes an isomorphism upon localization in∏Xi: (iBrat,h̵=h̵0

j )∏Xi ≅ iBj .

Proof. In [79] it is shown that

ı(w) = w, ı(Xi) =Xi, ı(zi) =X−1
i (yi − ∑

1≤j≤i
σji),

extends to the algebra homomorphism ı ∶ Hrat
h̵ → Htrig

1,h̵ that becomes an isomorphism after localization by
X1⋯Xn. By hitting with e on both sides, this implies the statement on the level of the spherical subalgebras.
(To match parameters, we observe that Htrig

c,h̵ ≃Htrig
λc,λh̵ for any λ ∈ C∗.)

For the one-step bimodules, iBrat
i+1 = eHrat

c+ih̵,h̵e− by definition, so the result is true for j = i+ 1 as well. Finally,

iBrat
j = iBrat

i+1⋯j−1Brat
j

and by standard properties of localization and tensor product we get the result.
�

Now since tensoring with C[X1, . . . ,Xn]∏Xi is faithfully flat, we deduce that since iBrat
j is free over

C[y1, . . . , yn]Sn ,

so is iBj . This finishes the proof of Theorem 4.18. �

More geometrically, the bimodule iBrat,h̵
j quantizes the line bundle O(j − i) on the Hilbert scheme of points

on C2 while iBh̵j quantizes its restriction to the Hilbert scheme of C∗ ×C.

Corollary 4.20. The Z-algebra B is of graded type and for G = GLn, grB corresponds to the graded algebra
S = ⊕∞d=0A

d. The corresponding algebraic varieties are ProjS = Hilbn(C∗ ×C) and SpecS0 = (C∗ ×C)n/Sn.

5. COULOMB BRANCHES AND Z-ALGEBRAS

In this section, we explain half of the main construction of the paper, namely the construction of a Z-algebra
associated to the Coulomb branch of the 3d N = 4 theory with adjoint matter, or in other words the spherical
trigonometric DAHA. Most of the results work in greater generality, and are stated as such wherever possible. In
Section 6 we specialize these general constructions to the case of adjoint representation.

The other half of the main construction, consisting of a generalized affine Springer theory for this Z-algebra, is
treated in Section 7.

5.1. Coulomb branches. Let 1 → G → G̃ → GF → 1 be an extension of algebraic groups, where G is reductive
and GF is diagonalizable. Let N be an algebraic representation of G̃, P ⊂ G(O) ⊂ GK be a (standard) parahoric
subgroup and NP a lattice in NP stable under P. We will only be interested in the case where N = Ad, NP =
Lie(P).

LetRP ∶= RG,N,P,NP
be the parahoric BFN space of triples as in [26]. More precisely, we have

Definition 5.1. RG,N,P,NP
is the fpqc sheaf on Sch/k associating to S the groupoid of tuples (P, ϕ, s,PP)

where P is a G-bundle on S × SpecK, PP is a P-reduction of P over S × SpecO, and ϕ is a trivialization over
S ×SpecO compatible with the P- structure. Moreover, s is a section of the associated N -bundle of PP such that
ϕ ○ s(t) ∈ NP.
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Remark 5.2. Dropping the condition that ϕ ○ s(t) ∈ NP, we get the space TG,N,P,NP
= GK ×P NP, which is an

(ind-)vector bundle over the partial affine flag variety FlP. In particular, if N = Ad, this can be thought of as the
cotangent bundle of FlP.

We recall the following definitions and theorems as motivation for the following sections. From [9, 26, 42], we
have

Theorem 5.3. HP̃⋊C×
∗ (RP) =∶ Ah̷P is an associative algebra with unit. It is a flat deformation ofAP ∶=HP̃

∗ (RP).
When P = GO, the algebra Ah̷GO is a filtered quantization of AGO , which is commutative. The spectrum of AGO
is called the Coulomb branch of (G,N).

Remark 5.4. The group P̃ above equals P if the flavor group GF is trivial. Otherwise, we define

P̃ ∶= ev−1
0 (GF ev0(P))

where ev0 ∶ G̃O → G̃ is the map sending t ↦ 0 or more generally modding out by the nilradical. In general, we
refer by ̃ to flavor-deformed objects.

Theorem 5.5 ([42, 26]). Let Lv ⊂ P̃⋊C× be the stabilizer of v in P̃⋊C×
rot, where P̃ is the preimage ofGF ev0(P)

under ev0 ∶ G̃O → G̃. The algebra Ah̷P acts on HLv
∗ (MP

v ) via natural cohomological correspondences, provided
the group Lv is compact in the t-adic topology.

5.2. A category of line defects. Heuristically, the equivariant BM homologies of the spaces of triples above are
endomorphisms of objects in a ”category of line operators” [21, 86, 85] which is something like GK-equivariant
D-modules on NK.

We won’t stipulate on the definition of the actual category (see however [3] in the adjoint case), but this category
should contain objects coming from η = (U,P), where U ⊂ NK is a P-stable lattice and P is a parahoric subgroup
of GK. We will simply define Hom(η, η′) =HP′⋊C×

∗ (ηRη′), where

ηRη′ = {[g, s] ∈ GK ×P′

U ′∣gs ∈ U}.
We will use the notation U = NP to emphasize NP is a P-stable lattice. By abuse of notation, we will also write
Hom(η, η′) for the flavor- or loop-rotation deformed versions of these spaces.

Theorem 5.6. There is an associative multiplication Hom(η, η′) ⊗C Hom(η′, η′′) → Hom(η, η′′) via the follow-
ing modification of the BFN convolution product.

ηRη′ × η′Rη′′ p−1(ηRη′ × η′Rη′′) q(p−1(ηRη′ × η′Rη′′))

Tη′ × η′Rη′′ GK × η′Rη′′ ηRη′′
i

p q

j m

p

Here the maps p, q,m send

p ∶ (g1, [g2, s]) ↦ ([g1, g2s], [g2, s]), q ∶ (g1, [g2, s]) ↦ [g1, [g2, s]],
m ∶ [g1, [g2, s]] ↦ [g1g2, s]

and i, j are inclusions of closed subvarieties.

Proof. This can be proved using a straightforward modification of the proof of associativity in [9, Section 3].
Similar results for η = (NP,P) where P is an Iwahori subgroup are mentioned in [85]. �

Corollary 5.7. For any η the space Hom(η, η) is an associative algebra, and Hom(η, η′) is a bimodule over
Hom(η, η) and Hom(η′, η′). Given η, η′ and η′′ we have a natural morphism of bimodules over Hom(η, η) and
Hom(η′′, η′′):

Hom(η, η′) ⊗
Hom(η′,η′)

Hom(η′, η′′) → Hom(η, η′′).

Proof. We need to prove the morphism from Theorem 5.6 is bilinear over Hom(η′, η′). The only axiom of a
tensor product we need to show ism ⋅r⊗n =m⊗r ⋅n form ∈ Hom(η, η′), n ∈ Hom(η′, η′′) and r ∈ Hom(η′, η′),
which is clear from the associativity of the construction. �

The following is a generalization of [9, Lemma 5.3].

Theorem 5.8. ηAη′ is flat as a left C[t∗][h̵, c] =H T̃
∗ (pt)-module.

Proof. The associated graded for the Bruhat filtration is free by equivariant formality. On the other hand, filtered
colimits of free modules are flat. �
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5.3. Z-algebras and the flavor deformation. Taking a sequence η0, η−1, . . . it is clear from Theorem 5.6 that we
get a Z-algebra by taking

A =⊕
i≤j

iAj

where iAj denotes ηiAηj . That is,

Theorem 5.9. The algebra ⊕i≤j iAh̵j is a Z-algebra.

In the setup of BFN Coulomb branches, nontrivial Z-algebras are most easily obtained via a flavor deformation
of G, i.e. by letting GF be nontrivial. We now explain this procedure for GF = Gm and associate to (G̃,N) a
Z-algebra.

Specifically, we can consider a sequence ηi = (t−iU,GO) for some fixed lattice U (for example, U = NO). If
we set h̵ = 0, it is easy to see that Sj−i ∶= iAh̵=0

j depends only on j − i and the algebraAh̵=0 is of graded type as in
Section 4.3. In particular, at h̵ = 0 all commutative algebras iAh̵=0

i are isomorphic to the commutative Coulomb
branch algebra S0 = AGO . In particular, this construction yields a map ProjS → SpecS0, which is a variant of
the construction of a partial resolution of the Coulomb branch in [11].

