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Abstract. Degenerating the action of the elliptic Hall algebra on the Fock

space, we give a combinatorial formula for the Shalika germs of tamely ramified
regular semisimple elements γ of GLn over a nonarchimedean local field. As

a byproduct, we compute the weight polynomials of affine Springer fibers in

type A and orbital integrals of tamely ramified regular semisimple elements.
We conjecture that the Shalika germs of γ correspond to residues of torus

localization weights of a certain quasi-coherent sheaf Fγ on the Hilbert scheme

of points on A2, thereby finding a geometric interpretation for them.
As corollaries, we obtain the polynomiality in q of point-counts of compact-

ified Jacobians of planar curves, as well as a virtual version of the Cherednik-

Danilenko conjecture on their Betti numbers. Our results also provide fur-
ther evidence for the ORS conjecture relating compactified Jacobians and

HOMFLY-PT invariants of algebraic knots.
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1The genesis of this manuscript is as follows: In 2018, CCT showed OK his unpublished

computations of Shalika germs ofGLn. These were in many examples checked to match predictions
from the knot theory side by OK, which led to the strategy pursued in this paper.

CCT subsequently told OK that Waldspurger had given an algorithm for the germs in [69,70],

which OK later found to match a recursion on the knot theory/symmetric function side. The
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as the second author, as neither understanding the proof method nor deciphering the difficult

papers [69,70] would have been possible without his generous aid. The application to compactified
Jacobians is also originally CCT’s idea.
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1. Introduction

Shalika germs are a family of functions on a neighborhood of the identity in an
algebraic group G defined over a nonarchimedean field F . They were introduced
in [64] and further studied in for example [18, 42, 60, 69]. We refer to [41] for a
survey. More precisely, given f ∈ C∞c (G(F )) an Iwahori bi-invariant function on
G, the Shalika germ expansion [18, 64] states that

Proposition 1.1.
Iγ(f) = ∑

O∈G(0)
ΓO(γ)IO(f)

Where G(0) is the set of unipotent orbits in G, Iγ , IO are orbital integrals and
ΓO ∶ U → C are functions called the Shalika germs, defined on an open subset
γ ∈ U ⊆ G.

See Corollary 2.7 for a more precise version we will use. Computing the Shalika
germs for a given group G is an important, in general open problem, which refines
formulas for regular semisimple orbital integrals as well as character values of su-
percuspidal representations [51]. In the present paper, we find a new mathematical
incarnation of the Shalika germs of tamely ramified elements in terms of the Hilbert
scheme of points on Hilbn(A2). From now on, we let γ be tamely ramified, meaning
F (γ) is a product of tamely ramified extensions of F.

In [70], Waldspurger gives a rather complicated inductive formula for (almost, see
Theorem 2.19 and Section 6) the Shalika germs of γ in this case, built inductively
from those of elements of smaller depth. Here depth is meant in the sense of Moy-
Prasad theory, see Definition 2.48. The algorithm in [70] rests on a clever choice of
test functions and a version of ”Kazhdan’s lemma”, using which one can bootstrap
computation of the germs to what is essentially just linear algebra. A similar idea
is used again by Waldspurger in [71] and also by the second author in [67] based on
a lemma of Kim-Murnaghan [39] to obtain less precise results for general groups.
Waldspurger mentions similar strategies due to Kazhdan, Henniart, and others.
The issue is that the resulting linear algebra is usually cumbersome to carry out
and many steps of the algorithm have no obvious conceptual meaning. As noted
by Waldspurger in [70]:

L’auteur est convaincu qu’il existe une bonne combinatoire, moins
näıve que celle utilisée ici, qui devrait permettre de calculer les ger-
mes. - J.-L. Waldspurger [70]
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Our method of computation of the germs will use Waldspurger’s techniques from
[69,70], the most notable difference being in our use of the Lie algebra gln in place
of GLn, and replacing, or rather extending, his PSH-algebra calculations by the
elliptic Hall algebra. This greatly clarifies the resulting combinatorics, giving a
formula which is essentially computable ”by hand” 2.

The elliptic Hall algebra (EHA) has appeared in many guises related to auto-
morphic forms, starting with the original article of Burban and Schiffmann [10].
For us, it appears through a ”shuffle algebra” action on the algebra of symmetric
functions in infinitely many variables [54,62]. More precisely, much of this paper is
concerned with a symmetric function we denote fγ = fp⃗,q⃗, which can be constructed
using this action, as we will explain in Section 5. We have called fp⃗,q⃗ ”the master
symmetric function” for lack of a better name. In modern language, it is the t→ 1
limit of the n →∞ limit of a symmetric polynomial in n variables, which appears
in the definition of the superpolynomial for an iterated torus knot [12,29].

In [69, 70], Waldspurger already essentially introduces this symmetric function,
but mostly as a bookkeeping tool which turns out to be helpful because of the
relation to calculations in the Hall algebra of GLn(Fq). Apparently, the relationship
of Shalika germs to this Hall algebra was first suggested to him by B. Srinivasan.

We make the case that the master symmetric function is a completely natural
object and arises as a vector in the Fock space representation of the elliptic Hall
algebra. By the results of [6,63] the elliptic Hall algebra is the decategorification of
a form of induction-restriction functors for a coherent realization affine character
sheaves, and one expects this to be mirrored on the constructible side of Langlands
duality. Indeed, in an appropriate sense each γ gives rise to G(F )-equivariant
constructible sheaf on g(F ) by taking the extension by zero of the constant sheaf
on the conjugacy class and one may view our induction as some shadow of yet-
to-be-defined induction-restriction functors for affine character sheaves of this sort
(meaning that we impose no singular support condition). While we only work with
the elements γ themselves, it would be compelling to make the induction more
precise on the level of affine character sheaves.