5.4. Z-algebras in the abelian case. Since it might be of independent interest and is used for computations
below, we now work out the Z-algebras for the cases when G = T is a diagonalizable algebraic group and {ηi}∞i=0

is given by ηi = (TO, tiφNO) for some (flavor) cocharacter φ ∶ Gm → T . Note that when N = 0, the Z-algebra
collapses to Ah̵T,0[c] where c is the flavor parameter (the generalization to more flavors is straightforward).

Under Tj ↪ GrT ×NK the image is naturally identified with

⊔
λ∈GrT

{tλ} × tjtλNO

and similarly
iRj ≅ ⊔

λ∈GrT

{tλ} × (tjtλNO ∩ tiNO).

Now let irλj be the preimage of λ ∈ GrG under the projection iRj → GrT . Suppose also N is the direct sum of
the characters ξ1, . . . , ξn as a T -representation.

Theorem 5.10. Under the convolution product in Theorem 5.6, we have for all i, j, k ∈ Z that

ir
λ
j jr

µ
k =

n

∏
`=1

A`(i, j, k, λ, µ)irλ+µk

where

A`(i, j, k, λ, µ) =
max(λ+i,k−µ,j)

∏
a=max(λ+i,k−µ)+1

(ξ` + c + (a + ξ`(λ))h̵)
min(λ+i,k−µ)

∏
b=min(λ+i,k−µ,j)+1

(ξ` + c + (b + ξ`(λ))h̵)

Proof. We may restrict to the case where the rank of T is 1. In this case, the computation is essentially [85,
Proposition 3.10], generalizing [9, Theorem 4.1]. In the notation of loc. cit. we have

ir
λ
j = yλr(λ + i, j), jr

µ
k = yµr(µ + j, k)

so we get

ir
λ
j jr

µ
k = yλr(λ + i, j)r(j, k − µ)yµ

= yλe(
tλ+iNO ∩ tk−µNO

tλ+iNO ∩ tk−µNO ∩ tjNO
) e( t

λ+iNO + tk−µNO + tjNO
tλ+iNO + tk−µNO

) yµ

And we compute the Euler classes

e( tλ+iNO ∩ tk−µNO
tλ+iNO ∩ tk−µNO ∩ tjNO

) =
max(λ+i,k−µ,j)

∏
a=max(λ+i,k−µ)+1

(ξ` + c + ah̵)

e( t
λ+iNO + tk−µNO + tjNO
tλ+iNO + tk−µNO

) =
min(λ+i,k−µ)

∏
b=min(λ+i,k−µ,j)+1

(ξ` + c + bh̵)

From the relation yλχ = (χ + h̵⟨χ,λ⟩)yλ for χ ∈ t∗ we get that

ir
λ
j jr

µ
k = A`(i, j, k, λ, µ)ir

λ+µ
k

�
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Remark 5.11. When h̵ = c = 0, the above becomes

ir
λ
j jr

µ
k =

n

∏
`=1

ξ
max(λ+i,k−µ,j)
`

ξ
max(λ+i,k−µ)
`

⋅
ξ

min(λ+i,k−µ)
`

ξ
min(λ+i,k−µ,j)
`

ir
λ+µ
k

Lemma 5.12. All algebras in question are naturally graded with

deg ξ` = 2, deg(irλj ) = ∣λ + i − j∣.

Proof. Observe that

(13) ∣a − b∣ + ∣b − c∣ − ∣a − c∣ = 2 (max(a, b, c) −max(a, c) +min(a, c) −min(a, b, c)) .
Indeed, both sides of (13) are symmetric in a and c and vanish if b is between a and c. If b < a < c then we get

(a − b) + (c − b) − (c − a) = 2(a − b) = 2(c − c + a − b),
while for a < c < b we get

(b − a) + (b − c) − (c − a) = 2(b − c) = 2(b − c + a − a).
By substituting a = λ + i, b = j, c = k − µ we can verify that the defining equations are homogeneous since

deg(irλj ) = ∣λ + i − j∣, deg(jrµk ) = ∣k − µ − j∣ = ∣j + µ − k∣, deg(irλ+µk ) = ∣(λ + i) − (k − µ)∣ = ∣λ + µ + i − k∣.
�

As in [10, Appendix] and [9], the inclusion GrT ↪ Tj as a subbundle gives rise to an injective map z∗ in
equivariant Borel-Moore homology:

iz
∗
j ∶ iAh̵j ↪H T̃O⋊Gm

∗ (GrT ).

If uλ ∈ H T̃O⋊Gm
∗ (GrT ) is the class of the cocharacter λ, or more algebraically the h̵-difference operator on t

acting on f ∈ k[t] by f(x) ↦ f(x + h̵λ), we have

Theorem 5.13. Under iz∗j , we have

iz
∗
j (irλj ) = e(tλtiNO/tλtiNO ∩ tjNO)uλ

Note that the injectivity of iz∗j is clear from the above.

6. COULOMB BRANCHES AND Z-ALGEBRAS IN THE ADJOINT CASE

6.1. From Coulomb branch to Cherednik algebra. We now discuss the adjoint case. For arbitrary G and
N = Ad, the construction of [9] yields a noncommutative resolution of T ∗T ∨/W in the sense of [84]. Instead of
the spherical case, we focus on the Iwahori case as well as the resulting Z-algebras.

First of all, we claim Theorem 5.6 for η = (I,Lie(I)) gives a realization of the dDAHA (as conjectured in
many places, including [9]) and that the resulting action on the affine Springer fibers coincides with Yun’s action.
The goal of this section is to prove these claims, and to show that for η = (GO,Lie(GO)) we similarly get the
spherical dDAHA, as expected in [9, 7] and other places.

We now state the main theorem of this section.

Theorem 6.1. The Iwahori-Coulomb branch algebra

Ãh̵G,I =H Ĩ⋊C×
∗ (RNI,I)

is naturally isomorphic to Hc,h̵.

Proof. There are essentially two subalgebras to find in Ãh̵G,I, C[W̃ ] and C[t∗]. The latter is identified with
H∗
T (pt), and the elements of this subalgebra act as capping by Chern classes of the associated line bundles on

FlG. Ditto for the equivariant parameters c, h̵.
We denote by R≤w

NI,I
the preimage of the Schubert cell Fl≤wG under the projection RNI,I → FlG. The algebra

Ãh̵G,I is spanned by [R≤w
NI,I

] for w ∈ W̃ . We use the maps m,p, q as in Theorem 5.6. Let us study [R≤w
NI,I

][R≤w′

NI,I
].

Since
mqp−1(Fl≤wG × Fl≤w

′

G ) ⊂ Fl≤ww
′

G

is codimension zero (see e.g. [63, Lemma 4.4]) and N is the adjoint representation,

mpq−1(R≤w
NI,I

×R≤w′

NI,I
) ⊂ Rww

′

NI,I
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is codimension zero, the algebra ÃG,I is a filtered flat deformation of

grBruhat Ãh̵G,I = ⊕
w∈W̃

H Ĩ⋊C×
∗ (RwNI,I

)

such that
[R≤w

NI,I
][R≤w′

NI,I
] = [R≤ww′

NI,I
] + lower order terms in Bruhat order

Note that each w has a reduced expression, say w = si1⋯sij . By taking the associated graded we see we must
have

[R≤si1
NI,I

]⋯[R
≤sij
NI,I

] = [R
≤si1⋯sij
NI,I

] + lower order terms.

This implies that the classes above the one-dimensional I-orbits in FlG generate Ãh̵G,I together with the equivariant
parameters. So it remains to check these satisfy the right relations. Similar to (7) we have

(14)

RNI,I [g̃/G] = [b/B]

RNO,GO [g/G]

ϕ′

π π′

ϕ

On the right column, the Springer action is classically identified with the convolution action by correspondences
on the Steinberg variety. Similar to [88, Proposition 5.2.1.], the pullback of these correspondences is identified
with the correspondence on (the equivariant homology of)RNI,I given by ∗[R≤si

NI,I
]. Letting GO,NO be replaced

by parahorics of rank two subgroups of W̃ , it is clear the relations of C[W̃ ] are satisfied.
We still need to check relation (2) from Definition 4.1. This is identical to [88, Lemma 6.4.1].
Since we have a morphism preserving the Bruhat filtration, inducing an isomorphism on associated graded

objects, Ãh̵G,I ≅ HG. �

Remark 6.2. In K-theory, a similar proposition is proven for the full DAHA in [82, Section 2.5].

Corollary 6.3. The Coulomb branch algebra Ah̵G,GO of Braverman-Finkelberg-Nakajima is isomorphic to the
spherical subalgebra of HG.

Proof. Let e = ∣W ∣−1∑w∈W w. Then from (14) and the definitions it follows that

Ah̵G,GO = eAh̵G,Ie
and by Theorem 6.1 we get the result. �

Remark 6.4. This proves the speculation in [9, Remark 6.20]. For G = GLn this was proved by Kodera and
Nakajima in [52].

Finally, we give a geometric realization of the ”shift” bimodules of the trigonometric Cherednik algebra using
line operators.

Let η = (ti Lie(I), I) and η′ = (ti Lie(I ∩ tG(O)), I), where Lie(I ∩ tG(O)) is the pronilpotent radical of
Lie(I). In the notations of 5.2 denote

i+1R̃i ∶= ηRη′
and

i+1Ãi =H Ĩ⋊C×
∗ (i+1R̃i)

Theorem 6.5. There are natural isomorphisms of graded bimodules

i+1Ai ≅ ei+1Ãie ≅ e−iÃie

Proof. Let i+1R̃i ↪ iR̃i be the natural inclusion. (g, s) ∈ iR̃i belongs to i+1R̃i exactly when gs ∈ Lie(I)∩tg(O),
or in other words when it is in the kernel of the map

iR̃i → [b/B]
sending (g, s) to gs mod t. We also have the cartesian square

(15)
iR̃i [g̃/G] = [b/B]

iRi [g/G]

ϕ′

π π′

ϕ
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similar to (7). Now, note that by finite-dimensional Springer theory

H Ĩ⋊C×
∗ (iRi) = iÃie

and
HG̃O⋊C×
∗ (iRi) = eiÃie

Finally i+1Ai ≅ ei+1Ãie and
e−iÃie[2 dimG/B] ≅ ei+1Ãie

again similarly to the proof of Lemma 2.2.
�

6.2. Localization of the spherical algebra in the adjoint case. We now analyze the Z-algebra introduced in
the previous section via localization to fixed points. In particular, we may deduce results about the associated
graded of the Bruhat filtration for the convolution algebras, using an ”abelianization” procedure appearing e.g. in
[14]. We should note that similar fixed-point analysis does not apply to the Springer action itself unless we are
in a situation similar to [72, 83, 26], but we are still able to deduce many results about the convolution action on
general grounds in Section 7.

We let G and N be arbitrary for now. Suppose P = GO. The spaces iRj have natural closed embeddings to
iRj ↪ GK ×GO tjNO. Moreover, there is the embedding of the zero-section

z ∶ GrG ↪ GK ×GO tjNO
and an inclusion of ”the fibers above fixed points”

ι ∶ iRj ∣GrT ↪ iRj .
The latter map gives rise to an equivariant pushforward ι∗ (see [9, Remark 5.23]). The map z for G = T gives the
maps iz∗j from Theorem 5.13. Similarly to [9, 10] we then have

Proposition 6.6. We have an embedding

iz
∗
j (ι∗)−1 ∶ iAh̵j ↪ Ah̵T,0[h̵−1, (generalized roots +mh̵ + nc)−1∣m,n ∈ Z].

Note that this is not a ring homomorphism unless i = j, but a bimodule homomorphism, as in Theorem 5.13.

Let π ∶ iRj → GrG be the projection. We use the Cartan decomposition of the affine Grassmannian into GO
orbits:

GrG = ⊔
λ∈X+

∗

GrλG, GrλG = GOtλGO/GO

The closures of these orbits will be denoted by Gr≤λG = GrλG. Then the subvariety iR≤λ
j ∶= π−1(Gr≤λG ) gives rise

to a class in equivariant Borel-Moore homology as in [9, Section 2].
In particular, we have the following localization formula.

Lemma 6.7. For a minuscule cocharacter λ, we have

(16) iz
∗
j (ι∗)−1f ∩ [iR≤λ

j ] = ∑
λ′=wλ∈Wλ

wf × e(tλ
′

tjNO/tλ
′

tjNO ∩ tiNO)
e(Tλ′ GrλG)

uλ′

Proof. We are using Borel-Moore homology, so results of Brion [13] apply and the formula follows from Theorem
5.13. For the case i = j = 0, see [9, Proposition 6.6].

�

If λ is not minuscule, the corresponding Schubert variety is not smooth and there is no nice formula for [iR≤λ
j ].

Still, the right hand side of the equation (6.7) yields the formula for the associated graded with respect to the Bruhat
filtration, see e.g. [10, Eq. (6.3)]. We first consider the case G = GLn.

Theorem 6.8. Let G = GLn, then the following hold:
(a) For c = h̵ = 0, arbitrary cocharacter λ and a function f(y) which is symmetric under the stabilizer of λ we

have the following:

jz
∗
i ι
−1
∗ gr[jRλi ][f] = ∑

λ′∈Wλ

f ′∏
s≠r

(yr − ys)max(λ′r−λ
′

s+i,j)

(yr − ys)λ′r−λ′s+i(yr − ys)max(λ′r−λ′s,0)
uλ

′

Here f ′ is the image of f under any permutation in W which sends λ to λ′. If λ is minuscule, the formula is exact
without taking associated graded.



THE AFFINE SPRINGER FIBER – SHEAF CORRESPONDENCE 27

(b) For general c, h̵ we have

jz
∗
i ι
−1
∗ gr[jRλi ][f] = ∑

λ′∈Wλ

f ′
∏λ′r−λ′s+i<j∏

j−(λ′r−λ
′

s+i)−1
`=0 (yr − ys + (λ′r − λ′s + i + `) + c)

∏s≠r∏
max(λ′r−λ′s,0)
`=0 (ys − yr + `h̵)

uλ
′

where the notations are as above.

Proof. We compute the right hand side in the equation (16). If λ = (λ1, . . . , λn) ∈X∗(T ) ⊂X∗(GLn) we get

tλ.tiNO =

⎛
⎜⎜⎜⎜⎜
⎝

tiNO tλ1−λ2+iNO tλ1−λ3+iNO ⋯ tλ1−λn+iNO
tλ2−λ1+iNO tiNO tλ2−λ3+iNO ⋯ tλ2−λn+iNO
tλ3−λ1+iNO tλ3−λ2+iNO tiNO ⋯ tλ3−λn+iNO

⋮ ⋮ ⋮ ⋱ ⋮
tλn−λ1+iNO tλn−λ2+iNO tλn−λ3+iNO ⋯ tiNO

⎞
⎟⎟⎟⎟⎟
⎠

Whence we compute the Euler class at c = h̵ = 0:

e(tλtiNO/tλtiNO ∩ tjNO) = ∏
s≠r

(yr − ys)max(λr−λs+i,j)

(yr − ys)λr−λs+i

For general c, h̵ the factors with λ′r − λ′s + i ≥ j still contribute 1, and the formula for the Euler class reads as

∏
λ′r−λ′s+i<j

j−(λ′r−λ
′

s+i)−1

∏
`=0

(yr − ys + (λ′r − λ′s + i + `) + c).

It is well known that the tangent space TλGrλ is naturally identified with NO
NO∩tλ.NO , from which we get

e(TλGrλG) = ∏
s≠r

max(λr−λs,0)
∏
`=0

(ys − yr + `h̵).

�

Remark 6.9. The above formula makes sense even if f is not symmetric with respect to the stabilizer of λ. In this
case, we first symmetrize with respect to the stabilizer of λ and then symmetrize with respect to the whole group
W = Sn.

For a general group G and N = Ad, we write can write the formula as follows.

Proposition 6.10. For arbitrary G and arbitrary coweight λ we have:

jz
∗
i ι
−1
∗ gr[jR≤λ

i ] = ∑
λ′∈Wλ

∏α(λ′)+i<j∏
i−α(λ′)−j−1
`=0 (yα + (α(λ′) + j + `)h̵ + c)

∏α∈Φ∏
max(0,α(λ′))−1
`=0 (yα + `h̵)

uλ′

Proof. The proof of Theorem 6.8 is naturally adopted to arbitrary root systems. We will not need it below and
leave the details for the reader. �

Lemma 6.11. For G = GLn and N = Ad and the minuscule coweight ωm = (1, . . . ,1,0, . . . ,0) and i ≥ j, we
have

z∗ι−1
∗ [iR≤ωm

i ] = ∑I⊂[n],∣I ∣=m∏r∈I,s∉I
ys−yr+(i−1)h̵+c

yr−ys uI(17)

z∗ι−1
∗ [i+1R≤ωm

i ] = ∑I⊂[n],∣I ∣=m
(∏r∈I,s∉I(ys−yr+(i−1)h̵+c)(ys−yr+ih̵+c))(∏r∈I,s∈I or r∉I,s∉I yr−ys+ih̵+c)

∏r∈I,s∉I yr−ys
uI(18)

z∗ι−1
∗ [jR≤ωm

i ] = ∏j−1
k=i+1∏r,s(yr − ys + kh̵ + c) ⋅ z∗ι−1

∗ [i+1R≤ωm
i ](19)

for j ≥ i + 2.