On the decategorified level, the appearance of the Fock space representation on
the harmonic analysis side seems to stem from the natural ”cyclotomic” quotient
map from the affine Hecke algebra down to the finite one in type A. Note that these
maps respect parabolic induction. This is exactly the same phenomenon as in the
skein-theoretic version [50].

1.1. The formulas. Let us now state our main results in some detail. Let G =
GLn,g = Lie(G) = gln, K = C((t)),O = C[[t]] and γ ∈ g(K) be a regular semisimple
(elliptic) element. We endow K and its extensions with the standard valuation.
Later on we will also be working with an arbitrary non-archimedean local field
denoted F . We will only be interested in conjugation-invariant notions, but it will
be helpful for us to choose a nice representative in the conjugacy class of γ. Further,
we will only be concerned with the orbital integrals (and some related geometric
objects like affine Springer fibers) of γ, which further allows us to mod out by a
large power of the uniformizer t.

2Computer code available at https://www.math.toronto.edu/salomon/Shalika.zip and in the
arXiv submission.

https://www.math.toronto.edu/salomon/Shalika.zip
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Let

(1.1) u =

⎛
⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 t
1 0 ⋯ 0 0
0 1 ⋱ 0 0
0 0 ⋱ 0 0
0 ⋯ 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

and note that un = t.

Lemma 1.2. For any topologically nilpotent elliptic regular semisimple γ′ ∈ gln(K)
there exists an element γ ∈ gln(K) of the form

(1.2) γ =
d

∑
i=1
aiu

nri

for some d ≥ 0, ai ∈ C and positive rational numbers r1, . . . rd with nri ∈ Z, such
that the corresponding affine Springer fibers satisfy Spγ ≅ Spγ′ (meaning that there
is an isomorphism of underlying reduced ind-projective varieties). Without loss of
generality, we may take r1 > r2 > ⋯ > rd. Additionally, the set {ri}di=1 coincides
with the set of root valuations of γ, in the sense of [26].

Proof. The regular conjugacy classes in gln(K) are parametrized by the character-
istic polynomials. Write char(γ) = xn − b1xn−1 + . . . + bn for bi ∈ K.

The Newton-Puiseux algorithm (see e.g. [20] for a reference relevant to this
paper) allows one to solve char(γ) = 0 for x as a Puiseux series x = ∑i ait

ri in t.
The exponents in this Puiseux series are all rational numbers whose denominator
divides n. To get the assertion Spγ ≅ Spγ′ we may use Artin approximation, see
e.g. [52, Section 3.6.] for this particular case. In effect, we may take bi ∈ C[t±]
which also makes this Puiseux series finite. Replacing t1/n by u and using Cayley-
Hamilton gives the first claim.

As to the last claim, note that unri has all root valuations equal to ri and over the
field of Puiseux series, all the terms in the expansion of γ may be simultaneously
diagonalized. Now the result is easy to check using standard properties of the
valuation and the Puiseux expansion. □

Remark 1.3. Lemma 1.2 works over other residue fields as well, and in fact any
non-archimedean F , provided F (γ) is a tamely (and totally) ramified extension of
F [14, Chapter IV.6.].

Definition 1.4. Writing the exponents ri appearing in Eq. (1.2) as r1 =m1/n1, r2 =
m2/n1n2 etc. gives the Puiseux pairs (m1, n1), . . . , (md, nd) of γ. Rewriting the
Puiseux expansion of char(γ) as

x = tqd/pd(ad + tqd−1/pdpd−1(ad−1 +⋯(a2 + a1tq1/p1...pd))⋯)

we get the Newton pairs (p1, q1), . . . , (pd, qd) of γ. We will write (p⃗, q⃗) for this
sequence. We will also impose the (harmless) requirement qd ≥ pd. (Note that ours
is the opposite of the conventions used in e.g. [20]).

Remark 1.5. Knowledge of the Puiseux (equivalently, Newton) pairs is equivalent
to knowing the topological type of the singularity {char(γ) = 0}. Recall that this is
by definition the knot in S3 determined by intersecting {char(γ) = 0} ⊂ C2 with a
small three-sphere centered at the origin.
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Example 1.6. Let n = 4 and

γ = u6 + u7 =
⎛
⎜⎜⎜
⎝

0 t2 t2 0
0 0 t2 t2

t 0 0 t2

t t 0 0

⎞
⎟⎟⎟
⎠

Then r1 = 7/4, r2 = 3/2 and

char(γ) = x4 − 2t3x2 − 4t5x − t7 + t6

The Puiseux pairs are (m1, n1) = (7,2), (m2, n2) = (3,2) and the Newton pairs are
(p1, q1) = (1,2), (p2, q2) = (2,3). The link is the ”(2,13)-cable of the trefoil”. This
example features also for example in [20, p. 58].

Recall that rational Dyck paths of slope m/n are lattice paths in an m by n
rectangle fitting under the diagonal. See Definition 3.6.

As explained in Section 4, one may define a homomorphism from the ring of
symmetric functions to itself φm/n ∶ Symq → Symq by sending each ek to

Em,n,k = ∑
π∈Dkm,kn

qarea(π)eπ

see Section 3 for the notation. Our first main theorem is the following.

Theorem 1.7. Let γ ∈ gln(K) be an elliptic regular semisimple element. Let
(p1, q1), . . . , (pd, qd) be the Newton pairs of γ. Then the master symmetric function
fγ = fp⃗,q⃗ only depends on the Newton (or Puiseux) pairs of γ and is given by

fγ = φqd/pd
(⋯φq1/p1

(e1))⋯).

There is a version of this Theorem for not necessarily elliptic elements. Es-
sentially, if γ belongs to a Levi L(λ), we take fγ to be the product of the master
symmetric functions of the factors, see Definition 6.28. This is uniquely determined
by the Puiseux series of the branches of the spectral curve (which correspond to
the different blocks of γ). We may also work with arbitrary F whenever F (γ) is
tamely and totally ramified.