Proof. This is a direct application of Theorem 6.8, recall that since ωm is minuscule we do not need to take
associated graded. A symmetrization of ωm leads to a weight

λ′ = (λ′1, . . . , λ′n), λ′r =
⎧⎪⎪⎨⎪⎪⎩

1 if r ∈ I
0 otherwise
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for some m-element subset I . In this case max(λ′r −λ′s,0) equals 1 if r ∈ I, s ∉ I and 0 otherwise which gives the
denominator. For the numerator, we observe

λ′r − λ′s + i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i − 1 if r ∉ I, s ∈ I
i if r ∈ I, s ∈ I or r ∉ I, s ∉ I
i + 1 if r ∈ I, s ∉ I

and the result follows. �

More generally, we have the formula for arbitrary G and minuscule λ.

Lemma 6.12. For N = Ad and λ minuscule,

z∗ι−1
∗ [iR≤λ

i ][f] = ∑λ′=wλ∈Wλwf ×∏α(λ′)=1
−yα+(i−1)h̵+c

yα
uλ

′

(20)

z∗ι−1
∗ [i+1R≤λ

i ] = ∑λ′=wλ∈Wλwf ×
(∏α(λ′)=1(yα+(i−1)h̵+c)(yα+ih̵+c))(∏α(λ′)=0 yα+ih̵+c)

yα
uλ

′

(21)

z∗ι−1
∗ [jR≤λ

i ] = ∏j−1
k=i+1∏α∈Φ(yα + kh̵ + c) ⋅ z∗ι−1

∗ [i+1R≤λ
i ](22)

Lemma 6.13. Let ε(x) = max(x + i, j) − (x + i) −max(x,0), then

ε(x) + ε(−x) =
⎧⎪⎪⎨⎪⎪⎩

j − i if ∣x∣ ≥ ∣j − i∣,
(j − i) + ∣j − i∣ − ∣x∣ if ∣x∣ ≤ ∣j − i∣.

Proof. Let us first prove that for arbitrary x, d one has

(23) max(x, d) +max(−x, d) = d +max(∣x∣, ∣d∣) =
⎧⎪⎪⎨⎪⎪⎩

d + ∣x∣ if ∣x∣ ≥ ∣d∣,
d + ∣d∣ if ∣x∣ ≤ ∣d∣.

Clearly, max(x, d) + max(−x, d) = max(∣x∣, d) + max(−∣x∣, d). For d ≥ 0 we get max(−∣x∣, d) = d and (23) is
clear. For d < 0 we can rewrite

max(∣x∣, d) +max(−∣x∣, d) = ∣x∣ −min(∣x∣, ∣d∣) = d +max(∣x∣, ∣d∣).
Now we can prove lemma, by letting d = j − i. Note that max(x + i, j) = i +max(x, j − i), therefore

ε(x) + ε(−x) = max(x + i, j) − (x + i) −max(x,0) +max(−x + i, j) − (−x + i) −max(−x,0) =

max(x, j − i) −max(x,0) +max(−x, j − i) −max(−x,0).
Now we can use (23) with d = j − i. �

Corollary 6.14. Let G = GLn. At c = h̵ = 0 we get

jz
∗
i gr ι−1

∗ [jRλi ][f] = ±Sym
⎛
⎝
f ⋅∆j−i ∏

r<s,∣λr−λs∣<∣j−i∣
(yr − ys)∣j−i∣−∣λr−λs∣uλ

⎞
⎠

Proof. Consider a pair r < s. In the right hand side of Theorem 6.8 we get

(yr − ys)ε(λ
′

r−λ
′

s)(ys − yr)ε(λ
′

s−λ
′

r) = ±(yr − ys)ε(λ
′

r−λ
′

s)+ε(λ
′

s−λ
′

r).

By Lemma 6.13, the result follows. �

Example 6.15. Again for G = GLn, assume that j = i + 1, then at c = h̵ = 0 we get

i+1z
∗
i gr ι−1

∗ [i+1Rλi ][f] = ±∆Alt
⎛
⎝
f ⋅ ∏

r<s,λr=λs
(yr − ys)uλ

⎞
⎠

For arbitrary groups and h̵ = c = 0 we get a similar formula.

Corollary 6.16. For arbitrary G and λ we have

jziι
−1
∗ gr[jRλi ][f] = SymW

⎛
⎝
f∆j−i ∏

α∈Φ+,∣α(λ)∣<∣j−i∣
(yα)∣j−i∣−∣α(λ)∣uλ

⎞
⎠

Proof. The proof follows from setting h̵ = c = 0 in Theorem 6.10 in exactly the same way as Theorem 6.8 and
Corollary 6.14. �
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6.3. Factorization of bimodules.

Lemma 6.17. Suppose that λ is an arbitrary integral coweight for GLn and d > 0. Then there exist d coweights
µ(0), . . . , µ(d−1) such that µ(0) + . . . + µ(d−1) = λ and for all i and j the following holds:

1) If ∣λi − λj ∣ < d then
d − ∣λi − λj ∣ = ∑

k,µ
(k)
i =µ(k)j

1.

2) If ∣λi − λj ∣ > d then µ(k)
i ≠ µ(k)

j for all k.

Proof. We define µ(k) by “dividing λ by d with remainder”. More precisely, let λi = dqi + ri where 0 ≤ ri < d.
We define

µ
(k)
i =

⎧⎪⎪⎨⎪⎪⎩

qi + 1 for k < ri
qi for k ≥ ri

Clearly, µ(0)
i + . . . + µ(d−1)

i = λi. Without loss of generality, we can assume that λj ≥ λi. We have the following
cases:

1) λj = dqi + rj , rj ≥ ri. In this case µ(k)
i = µ(k)

j for k < ri and k ≥ rj , so

∑
k,µ

(k)
i =µ(k)j

1 = d − (rj − ri) = d − (λj − λi).

2) λj = d(qi + 1) + rj , rj < ri. In this case µ(k)
i = µ(k)

j for rj ≤ k < ri and

∑
k,µ

(k)
i =µ(k)j

1 = ri − rj = d − (λj − λi).

3) If λj > d(qi + 1) + rj then µ(k)
j ≥ qi + 2 for k < ri and µ(k)

j ≥ qi + 1 for k ≥ ri, so µ(k)
i ≠ µ(k)

j for all k.
�

Example 6.18. Suppose that d = 2, then we split λ = µ(0) + µ(1) as follows. If λi = 2k is even, we set µ(0)
i =

µ
(1)
i = k; if λi = 2k + 1 is odd, we set µ(0)

i = k + 1 and µ(1)
i = k. Clearly, if λi = λj then both µ(0)

i = µ(0)
j and

µ
(1)
i = µ(1)

j . If ∣λi − λj ∣ = 1, it is not hard to see that exactly one of equations µ(0)
i = µ(0)

j and µ(1)
i = µ(1)

j holds.

Corollary 6.19. Suppose that G = GLn, j − i = d and c = h̵ = 0. For an arbitrary coweight λ and µ(k) as in
Lemma 6.17 we have

(24) jz
∗
i ι
−1
∗ gr[jRλi ] = ±

d−1

∏
k=0

i+k+1z
∗
i+kι

−1
∗ gr [i+k+1Rµ

(k)

i+k ] + lower order terms.

Proof. By Lemma 6.17 we get

∏
r<s,∣λr−λs∣<d

(yr − ys)d−∣λr−λs∣ =∏
k

∏
r<s,µ(k)r =µ(k)s

(yr − ys).

By Corollary 6.14, the left hand side of Eq. (24) is a symmetric polynomial with leading term (in the dominance
order on the uλ)

±∆d ∏
r<s,∣λr−λs∣<d

(yr − ys)d−∣λr−λs∣usort(λ)

while the right hand side is a product of d symmetric polynomials with leading terms

±∆ ∏
r<s,µ(k)r =µ(k)s

(yr − ys)usort(µ(k))

It is easy to see that in the above construction sort(λ) = sort(µ(0))+ . . .+ sort(µ(d−1)), so the result follows. �

Remark 6.20. It seems reasonable to conjecture analogs of Lemma 6.17 and Corollary 6.19 for other groups, at
least for simply laced groups. This would have the consequence that the isomorphism constructed in Theorem
6.21 would hold for other groups, showing for instance that the global sections of the line bundle we construct
equal AdG. Since the line bundle is not expected to be ample outside the simply laced case (see [53]) we do not
expect the result to hold in general.
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We also note that the combinatorics appearing in the Lemma are closely related to the root-system chip-firing
of [24]. It would be interesting to make the connection more precise. The second author thanks Pavel Galashin
for correspondence regarding this point.

6.4. The geometric Z-algebra for the adjoint representation. We are ready to prove the main result of this
section.

Theorem 6.21. When G = GLn, the Z-algebras A and B are isomorphic. For general G, there is an injection
A ↪ B inducing j−1Aj ≅ j−1Bj and jAj ≅ jBj .

Proof. We need to prove the following facts:

(a) iAi ≅ iBi as algebras
(b) iAi+1 ≅ iBi+1 as bimodules over iAi (resp. iBi) and i+1Ai+1 (resp. i+1Bi+1)
(c) iAi+1⋯j−1Aj ↪ iAj and this is an isomorphism for G = GLn. Note that iBj ≅ iBi+1⋯j−1Bj by

definition.

Part (a) follows from Theorem 6.1. Part (b) follows from Theorem 6.5.
In type A, it is instructive to review what part (b) says in order to prove part (c). We can compute the

bases in the associated graded spaces on both sides: gr iBi+1 = A is the space of antisymmetric polynomials
in C[x±1 , . . . , x±n, y1, . . . , yn] and by Lemma 3.25(a) it has a vector space basis ∆S parametrized by all n-element
subsets of Z≥0 ×Z. On the other hand, in gr iAi+1 we have a basis gr[jRλi ][f] parametrized by a weight λ and a
function f . By Example 6.15 and Lemma 3.25(c) these can be explicitly identified by setting f to be the product
of Schur polynomials. Finally, having a filtered homomorphism inducing an isomorphism on associated graded
spaces gives an isomorphism.

Let us prove part (c) for G arbitrary. By Corollary 5.7 the convolution product gives a natural map

(25) iAi+1 ⊗
i+1Ai+1

⋯ ⊗
j−1Aj−1

j−1Aj → iAj ,

To check that (25) is injective, it is sufficient to check that it becomes an isomorphism after localization in the
multiplicative set generated by {yα + nh̵ +mc∣α ∈ Φ,m,n ∈ Z} which we get from [9, Remark 3.24]. Finally,
we need to prove that it is an isomorphism for G = GLn. To prove that it is surjective, we first consider the
commutative limit h̵ = c = 0 and take the associated graded with respect to the Bruhat filtration. Then surjectivity
follows from Corollary 6.19.

Next, we use parts (a) and (b) of the theorem to rewrite the left hand side of (25) as

iBi+1 ⊗
i+1Bi+1

⋯ ⊗
j−1Bj−1

j−1Bj = iBj .

By Theorem 4.18 this is free over C[y1, . . . , yn]Sn . Since the space iRj+1 is equivariantly formal, the bimodule
iAj+1 is free over C[h̵] ⊗C[y1, . . . , yn]Sn as well. Therefore (25) is surjective for general c, h̵ .

�

Remark 6.22. For G = GLn, Simental [78] classified Harish-Chandra bimodules for the rational Cherednik
algebra and proved that the shift bimodule is the unique Harish-Chandra bimodule which sends polynomial repre-
sentation to the polynomial representation. In particular, this implies an analogue of Theorem 6.21 for the rational
Cherednik algebra.

It would be interesting to know if the methods of [78] can be generalized to the trigonometric case to give an
alternate proof of Theorem 6.21.

Combining the above result with the Proj construction we get

Corollary 6.23. When G = GLn, the graded algebra ⊕i j−iAh̵=c=0
j is naturally isomorphic to the homogeneous

coordinate ring of Hilbn(C ×C∗) for any j.

Proof. Specialize the above theorem for c = h̵ = 0 and use Theorem 4.18. �

Remark 6.24. One should also compare this to the results in [11] which essentially show iAj ≅ O(j−i) in the case
G = GLn,N = Ad⊕V ` for ` ≥ 1, using factorization and results about the Hilbert schemes on A`−1-resolutions.
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6.5. A flag Z-algebra. In this section, we sketch to what extent the construction of iAj extends to the flag level,
i.e. when we replace g(O) by the standard Iwahori subalgebra and G(O) by the Iwahori subgroup I. This gives a
Springer-theoretic construction of the ”one-step” shift bimodule i−1Ai. On the level of affine Springer fibers, the
analogous geometry is discussed in Section 7.4.

Let ev−1
0 (b) = i be the standard Iwahori subalgebra. Then ev−1

0 (0) ⊂ i. Consider the sequence of subalgebras

g0 ∶= g(O) ⊃ g1/2 ∶= i ⊃ g1 ∶= tg(O) ⊃ ti ⊃ t2g(O) ⊃ t2i ⊃ ⋯
Then, as k-vector spaces (but importantly, not as Lie algebras) we have the subquotients

gi/gi+1/2 ≅
⎧⎪⎪⎨⎪⎪⎩

b, i ∈ Z + 1/2
n−, i ∈ Z

Example 6.25. For G = SL2 we have

(O O
m O) ⊃ (m m

m m
) ⊃ (m m

m2 m
) ⊃ ⋯

so that g1/2/g1 ≅ b, g1/g3/2 ≅ n−.

6.5.1. Bimodules. Consider now the spaces

jR̃i ∶= {[g, s] ∈ GK ×I gi∣gs ∈ gj}, i ∈
1

2
Z

And
jRi ∶= {[g, s] ∈ GK ×GO gi∣gs ∈ gj}, i ∈ Z.

Proposition 6.26. Let [b/B] rÐ→ [g/G] be the Grothendieck-Springer resolution. Then for i ∈ Z we have the
cartesian diagrams

i+1/2R̃i+1/2 [b/B]

iRi [g/G]

ψ

φ

In particular,
iAi ≅ e i+1/2Ai+1/2 e

by Springer theory. On the other hand, it is easy to see that

φ−1(0) = {[g, s] ∈ GK ×GO gi∣gs ∈ tgi} = i+1Ri
and

(r ○ ψ)−1(0) = {[g, s] ∈ GK ×I gi+1/2∣gs ∈ gi+1} = i+1R̃i+1/2.

In particular,
i+1Ai = e− i+1/2Ãi+1/2∆ e = e i+1Ãi+1/2 e.

From what we have before,
iÃi

is the trigonometric Cherednik algebra when i ∈ 1/2 + Z. The algebra for i ∈ Z is not a Cherednik algebra, but
indeed a matrix algebra over the spherical Cherednik algebra, as in [86, 85].

7. GENERALIZED AFFINE SPRINGER THEORY

7.1. Generalized affine Springer fibers. In this section we generalize the Springer action from [26, 42] to the
line operators discussed above. Let P be a parahoric subgroup, NP be a lattice in NK stable under P. Given this
data, denote η = (P,NP). Further, suppose that

1→ G→ G̃→ GF → 1

is an extension of algebraic groups and that P̃ is a parahoric subgroup of G̃K which fits into an extension

1→ P→ P̃→ (GF )O → 1

so that P̃ ∩GK = P. Let G̃OK be the preimage in G̃K of (GF )O.
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Definition 7.1. Let v ∈ NK. The generalized affine Springer fiber of v is the ind-subscheme of FlP defined by

ηMv ∶= {g ∈ FlP ∣g−1.v ∈ NP}.

Remark 7.2. Recall that if N = Ad, P is a fixed parahoric subgroup, NP = Lie(P), ηMγ = SpP
γ , the classical

affine Springer fiber for P.

Definition 7.3. The orbital variety of γ ∈ NK and η = (P,NP) is

ηOγ ∶= G̃K.γ ∩NP.

Remark 7.4. Note that the orbital variety only depends on the lattice NP. However, we always use it in conjunc-
tion with P, explaining the slightly redundant notation with η.