As explained in Section 6, the Shalika germs are obtained from the master sym-
metric function fγ by expanding it in the plethystically transformed homogeneous

symmetric functions h̃λ (Lemma 3.8). Similarly, one gets what we call ”Stein-
berg germs” from Theorem 2.19 by expanding in the untransformed homogeneous
symmetric functions.

On the harmonic analysis side, our recursion boils down to writing γ< = γ −
adu

nrd . It lies in the center of the centralizer of γ, which is F
′∗ for some tamely

ramified extension F ′/F of degree e (see Section 6). Let d be the F ′-valuation of
γ − γ<. We can use the Shalika expansion for γ< and compare the two.

This translates the Dyck path recursion to the following formula for the Shalika
germs using compositions, see Theorem 6.20.

Theorem 1.8. The transition matrix between the Shalika germs for γ and γ< is
given by

Mλ,λ′ =
⎛
⎝
cλ′ ∑

µ⊢n′

∣Sλ ∩Cµ∣
bµλ!

ℓ(µ)
∏
i=1
( ∑
α⊧eµi

wt(α)d/eh̃α)
⎞
⎠

RRRRRRRRRRRh̃λ
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where ∣h̃λ
means we pick the coefficient of h̃λ. Here wt(α)d/e is as in Eq. (5.11),

∣Sλ ∩Cµ∣ is the number of elements in the symmetric group Sn which belong to both
the Young subgroup Sλ and have cycle type µ, and

cλ′ = (1 − q)n
′

[λ′]q!, bµ =
ℓ(µ)
∏
i=1
(1 − qµi)

Remark 1.9. So far, we have been restricting to the case where F ′/F is totally
ramified. In the case where the residue field is k = Fq and our extension is unrami-
fied, the above theorem also works with appropriate modifications, as explained in
Section 6. Of course, in this case one needs to modify the statement of Theorem
1.7 to account for intermediate unramified extensions.

Finally, the point counts of affine Springer fibers/their weight polynomials/integrals
of characteristic functions of standard parahorics over the orbit of γ are obtained
easily from the master symmetric function by pairing it with elementary symmetric
functions:

Theorem 1.10. Let λ ⊢ n be a partition and 1λ the characteristic function of the
Lie algebra of the associated standard parahoric. Then

Iγ(1λ) = qdimSpγ ⟨fγ , eλ⟩∣q↦q−1

where we pair using the usual Hall inner product and Spγ is the affine Springer
fiber of γ. See Remark 5.11 for the normalizations.

The following is more or less obvious from above and has been a folklore conjec-
ture for quite long. We give details in Section 7.2.

Corollary 1.11. The point-counts of (local) compactified Jacobians of plane curves
are polynomials in q and only depend on the Newton-Puiseux pairs of γ. In addition,
they are polynomials with nonnegative integer coefficients.

Proof. Theorem 1.10 combined with Proposition 7.10 implies that

qdimSpγ ⟨fγ , eλ⟩∣q↦q−1

is the number of points of the projective variety Xγ ∶= Spλγ/Λ after spreading out
and modding out by q outside a finite set of primes. On the other hand, it is well
known that ⟨eµ, eλ⟩ counts the number of certain nonnegative integer matrices with
row sums µ and column sums λ and in particular is a nonnegative integer. Since
fγ = ∑aλγ(q)eλ with aλγ(q) ∈ N[q] by Theorem 1.7, we get

∣Xγ(Fq)∣ ∈ N[q]

as desired. □

Note that the element γ does not have to be elliptic for this to hold. Indeed, as
explained in Section 2 the point-counts on regular semisimple affine Springer fibers
can be reduced to those of elliptic elements. The above is also in line with the
expectation that all local compactified Jacobians (for elliptic γ, say) are paved by
affines.

Our final result follows from our method using the elliptic Hall algebra. In
Section 8 we connect this Theorem to the geometry of Hilbert schemes of points on
A2.
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Theorem 1.12. The master symmetric function fγ admits a canonical t-deformation

f̂γ which admits a t-deformed version of the Shalika germ expansion:

f̂γ = ∑
λ⊢n

Γ̃λ(γ)H̃λ

where H̃λ are the modified Macdonald polynomials.

It is unlikely the methods in this paper will yield results for other groups, in that
the elliptic Hall algebra seems to be confined to work with G = GLn only. There
are also a number of geometric simplifications in this case for the affine Springer
fibers. It is however interesting to ponder what part of the theory carries through
to other G.

Another direction of generalization is to the wildly ramified elements. For some
of our methods, especially on the harmonic analysis side, there is no issue in using
other nonarchimedean fields, in particular extensions of Qp. The geometric inter-
pretation of orbital integrals from [25,38,44] still goes through but the geometry is
now replaced by the Witt vector affine flag varieties of [73]. It would be interesting
to consider the geometry of affine Springer fibers in this case.

1.2. Outline of the paper. In Section 2, we review some general theory of orbital
integrals and various versions of the Shalika germ expansion. In Section 3 we
introduce background on symmetric functions, and in Section 4 we define and study
a degenerate version of the Elliptic Hall Algebra. Section 5 is devoted to making
the connection of our results to HOMFLY type knot invariants precise. It appears
before the technical heart of the paper, Section 6, because results of the latter
are strongly guided by the computation of the knot superpolynomials. Finally, we
discuss some applications in Section 7 and the relationship of our results to the
Hilbert scheme of points on A2 in Section 8.