In particular, we have

Lemma 7.5 ([26, 42]). We have an isomorphism of stacks [ηOγ/P] ≅ [Lγ/ηMγ], where Lγ is the stabilizer of γ
in GK.

Lemma 7.6. Suppose ηMγ is finite-dimensional over C. Then ηMγ admits a Lγ-equivariant dualizing complex
ωηMγ , and the equivariant Borel-Moore homology HHγ

∗ (ηMγ) =∶HP
∗ (Hγ/Xγ) is well-defined for any algebraic

subgroup Hγ ⊆ Lγ . Here Xγ = {g ∈ G̃OK ⋊C×∣g−1.γ ∈ NP}.

Proof. We can approximate Mγ by finite-type Hγ-stable varieties, and then take the colimit. �

Example 7.7. Suppose N = Ad, and γ is split regular semisimple. Then Lγ is a split maximal torus in GK, in
particular the loop group of a split maximal torus T ⊂ G. Let Hγ ⊂ Lγ be the subgroup of ”constant loops” of this
torus. HHγ

∗ (Spγ) is studied e.g. in [51, 30, 1, 15].

Remark 7.8. Note that generically, Lγ is a torus in GK. We may extend the setup to the flavor-deformed equi-
variant version by considering ηÕγ ∶= G̃OK ⋊C×.γ and and its quotient by P̃⋊C× instead. We leave constructions
of these extended notions to the reader or refer to [26].

Suppose that G̃ = G ×C∗, so GF = C∗ is the flavor group above. The group G̃ acts on N via v ↦ hg−1γg. We
denote the resulting GASF

Mγ = G̃K.γ ∩NP/P̃
Since [h] = [td] ∈X∗(C∗) = Z we see that Mγ splits into components

Mt−dγ ≅ {g ∈ GrG ∣tdg−1γg = g−1tdγg ∈ g(O)} = Spt−dγ .

We recognize this to be the affine Springer fiber of t−dγ in FlP, or in other words that

Mγ = ⊔
d∈Z

Mtdγ .

7.2. Springer action from the Coulomb perspective. We now define the Coulomb branch version of the Springer
action, and in particular the geometric action of our Z-algebra.

Theorem 7.9. The following convolution diagram defines naturally associative maps

H
P̃⋊C×rot
∗ (ηRη′) ⊗H

Lγ
∗ (η′Mγ) →H

Lγ
∗ (ηMγ).

ηRη′ × η′Oγ p−1(ηRη′ × η′Oγ) q(p−1(ηRη′ × η′Oγ)) ηOγ

GK ×P′ NP′ × η′Oγ GK × η′Oγ

i

p q m

Here p ∶ (g, s) ↦ ([g, s], s), q is the quotient by the diagonal action of P′ and m is the map sending [g, s] ↦ g.s.

Proof. We explain the maps p, q,m induce in BM homology. Consider the space

ηPη′ ∶= {(g, s) ∈ G̃OK ⋊C×
rot ×NP′ ∣g−1.s ∈ NP}

and note there are maps π1 ∶ ηPη′ → NP′ and (g, s) ↦ s and π2 ∶ ηPη′ → NP given by (g, s) ↦ g−1.s. Then
consider FvP,NP

∶= ω
η′Oγ [−2 dim P̃], which is an object in the P̃ ⋊C×

rot-equivariant derived category of NP.
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First of all, we have the ”pull-back with support” map p∗ (see [9, Section 3(ii)])

p∗ ∶H−∗
P̃⋊C×rot×P̃′⋊C×rot

(ηRη′ ×NP, (ωηRη′ ) ⊠ (η′Fγ))

=HP̃⋊C×rot
∗ (ηRη′) ⊗H

P̃′⋊C×rot
∗ (η′Oγ) →H∗

P̃⋊C×rot×P̃′⋊C×rot
(ηPη′ , π!

1(η′Fγ)).(26)

Further, we have a map π!
1η′Fγ → π!

2ηFγ and since π2 =m ○ q, we get

q∗ ∶H∗
P̃⋊C×rot×P̃′⋊C×rot

(ηPη′ , π!
1η′Fγ) →H∗

P̃⋊C×rot
(q(ηPη′),m!

ηFγ)

Finally, m is (ind-)proper because its fibers are closed subvarieties of a partial affine flag variety, so that using
the adjunction m!m

! → id we get a map

(m ○ q)∗ ∶H
P̃⋊C×rot
∗ (q(ηPη′),m!FvP,NP

) →H
P̃⋊C×rot
∗ (ηOγ) =H

Lγ
∗ (ηMγ)

See [26, Theorem 4.5] and [42] for more details, for example the proof of associativity of the maps.
�

While the convolution diagram in Theorem 7.9 is rather abstract and the maps in Borel-Moore homology
involved are defined sheaf-theoretically, in easy cases it is possible to analyze the action as follows. Similar to
[26, Section 4.2], we define the Hecke stack for γ, η which has C-points

ηRγη′(C) = {(s2, g, s1) ∈ ηOγ ×GK × η′Oγ ∣g.s1 = s2}/P.

Here the quotient is by the action h.(s2, g, s1) = (s2, gh
−1, hs1). There is a natural Schubert stratification of ηRγη′

inherited from ηRη , where

ηRγη′ ↪ ηRη′

via [s2, g, s1] ↦ [g, s1]. Similarly we have maps

(27)
ηRγη′

ηMγ η′Oγ

We will use this diagram later on in our computation of certain shift maps.
In the adjoint case, the name ”Springer action” is warranted, as it coincides with the action defined by Yun,

Oblomkov-Yun [72] (and Varagnolo-Vasserot [82]):

Theorem 7.10. Let N = Ad and η = (I,NI) = η′. Then the action of the algebra ÃG,I on HLγ
∗ (Mγ) defined by

Theorem 7.9 coincides with the one defined in [72] on the equivariant homology of affine Springer fibers, under
the isomorphism of Theorem 6.1

Proof. Theorem 6.1 shows that the Springer action of simple reflections in the affine Weyl group is the same. The
equivariant parameters act by Chern classes of line bundles on the affine flag variety, and that the relations are the
same follows from Theorem 6.1. �

The novel feature in allowing arbitary η, η′ shows the following.

Corollary 7.11. The convolution product in Theorem 7.9 gives maps

jAh̵i ⊗H
Lγ
∗ (Mtiγ) →H

Lγ
∗ (Mtjγ)

that naturally assemble into an action of the Z-algebra Bh̵ = ⊕i≤j jAh̵i Moreover, the action in Theorem 5.6 not
including loop rotation, i.e. setting h̵ = 0, defines maps

HGO
∗ (Rd

G̃,N
) ×HL

∗ (Md′

γ ) →HL
∗ (Md+d′

γ ).

In particular, the above corollary gives a geometric construction of ”column vector” modules for our geometric
Z-algebra B = ⊕i≤j≤0 iAj .
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7.3. The adjoint case. In the case N = Ad, the construction of these affine Springer theoretic modules is also
closely related to the construction of a commutative (partial) resolution as in the previous sections, in the following
way. For G = GLn, by the results of [11], the commutative limit i+dAh̵=0

i is identified with the sections of O(d)
on the Hilbert scheme of points Hilbn(C× ×C). In particular,

Proj⊕
d≥0

i+dAh̵=0
i ≅ Hilbn(C× ×C).

In general, we have the following proposition.

Proposition 7.12. Let h̷ = 0. Then every γ ∈ NK as in Theorem 7.9 gives a quasicoherent sheaf Fγ on the partial
resolution of the Coulomb branch given by

Proj⊕
d≥0

i+dAh̵=0
i .

Corollary 7.13. WhenG = GLn, the above construction gives a quasicoherent sheaf on Hilbn(C××C) associated
to γ ∈ NK.

It is in general hard to compute which sheaf this is. In all examples we have checked, this should be a coherent
sheaf for regular semisimple elements. This is a conjecture that we discuss in Section 8.

Recall that Lemma 2.13 tells us that the support of Fγ is determined by Hγ , i.e. the equivariance we consider,
as well as the splitting type of γ.

Example 7.14. When γ = ztd as above, we get twists of the ”Procesi bundle” as shown in [51] which are supported
everywhere. See Proposition 8.11 for the precise statement.

When γ is elliptic, these sheaves are supported on the punctual Hilbert scheme over (1,0) ∈ C× ×C.

7.4. Action on representations. Let S̃p
′
γ = {gI∣gγg−1 ∈ tg(O)}. Consider the Springer moduleMγ =H

Lγ
∗ (Spγ).