Acknowledgments. The authors thank Francois Bergeron, Pierre-Henri Chau-
douard, Stephen DeBacker, Eugene Gorsky, Thomas Hales, Bertrand Lemaire, Yen-
Chi Roger Lin, Anton Mellit, Fiona Murnaghan, Andrei Negut, , Alexei Oblomkov,
Koji Shimizu, Yan Soibelman, Loren Spice, Minh-Tam Trinh, Jean-Loup Wald-
spurger, Zhiwei Yun, and Wei Zhang for interesting conversations.

2. Orbital integrals

In this section, we fix k a finite field and let F be a non-archimedean local field
with residue field k and O its ring of integers. The group G will be GLn or a
product ∏GLni for which one can reduce the discussion to the former case. For
any γ ∈ G(F ) and f ∈ C∞c (G(F )) (henceforth complex-valued), the orbital integral
is

Iγ(f) ∶= ∫
g∈CG(F )(γ)/G(F )

f(g−1γg)dg

Definition 2.1. For γ semisimple, the measure dg is defined as follows: On G(F )
we have the up to a scalar unique Haar measure, which we will choose to be normal-
ized so that G(O) has measure 1. CG(F )(γ) is a product of general linear groups
over extensions F ′ of F , and we use the same normalization. The same is done for
γ ∈ g(F ) semisimple.
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For general γ ∈ G(F ) or γ ∈ g(F ), the orbit of γ is locally closed and the
centralizer unimodular, therefore the orbit of γ under the adjoint action admits an
invariant measure. A way to see this is to identify the orbit with the orbit inside
gln(F )∗ via the natural equivariant embedding of varieties GLn ↪ gln and the
Killing form. The coadjoint orbit admits a natural symplectic structure (even in
this non-archimedean setting), whose top wedge is an invariant volume form.

We will not attempt to fix a normalization for arbitrary γ. However when γ ∈
G(F ) is unipotent, we will normalize the measure as follows, following [36, 69].
Let λ ⊢ n and consider the standard (Richardson) parabolic P = P (λt) for the
unipotent orbit associated to λ. Let N be its unipotent radical, M its Levi factor
and for f ∈ C∞c (G(F )) let fP ∈ C∞c (M(F )) be defined by

(2.1) fP (m) = δP (m)1/2 ∫
G(O)×N(F )

f(k−1mnk)dndk

where δP is the modular function for P . By [36, Proposition 5], the linear forms
given by the unipotent orbital integrals IGλ (−) for λ ⊢ n are proportional to f ↦
fP (1). We normalize the measure on the unipotent orbit so that IGλ (f) = fP (1).
This discussion applies verbatim with G replaced by g, etc., with the resulting
formula being

(2.2) fp(X) = ∫
G(O)×n(F )

f(ad(k−1)(X + Y )dY dk

and the required proportionality being to Igλ(f) = f
p(0). We will drop the super-

scripts G,g when understood from the context. This is even more merited in view
of

Lemma 2.2. Let f ∈ C∞c (g(F )/Lie(I)) be the characteristic function of a standard
parahoric, or more generally f ∈ C∞c (g(O)/Lie(I)). Then the restriction of f
to G(O) ⊂ g(O) equals the characteristic function of the corresponding standard
parabolic subgroup, and

fP (1) = fp(0)
because Lie(Pλ) ∩G(O) = Pλ in this case.

2.1. Shalika germs. For any subset Ω ⊂ G(F ) we denote by J(Ω) the space of
invariant distributions on G(F ) supported on elements of the form g−1γg with
g ∈ G(F ), γ ∈ Ω. The famous Howe conjecture states that

Theorem 2.3 ( [36], [32], [16], [5]). For any compact subset Ω ⊂ G(F ) and an open
subgroup K ⊂ G(F ), the restriction of J(Ω) to Cc(G(F )/K) is finite-dimensional.

The same is true when we replace Ω by a compact subset in g(F ), K by an
open sub-O-module in g(F ) and Cc(G(F )/Ω) by Cc(g(F )/K). In this article we
will make use of precise versions of the above finiteness. A particularly important
one is the following theorem, proved by Hales [30, Thm. 1] for the span of regular
semisimple orbital integrals, and which follows in general from Proposition 2.32
(see also Courtés [17, Thm 1.10]):

Theorem 2.4. Recall that G = GLn. Let U ⊂ G(F ) be the (F -points of the)
unipotent variety and I ⊂ G(F ) be an Iwahori subgroup. Then the restriction of
J(G(O)) to Cc(G(F )/I) is equal to that of J(U) to Cc(G(F )/I). Both restrictions
have a basis given by unipotent orbital integrals.
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Remark 2.5. Hales [30] works over characteristic zero F , as does Waldspurger
[69, 70]. However, the most essential ingredient for Hales is the original Shalika
expansion [64], which also works in positive characteristic assuming finiteness of
unipotent orbits and convergence of the unipotent orbital integrals. This was proved
in [49] when the characteristic is good for G. In particular, for GLn it holds in
arbitrary characteristic. Moreover, the more general Proposition 2.32 works in
arbitrary characteristic, so we do not have to worry about this issue.

Remark 2.6. As far as invariant distributions are concerned, any test function in
Cc(G(F )/K) can be averaged by K-conjugation into Cc(K/G(F )/K). Likewise in
Theorem 2.4 we can replace Cc(G(F )/I) by Cc(I/G(F )/I).

The above theorem is a variant of the so-called Shalika germ expansion, reinter-
preted as:

Corollary 2.7. For any γ ∈ G(O), there exists constants Γλ(γ) where λ runs over
unipotent orbits of G(F ) (i.e. partitions of n) such that for any f ∈ Cc(G(F )/I),
we have

(2.3) Iγ(f) =∑
λ

Γλ(γ)Iλ(f).

For the Lie algebra case one has the following which works also for arbitrary
connected reductive group G provided that chark ≫ rankG.