Then we have a natural map Mγ →Mtγ given by inclusion. There are also maps

M̃γ → M̃ ′
tγ → M̃tγ

given by inclusion, or in other words convolving with the identity or point class in 1/2Ã1 and then by the point
class in 1Ã3/2.

There are also natural Gysin maps M̃tγ → M̃ ′
tγ → M̃γ . The first one is codimension zero, and the second

one codimension dimG/B. Composed, on the level of equivariant parameters, these look like the square of the
Vandermonde determinant ∆. The issue arises from the normalization in the embedding to difference-reflection
operators, in which the point class of 1Ã3/2 is naturally identified with ∆ (and a Cartan part), but acts as the
identity on components (effectively, it cuts down the tangent spaces of the components by ∆).

Note also we have two projections

S̃p
′
tγ → Spγ , S̃pγ → Spγ

the first one of which is a fibration, and the second one has fibers which are usual Springer fibers (stratified
fibration). Effectively, the two line operators (for (1/2,1) and (1,3/2)) in the flags get squeezed down to a single
one on the spherical level (the one for (0,1)).

Lemma 7.15. We have dim Sptγ = dim Spγ + dimG/B.

Proof. By a result of Bezrukavnikov [6] the dimension of Spγ is given by

(28) dim Spγ =
1

2
(νad(γ) − rk(g) + dim(hw)) ,

where w ∈W is such that Z(γ) is of type w, hw denotes the w-invariants in h and νad(γ) is the valuation of

det (adγ ∶ g(K)/Z(γ) → g(K)/Z(γ))

It is easy to see that changing γ to tγ does not change w. The matrix adγ is multiplied by t which changes νad(γ)
by ∣Φ∣ = 2 dimG/B, and the result follows. �

Lemma 7.16. Let π ∶ S̃ptγ → Sptγ be the natural projection. If γ is elliptic then π−1(Spγ) is an irreducible
component of S̃ptγ . More generally, if γ is regular semisimple, and C is an irreducible component of Spγ , then
π−1(C) is an irreducible component of S̃ptγ .



THE AFFINE SPRINGER FIBER – SHEAF CORRESPONDENCE 35

Proof. By the proof of Lemma 2.2 the projection π−1(Spγ) → Spγ has fibers G/B at every point. Since γ is
elliptic, Spγ is irreducible and hence π−1(Spγ) is irreducible as well. If C is as in the statement of the Lemma,
the same proof goes through.

Furthermore, all components of S̃ptγ have dimension dim Sptγ . By Lemma 7.15 we have

dimπ−1(Spγ) = dim Spγ + dimG/B = dim Sptγ ,

and the result follows. �

Lemma 7.16 allows us to construct an important correspondence between Spγ and Sptγ . By the work of Tsai
[81], there are W many irreducible components up to the centralizer action in S̃ptγ . Furthermore, we expect the
following:

Conjecture 7.17. ([81, Conjecture 8.6]) The Springer action on H∗(S̃pγ) yields a regular representation in top-
dimensional homology spanned by the classes of the irreducible components.

In particular, for γ elliptic there is a distinguished component π−1(Spγ) and another component biregular to
Sptγ , and (assuming Conjecture 7.17) one can define a correspondence in Borel-Moore homology sending the
former to the latter (for example, the symmetrizer e would suffice). More generally, fix a component C as above
and note that the lattice part of the centralizer of γ acts transitively on the set of these components [47]. Now the
class of π−1(C) can either be sent to the class of any lattice translate of π−1(C), or by the symmetrizer in the
finite Weyl group to a one-dimensional W -invariant subspace of the BM homology of Sptγ .

This leads to the following:

Proposition 7.18. Assume γ is elliptic and G is simply-connected, and assume Conjecture 7.17 holds for γ.
Consider the correspondence e[π−1(Spγ)] ∗ − between Spγ and Sptγ . The action of this correspondence in
homology corresponds to the action of some class in i+1Ri as in Theorem 7.9, which sends the fundamental class
of Spγ to the fundamental class of Sptγ .

Proof. Lets construct a cycle Γ′ in i+1Rγi such that correspondence (27) with the class Γ′ sends [Spγ] to [Sptγ].
First, we define Γ ⊂ i+1Rγi as the lift of the graph of the embedding of Spγ into Sptγ . The lift Γ is defined as the
locus of triples (s2, g, s1) ∈ i+1Rγi such that GO.s1 = GO.s2.

Let η = (GO, tig(O)), η′ = (GO, ti+1g(O)) and η̃ = (I, tig(O)). In particular, i+1Rγi = ηRγη′ and on the
homology of the fibers of the projection π̃ ∶ ηRγη̃ → i+1Rγi there is an action of W . The push-forward along the
projection π̃ is the projection onto the W -invariant part of the homology.

Let q̃ ∶ ηRγη̃ → η̃Oγ be map from the corresponding diagram (27). The previous proposition implies that the
map q̃ restricted to Γ̃ = π̃−1(Γ) is dominant over one of irreducible component of η̃Oγ . By Conjecture 7.17 the
set of irreducible components of η̃Oγ is a regular representation of W . Thus there is w ∈W such w.[Γ̃] projects
dominantly onto η′Oγ . The class Γ′ = π̃∗(w.[Γ̃]) satisfies required properties.

�

Corollary 7.19. Under the assumption of the previous proposition we have the relation between the fundamental
classes:

[Spti+1γ] ∈ −i−1A−i ∗ [Sptiγ]

8. FINITE GENERATION AND EXAMPLES

8.1. Finite generation conjecture. As we saw in Section 7, in particular Theorem 7.9, the space

Fγ ∶=
∞
⊕
k=0

H∗(Sptkγ)

is a graded module over the graded algebra ⊕∞
d=0 0Ad. Equivalently, Fγ defines a quasi-coherent sheaf Fγ on

Proj⊕∞
d=0 0Ad.

Conjecture 8.1. The module Fγ is finitely generated and the sheaf Fγ is coherent.

Note that by Theorem 2.12 the homology of Sptkγ is finitely generated over 0A0. For G = GLn the graded
algebra⊕∞

d=0 0Ad = ⊕∞
d=0A

d is generated by 0A0 and 0A1 = A, so Conjecture 8.1 is equivalent to saying that for
a given γ there exists k0 such that Fγ is generated by ⊕k0

k=0H∗(Sptkγ) under the action of 0A0 and 0A1.
Below we prove the conjecture in some special cases.



36 EUGENE GORSKY, OSCAR KIVINEN, AND ALEXEI OBLOMKOV

Theorem 8.2. Conjecture 8.1 holds for G = GLn and γ = diag(s0, . . . , sn) for si ≠ sj .

Proof. This follows from Proposition 8.11 below. �

Example 8.3. Let G = GL2 and

γ = (t 0
0 −t) .

Then
Sptdγ ≅ ⊔

Z
Cd+1

where each Cd+1 is an infinite chain of Pd+1, consecutive members of which intersect transversally along a Pd.
These Pd are Spaltenstein varieties of d-planes in 2d-space stable under a nilpotent element with Jordan blocks of
sizes (d, d), motivically equivalent to projective spaces Pd. The inclusion maps are again embedding the chains
into one another and they are regular embeddings (because they are effective Cartier divisors).

Note that the direct sum of homologies of these Pd+1 surjects onto the homology of Sptdγ . Let us prove that
the module Fγ is generated by the homology of Spγ under the action of 0A0 and 0A1.

Indeed, Spγ is just a discrete set of points in bijection with the affine Weyl group. Its homology is a free rank
two module over the lattice of translations.

In case of elliptic γ the finite generation conjecture follows from the stable of 0A0-cyclicity of the homology
of Sptkγ :

Proposition 8.4. Let us assume that γ is elliptic, Conjecture 7.17 holds for tkγ and [Sptkγ] ∈ H∗(Sptkγ) is
the fundamental class. Then if there exists N such that H∗(Sptkγ) = C[T ∗T ∨]W ⋅ [Sptkγ] for k ≥ N then the
conjecture 8.1 holds for Fγ .

Proof. The actions of 0A0 = C[T ∗T ∨]W and 0A1 on Fγ commute. Hence by Proposition 7.18 the submodule
⊕k≥NH∗(Sptkγ) is generated by 0A0 and 0A1 from [SptNγ]. The module ⊕k<NH∗(Sptkγ) is finite dimensional.

�

The subalgebra C[t]W is isomorphic to the cohomology ring H∗(GrG) it acts on H∗(Spγ) by cap product. It
is natural conjecture that a stronger version of the condition of the previous proposition is true for G = PGLn.

Conjecture 8.5. Let g = Lie(PGLn) and γ ∈ g(O) is an elliptic regular semisimple topologically nilpotent
element. Then

H∗(Spγ) =H∗(GrG) ∩ [Spγ].

If G = GLn or G = SLn and γ ∈ g(O) is an elliptic element then Spγ has many connected components and
the group π0(Gγ) permutes the connected components. In the light of aforementioned Theorem 2.12 it is natural
to propose

Conjecture 8.6. Let g = Lie(GLn) or g = Lie(SLn) and γ ∈ g(O) is an elliptic regular semisimple topologically
nilpotent element. Then

H∗(Spγ) = C[T ∗T ∨]W [Spγ].

Remark 8.7. The conjecture is false outside of type A since there are examples of elliptic affine Springer fibers
with homology of not of type (p, p) [47, 72]. Note however that H∗(Spγ) is always finitely generated under
C[T ∗T ∨]W by [89] (see also Lemma 2.13).

For the homogeneous elements Conjecture 8.6 is known [73] and one can deduce

Theorem 8.8. Conjecture 8.1 holds for G = GLn and equivalued γm,n with characteristic polynomial xm − yn,
gcd(m,n) = 1.

Proof. The affine Grassmanian GrG has π1(GLn) = Z connected components GrG = Gr0
G ×Z. Respectively, we

have Spγ = Sp0
γ ×Z.

Observe that if γm,n is equivalued with characteristic polynomial xm − yn then tkγm,n is equivalued with
characteristic polynomial xkn+m − yn. The compactified Jacobian Jm/n of the one-point compactification of the
planar curve {xm − yn} is irreducible and homeomorphic to Sp0

γm,n [73]. Moreover, Gr0
G = GrPGLn and the

Sp0
γm,n is the corresponding Springer fiber.
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It is shown in [73] that for Sp0
γm,n Conjectures 7.17 and 8.5 are true. The group π0(Gγm,n) = Z acts transitively

on the connected components of Spγ , hence Conjecture 8.6 is true for Spγm,n . Thus the theorem follows from
Proposition 8.4.

�

Example 8.9. For G = GL2 and γ = γ1,2 we recover the Z-algebra module from Example 4.17.

8.2. Examples in type A. In the caseG = GLn the sheafFγ can be described in terms of geometry of Hilbn(C××
C) for some homogeneous γ’s.

Proposition 8.10. Let γ be homogeneous of slope (kn + 1)/n. Then Fγ is isomorphic to the restriction of O(k)
to the punctual Hilbert scheme at (1,0) ∈ C× ×C.

Proof. The localized equivariant homology HGm
∗ (Spγ) affords the unique finite-dimensional representation of

eH− kn+1n
e as was checked in [72, 83]. By Lemma 2.13, Fγ is supported on this punctual Hilbert scheme (i.e. the

corresponding fiber of the Hilbert-Chow map). Completing our Z-algebra at a neighborhood of the identity in T ∨,
we get a completion of the rational Cherednik algebra and the corresponding bimodules, forGLn with parameters
given by integral shifts of (kn+ 1)/n. The Gordon-Stafford construction then implies [36] that the corresponding
sheaf on the punctual Hilbert scheme coincides with O(k).

�

Proposition 8.11. Let γ be homogeneous of slope k, or more generally equivalued of valuation k. Then Fγ is
isomorphic to P ⊗O(k) where P is the Procesi sheaf on Hilbn(C× ×C).

Proof. For equivalued γ of valuation k the main result of [51] identifies the equivariant Borel-Moore homology
HT
∗ (Spγ) with the space of global sections of P⊗O(k) on Hilbn(C××C) as a module over the algebra of global

functions
0A0 = C[T ∗T ∨]W = C[x±1 , . . . , x±n, y1, . . . , yn]Sn ,

By the work of Haiman [40] we get:

(29) H0(Hilbn(C× ×C),P ⊗O(k)) = ⋂
i≠j

⟨1 − xi/xj , yi − yj⟩k, Hi(Hilbn(C× ×C),P ⊗O(k)) = 0, i > 0.

By Theorem 3.5 the graded algebra 0A● is generated by the degree 1 component 0A1 = A, where A is the space
of antisymmetric polynomials in C[x±1 , . . . , x±n, y1, . . . , yn].

It is easy to see that by (29) we have a correctly defined map

A⊗H0(Hilbn(C× ×C),P ⊗O(k)) →H0(Hilbn(C× ×C),P ⊗O(k + 1)),
and it follows from [51] that this agrees with the convolution 0A1 ⊗HT

∗ (Spγ) → HT
∗ (Sptγ). This completes the

proof. �

For general γ elliptic of slope m
n

, the situation is as follows. Whilst our construction gives a sheaf Fγ , which
is coherent by Proposition 8.4, we do not know how to identify this sheaf on Hilbn(C× ×C). Indeed, a variant of
this problem already appears in [36, Problem 5.5.].

8.3. Beyond type A. For general G, both the computations of the cohomology of affine Springer fibers and the
sheaves on C̃Ǧ,ǧ are very complicated. It would be for example interesting to compute the sheaf one gets from
the Bernstein-Kazhdan example of [47, Appendix]. Nevertheless, we have the following analogue of Proposition
8.11 for general G.

Theorem 8.12. Let G be arbitrary and γ equivalued of valuation k. Then we have the isomorphism of graded
modules

Fγ =
∞
⊕
j=0

HT
∗ (Sptjγ) ≃

∞
⊕
j=0

⋂
α∈Φ+

⟨1 − α∨, yα⟩k+j

over the graded algebra ⊕ 0A(0)d ≃ ⊕ed⋂α∈Φ+⟨1 − α∨, yα⟩d. As a consequence, the corresponding sheaves
over Proj⊕ 0A(0)d = C̃Ǧ are isomorphic as well.

Proof. The proof is similar to Proposition 8.11. By the main result of [51] the isomorphism holds for each j
separately on the level of modules over 0A(0)0 ≅ C[T ∗T ∨]W . The comparison of the action of 0A(0)d follows
from Theorem 3.8 and the constructions in [51, 26]. More precisely, the result in [51] identifies ∆jHT

∗ (Sptjγ)
with ⋂α∈Φ+⟨1−α∨, yα⟩k+j inside C[T ∗T ∨] ≅HT

∗ (GrT ) using GKM localization. The latter has a multiplication
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structure which coincides with convolution on the Coulomb branch for T with zero matter. The fact that the
convolution action for 0A(0)0 respects the localization is [26, Proposition 4.15.]. �

LetG be quasisimple of adjoint type. Respectively, let cox ∈W be the Coxeter element of the Weyl group ofG
and n be the order of cox. For any m co-prime with n there is a regular semisimple element γm,n ∈ g(O) which
is homogeneous: γm,n(λ ⋅ t) = λm/nAdg(λ) γm,n(t), g(λ) ∈ G. The element γm.n is unique up to rescaling and
conjugation, an explicit construction of γm,n can found for example in [72]. The element γm,n is equivalued of
valuation m/n.

The stabilizer in G̃K ⋊Gm is given by Lγm,n = Gm, and it acts naturally on Spγm,n . It is shown in [72] that
dim SpGm

γm,n = 0, the fixed points are isolated and that the localized homology HGm
∗ (Spγm,n) ⊗C(h̵) is generated

by tautological classes H∗
Gm(GrG) from the fundamental class [Spγm,n]. We expect the generation statement in

the non-equivariant setting:

Conjecture 8.13. Let G, Lie(g),γm,n ∈ g(O) are as above, then

H∗(Spγm,n) =H
∗(GrG) ∩ [Spγm,n].

Note also that this ”Coxeter case” gives the so called spherical simple modules of the dDAHA, as first observed
in [83]. More generally, the slopes with so called regular elliptic denominators yield (spherical and other) finite-
dimensional modules of the dDAHA [83, 72]. Since γ elliptic implies tγ elliptic, one sees that the tensor products
by the shift bimodules i−1Bi send finite-dimensional modules to finite-dimensional modules, which one could also
deduce from the theory of shift functors for dDAHA like in [4]. As far as the authors are aware, this theory is still
undeveloped, but would potentially give insight on the m = 1, n = h case of Proposition 8.10 for other groups.
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