Theorem 2.8. [Thm. 2.1.5., [18]] Let N ⊂ g(F ) be the (F -points of the) nilpotent
cone and Lie I ⊂ g(F ) be an Iwahori subalgebra. Then the restriction of J(g(O)) to
Cc(g(F )/Lie I) is equal to that of J(N ) to Cc(g(F )/Lie I). Both restrictions have
a basis given by nilpotent orbital integrals.

In particular, the given bound when G = GLn is chark > 2n. Whenever the
theorem works, it asserts the existence of unique functions Γλ(γ) such that (2.3)
holds for f ∈ Cc(g(F )/Lie I) where Iλ(f) is the integral on nilpotent orbits this
time; by abuse of language we will denote the germs again by Γλ(γ), thanks to the
following proposition:

Proposition 2.9. Let γ ∈ g(O). Fix a nilpotent orbit λ in g(F ) – it corresponds
to a unipotent orbit in G(F ) under x ↦ 1 + x. Under this matching, the following
are equal:

(1) The Lie algebra Shalika germ Γλ(γ) from Theorem 2.8.
(2) The Lie algebra Shalika germ Γλ(c + γ) from Theorem 2.8, for any c ∈ O.
(3) The Lie group Shalika germ Γλ(c+γ) from Theorem 2.4 and Corollary 2.7,

for any c ∈ O such that c + γ ∈ G(O).

Proof. (1) equals (2) since the central translation doesn’t affect orbital integrals.
Just like the unipotent orbital integrals on G(F ) may be computed using Eq.

(2.1), so may the nilpotent ones on g(F ) using Eq. (2.2). By Lemma 2.2 the restric-
tion to G(O) of the characteristic function of any standard parahoric subalgebra
of g(F ) is the the characteristic function of the corresponding standard parahoric
subgroup and the nilpotent orbital integral equals the unipotent orbital integral of
the restriction. By [69, Corollaire 4.4.], the nilpotent and unipotent orbital integrals
are determined as distributions on Iwahori-(bi-)invariant functions by their values
on 1Lie(Pλ) ∈ Cc(g(O)/Lie I) where λ ⊢ n. Therefore (2) and (3) have the same
Shalika germs, either for the group or the algebra. Therefore (2) equals (3). □
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Remark 2.10. Theorem 2.8 is expected to hold even if chark ≤ 2n. For example,
in [46, §5] it is shown that (2.3) holds for any fixed function and for fixed γ which
is quasi-regular (see the abstract to [46], and note in particular that when chark >
n quasi-regularity is equivalent to regular semisimplicity) and in a small enough
neighborhood Vf ∋ γ. Consequently, (2.3) holds for quasi-regular elements in a
small enough neighborhood and for all functions in Cc(g(O)/Lie I), since the latter
is finite-dimensional.

This is what we used in the proof of Proposition 2.9, and thus our Shalika germ
results for tamely ramified regular semisimple γ will also work for Lemaire’s germs.
Even more generally, in [46, §5.2, pp. 505] Lemaire defines normalized Shalika germs

b̃i defined on the set of all quasi-regular elements using homogeneity. Remark 6.18
together with propositions 2.11 and 2.9 show that such b̃i also agree with the Lie
algebra/group Shalika germs and in particular the above results, as well as the
computations in Section 6 extend to this case as well given f ∈ Cc(g(O)/Lie I).

In the Lie algebra setup, for a nilpotent orbit O ⊂ g(F ) the Shalika germs enjoy
the following homogeneity property.

Proposition 2.11. For G = GLn, we have

ΓO(tγ) = ∣t∣−
1
2 dimOΓO(γ).

Remark 2.12. For general reductive group when chark is very good we have
ΓO(t2γ) = ∣t∣−dimOΓt−2O(γ) = ∣t∣−dimOΓO(γ) since O and t−2O are the same orbit
in g(F ). However O and t−1O are typically different orbits and the identity in
Proposition 2.11 does not hold in general.

Remark 2.13. In terms of partitions, if O↔ λ ⊢ n,

1

2
dimO =

ℓ(λt)
∑
i=1
(i − 1)λti =∶ n(λt)

2.2. Steinberg germs. Another way to make use of Theorem 2.4, analogous to
that of Corollary 2.7, is proposed by Waldspurger [70, Prop. 2.4.]. In fact, Wald-
spurger goes further to study the space of distributions J(G(F )c), where G(F )c is
defined as follows.

Definition 2.14. Let us say an element g ∈ G(F ) = GLn(F ) is compact mod center
if all its eigenvalues have the same valuation; we will suppress the “mod center”
and just call them compact when no confusion should arise. Let G(F )c ⊂ G(F ) be
the subset of all compact elements. We will denote its characteristic function by
1c.

Let us also call γ ∈ g(F ) compact if it belongs to some parahoric subalgebra, or
equivalently that it is conjugate to an element in g(O).

Remark 2.15. Note that in the group case, not all compact-modulo-center ele-
ments are literally central translations of compact elements. Instead, they become
compact in the usual sense under the map to PGLn.

We will also need the following alternative characterization of the compact mod-
ulo center elements in GLn:
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Lemma 2.16. The set G(F )c coincides with the union of conjugates of normalizers
of standard parahorics. In particular, for GLn we have

G(F )c = Ad(G(F ))
⎛
⎜⎜
⎝
⋃

e∣n,α⊢n/e,
d∈Z

und/ePαe

⎞
⎟⎟
⎠

where u is the matrix from the introduction and Pαe is a standard parahoric sub-
group.

Remark 2.17. Note that und/e, d ∈ Z, normalizes Pαe . Compare also to the
beginning of [70, Section 4].

Definition 2.18. Let Stn be the Steinberg representation of G(F ) = GLn(F ).
More generally, for λ any partition of n (Definition 3.1) let P (λ) ⊂ GLn(F ) be
the corresponding parabolic and L(λ) its Levi subgroup. Let Stλ be the parabolic
induction3 of the Steinberg representation of L(λ) to G(F )

We will henceforth identify Stλ with its character, an invariant distribution on
G(F ). We denote by Stλ,c the restriction of Stλ to G(F )c, i.e. the distribution
which is truncated to be 0 outside G(F )c. Denote by JSt,c ⊂ J(G(F )c) the subspace
spanned by Stλ,c. Write Cc(I/G(F )/I) =⊕k∈ZCc(I/G(F )val=k/I) where G(F )val=k
is the subset of elements whose determinant has valuation k. Its characteristic
function is denoted 1k. In [69, Proposition 2.4.] and [70, Proposition III 4.], when
charF = 0, Waldspurger proved:

Theorem 2.19. For k ∈ Z the restriction of Stλ,c to Cc(I/G(F )val=k/I) is non-zero
iff λ is divisible by n/gcd(k,n). The restriction of JSt,c to Cc(I/G(F )val=k/I) has
a basis given by the restrictions of these Stλ,c.

Theorem 2.20. For any regular semisimple γ ∈ G(F )val=d that is compact mod
center, there exists unique constants ΓSt

λ (γ) where λ ⊢ gcd(d,n), so that for any

f ∈ Cc(I/G(F )val=d/I) we have

(2.4) Iγ(f) =∑
λ

ΓSt
λ (γ)Stn′λ,c(f)

where n′ ∶= n/gcd(d,n). We shall call the constants ΓSt
λ (γ) the Steinberg germs of

γ.

Remark 2.21. A few remarks are in order. The most important one is that
in [69,70] there is an assumption on charF = 0. However, it is easy to see that the
proof of [69, Proposition 2.4.] only uses characteristic-independent facts about the
representation theory of G(F ). In the next section, Section 2.3, we will in particular
construct unique distributions Stλ,c satisfying Theorems 2.19, 2.20 and [70, V 11,
V12]. If one were able to carry out Clozel’s work in [16] in positive characteristic,
then these Stλ,c could safely be identified with the truncated characters of parabolic
inductions of Steinberg representations. While it is somewhat awkward we cannot
do this right now, it will not affect the computation of the Shalika germs themselves.

Further, we note that the ”St”-superscript stands for Steinberg, and should not
be confused with the notion of ”stability” in the automorphic forms literature.

3Parabolic inductions are normalized by the usual modulus character. But in fact, the modulus

character is trivial on compact (mod center) elements because it is a homomorphism to (R+,×)
that is trivial on center. Since we will immediately restrict to compact elements, one can ignore

the normalization issue.
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2.3. Study of germs via rigid cocenters of affine Hecke algebras. This sub-
section is almost indepedent from the rest; here we digress to mention an approach
to the Howe conjecture using cocenter of the (extended) affine Hecke algebra

H ∶= Cc(I/G(F )/I)
following [15,33].

Note that as an abstract algebra, H only depends on the residue field of F (more
precisely the size), through for example the well-known description by generators
and relations. In particular, the results in this subsection apply in all characteristics
and can be viewed as alternative proofs for results in the previous two subsections,
as well as strengthening those in [33, Section 5]. If the reader is more geometrically
inclined, it does no harm to skip this subsection and black-box the transfer of
characteristic zero results from the previous chapter to (possibly very large) positive
characteristic using e.g. the theory of ”nearby fields” (corps proches) or the model-
theoretic apparatus.

Consider the space J(G(F )c) of invariant distributions supported on the com-
pact mod center elements of G(F ). There is a natural map

J(G(F )c)→H∗

to the linear dual of the AHA given by evaluating the distributions on the functions.
The G(F )-invariance of the distributions amounts to this map factoring through
the cocenter

(2.5) J(G(F )c)→ (H/[H,H])∗ →H∗

We will soon see that the map in Eq. (2.5) can be further shown to factor through
the dual of the rigid cocenter introduced in [15]. First, note that H and tr(H) ∶=
H/[H,H] are graded by the valuation of the determinant, i.e. as before, we have
the decomposition

H =⊕
k∈Z

Cc(I/G(F )val=k/I)

and similarly for the cocenter. Let us denote Hval=k, tr(H)val=k ∶= tr(Hval=k) the
corresponding subspaces.

This is further refined by the Newton decomposition of the group G(F ) as well
as H from [33]. From the Cartan decomposition, we have I/G(F )/I ≅ W̃ , where

W̃ ≅ Zn ⋊ Sn is the extended affine Weyl group associated to G = GLn. We also
write W fin ∶= Sn in the above. We will identify X∗(T ) ≅ Zn in a standard way. We

have a decomposition W̃ ≅ Ω⋉W aff where W aff is the affine Weyl group and Ω ≅ Z.
Consider the conjugation action of W̃ on itself.

Definition 2.22. The Kottwitz map is the projection κ ∶ W̃ ↠ Ω. The Newton
map ν′ ∶ W̃ → 1

n
Zn is defined as follows. If wk.x = λ + x we let ν′(w) = λ/k. By

sorting, we may take this to be the unique dominant element in the W fin−orbit of
ν′(w), which gives another map ν+ ∶ W̃ → ( 1

n
Zn)+.

Together, we get a map

π ∶= (κ, ν+) ∶ W̃ → Ω × ( 1
n
Zn)+ =∶ ℵ

Definition 2.23. For ν ∈ ℵ, the Newton stratum of G(F ) is
G(ν) ∶= ⋃

w∈W̃ minimal length, π(w)=ν
Ad(G(F ))IwI
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Theorem 2.24 (Theorem A, [33]). We have the Newton decomposition of G(F )
is

G(F ) = ⊔
ν∈ℵ

G(ν)

i.e. the group decomposes as a disjoint union of Newton strata.

For the algebraic/combinatorial point of view, we have the following theorem of
He and Nie [34, Thm. 6.7], which asserts

Theorem 2.25. The cocenter tr(H) has a basis consisting of (the image of) charac-
teristic functions Tw ∶= [IwI] for any set of choices of one minimal-length represen-

tative w from each conjugacy class in W̃ ; the image of Tw in tr(H) is independent
of the choice of such representative.

Based on the results in [34], He proved the following theorem

Theorem 2.26 (Theorem C and Theorem 11, [33]). The cocenter of the Iwahori-
Hecke algebra H is spanned by the images of Tw for minimal length representatives
for conjugacy classes in W̃ and we have a Newton decomposition

(2.6) tr(H) =⊕
ν∈ℵ

tr(H)ν

where tr(H)ν is spanned by the images of the Iwahori-Matsumoto generators Tw
where π(w) = ν ∈ ℵ and w is of minimal length.

We finally define the rigid cocenter following [15] and its relation to J(G(F )c).
Let A be the apartment for T ⊂ GLn. A can be identified with the metric space Rn

decorated with the affine hyperplanes {xi−xj =m} for any i, j ∈ {1, ..., n} with i ≠ j
and m ∈ Z, so that W̃ acts on A by affine isometries. This action is transitive on
the alcoves, which are by definition the connected components of the complement
of all the affine hyperplanes.

Fix an alcove C ⊂ A. For example, one can take the standard alcove

C = {(x1, . . . , xn) ∈ A∣x1 < ... < xn < x1 + 1}

In the previous semi-direct product W̃ ≅W aff ⋊Ω we have W aff is the affine Weyl
group - the subgroup generated by reflections about the hyperplanes, and Ω =
StabW̃ (C) ≅ Z. Note that the Kottwitz map κ ∶ W̃ ↠ Ω together with the Cartan
decomposition induces a homomorphism G(F ) ↠ Ω, which is, abusing notation
slightly, the so-called Kottwitz map κ on G(F ). This map can be identified with

κ ∶= val ○ det ∶ G(F )→ Z

as before. Note that the the image of the matrix u from Eq. (1.1) under κ can be
identified with a generator of Ω.

Definition 2.27. We say w ∈ W̃ is compact if w.x = x + k for some x ∈ A, k ∈ 1
n
Z.

In other words, w has a ”fixed point mod center”.

For example, any w = (w′, x) ∈ Sn ⋉ Zn with w′ elliptic in the usual sense, is
compact. In the other extreme, if w′ = 1 then w is compact iff x has all coordinates
equal. Equivalently, it is easy to see that compactness of w ∈ W̃ is equivalent to
centrality of the Newton point ν′(w) ∈ X∗(T ) ⊗Z Q. Note also that when w is
compact, nk ∈ Z agrees with the image of w in Ω.
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Remark 2.28. This terminology is not used in [15, 33] but we will soon see it
coheres well with the rigid cocenter.

Definition 2.29. The rigid cocenter of H is

tr(H)rig ∶= ⊕
ν=(κ,ν′)∈ℵ,
ν′ central

tr(H)ν

By [15], tr(H)rig is exactly the image of the subspace of I-bi-invariant C∞-
functions on G(F ) represented by functions supported on the compact-mod-center
elements. More precisely, we have

Proposition 2.30. The set G(F )c ⊂ G(F ) of compact-mod-center elements in
G(F ) is exactly

G(F )c = ⊔
ν=(κ,ν′)∈ℵ,
ν′ central

G(F )ν

Note further that tr(H)rig is still graded by k ∈ Ω and this is the restriction of
the grading coming from val ○ det. The previous Proposition gives us

Corollary 2.31. Identify tr(H)rig as a direct summand of tr(H) (as vector spaces)
using (2.6). Then the map (2.5) factors as

J(G(F )c)→ (tr(H)rig)∗ ↪ (tr(H))∗

In particular, the image of a distribution in J(G(F )c) under the map (2.5) is
determined by its image in (tr(H)rig)∗.

We will be interested in understanding the restrictions of the unipotent orbital
integrals Iλ(−) and the truncated Steinberg characters Stλ,c to tr(Hrig). Further,
we want to understand the truncations of the latter for a fixed k ∈ Ω. Combining
Theorem 2.25 and Corollary 2.31, we get

Proposition 2.32. The image of any D ∈ J(G(F )c) under (2.5) is determined by
D([IwI]) where w runs over a set of minimal length representatives for conjugacy

classes in W̃ s.t. the Newton factor of π(w) is central.

Imitating [70, IV 1.] we define

Definition 2.33. Suppose λ ∈ P (n/e). Let fd,eα ∈ Hval=nd
e be the characteristic

function of und/ePαe where Pαe is the standard parahoric associated to αe. Here
u is the matrix in Eq. (1.1) where t is a uniformizer for F .

Note that by Lemma 2.16 fd,eα is supported on the compact-mod-center elements
and therefore its image in the cocenter lies in the rigid part.

Let us now fix k ∈ Z ≅ Ω and only look at the span [IwI] for w ∈W aff × {k} that
are compact, i.e. restrict to tr(H)rig,val=k. Let e = n/gcd(n, k) and d = ke/n, so
that k = nd/e. Note that as Ω ⊂ W̃ we can also view k as a length zero element in

W̃ . From Proposition 2.30 it is then not hard to see the following:

Proposition 2.34. There is a basis of tr(H)rig,val=k given by (images in the cocen-
ter of) characteristic functions [IwiI] where wi = (σi, k) ∈W aff ⋊Ω with σi ∈ Sn/e a
set of minimal length representatives for conjugacy classes in Sn/e. Here we embed
(as sets)

Sn/e ↪ Sn ↪W aff × {k} ⊂ W̃
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where the first inclusion is given by permutation of the first n/e elements. In par-
ticular, this space has dimension the number of partitions of n/e.

Proof. By construction, each wi is compact, of minimal length, and the elements
are in distinct conjugacy classes. For each k ∈ Ω we would like to know the number
of compact conjugacy classes in W aff × {k}. If it is the number of partitions of n/e
we are done.

Note that the map G(F )↠ Ω is given by g ↦ val(det(g)) ∈ Z ≅ Ω, and there is a

section W̃ ↪ GLn(F ) with image generated by permutation matrices and diagonal
matrices with diagonal entries in tZ, where t ∈ F is a fixed uniformizer. It’s easy
to see that an element in W̃ is compact iff its image in GLn(F ) under this section
is compact, which is the case iff all eigenvalues for a g ∈ GLn(F ) have the same
valuation.

When val(det(g)) = k, that g is compact is equivalent to that all eigenvalues
have valuations k/n = d/e (the latter is the irreducible fraction). For compact g

in the image of the section W̃ ⊂ GLn(F ), we need each cycle of the permutation
to have length divisible by e = n/gcd(k,n). Conversely, for every partition of n
for which all parts are divisible by e, we have a unique compact conjugacy class in
W aff × {k} mapping to k. Hence the space has dimension equal to the number of
partitions of n/e. □

Example 2.35. If n = 4, e = 2, d = 1, k = 2, then Sn/e = S2 which is abelian.

The elements (1,2), (s,2) ∈ W aff ⋊ Ω send (a, b, c, d) ∈ R4 to (c + 1, d + 1, a, b)
and (d + 1, c + 1, a, b) respectively. As elements of W̃ = Sn ⋉ Zn we have w1 =
((13)(24), (0,0,1,1)) and w2 = ((1324), (0,0,1,1)).

Corollary 2.36. The images of the functions fd,eα for α ⊢ n/e also give a basis of
tr(H)rig,val=k indexed by partitions of n/e.

Proof. The linear independence is clear by imitating e.g. [69, Corollaire 4.4.] again.
By Proposition 2.34 the dimension is the number of partitions of n/e. □

By the Corollary, for any w ∈W aff × {k} ⊂ W̃ we can write

[IwI] = ∑
α⊢n

e

c(w,α)fd,eα

and for chosen wi as above, the matrix with entries c(wi, α) is a change-of-basis
matrix. By the well-known generators-and-relations description of the Iwahori-
Hecke algebra H, where [IwI] corresponds to the ”standard basis” Tw, together
with the Cartan decomposition of G(F ), we see that c(w,α) are rational functions
in q that depend only on n, k and α, but not on the local field F . We forego the
explicit computation of these rational functions, although it should be an interesting
exercise.

By Lemma 2.16 combined with Definition 2.33 and Proposition 2.30 we also
have that the image of a distribution D ∈ J(G(F )c) in (tr(H)rig,val=k)∗ is also
determined by D(fd,eα ) where d, e, k ∈ Z are as before, and α ⊢ n/e is a partition.

Consider now the unipotent orbital integrals Iλ and let k = 0. Let fα = f0,1α

be the characteristic function of the standard parahoric Pα. Pairing with fα for
varying α,λ, Proposition 3.13 (which is basically computed in [69, Proposition 4.2]
whose proof is characteristic-independent) shows that we get an invertible matrix,
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in particular the Iλ give a basis of J(G(O)) = J(G(F )c)val=0. Combined with Eq.
(2.5) and Proposition 2.34, we get a new proof of Theorem 2.4. We also have

Theorem 2.37. Fix n as before and let d, e ∈ Z, with e∣n be varying. There

exist unique element S̃tλ,c,k ∈ (tr(H)rig,val=k)∗ whose pairing with the family of test

functions fd,eα is given by the right-hand-side of Proposition 3.15, that is

S̃tλ,c,k(fd,eα ) = (−1)nd−k⟨eα, hλ⟩

When charF = 0 the elements S̃tλ,c = ∑k S̃tλ,c,k coincide with the image of the

truncated Steinberg characters Stλ,c under (2.5). Moreover, these S̃tλ,c,k for λ ⊢ n/e
form a basis of (tr(H)rig,val=k)∗.

Proof. Theorem 2.19 combined with Proposition 3.15 shows the first assertion. The
second follows from the invertibility of the square matrix given by the pairings
S̃tλ,c,k(fd,eα ) = (−1)nd−k⟨eα, hλ⟩ for varying α,λ. □

Combining the results for all k ∈ Z, we get an element S̃tλ,c ∈ (tr(H)rig)∗ that
would serve as the image of version Stλ,c under (2.5) satisfying Theorems 2.19 and
2.20.

Finally, let us note that given such S̃tλ,c, the essentially combinatorial, characteristic-
independent proof of [70, Lemme V 12] goes through with the truncated Steinberg

characters replaced by these S̃tλ,c. In particular, Proposition 6.9 goes through in
arbitrary characteristic for tamely ramified γ.

2.4. Parabolic induction.

Definition 2.38. Suppose M ⊂ P = MN ⊂ G are compatible Levi subgroup and
parabolic subgroup defined over O. For f ∈ C∞c (G(F )), we define its parabolic

restriction ResGM(f) ∈ C∞c (M(F )) as

ResGM(f)(m) ∶= ∫
G(O) ∫N(F )

f(gmng−1)dndg

where the measure is normalized so that G(O) and N(O) have measure 1.

Definition 2.39. Let M,N,P be as above and m ∶= LieM . For f ∈ C∞c (g(F )), we
define its parabolic restriction Resgm(f) ∈ C∞c (m(F )) as

Resgm(f)(X) ∶= ∫
G(O) ∫LieN(F )

f(Ad(g)(X + Y ))dY dg

where the measure is normalized so that G(O) and LieN(O) have measure 1.

Recall that G(F )val=0c ⊂ G(F ) is the subset of elements whose eigenvalues all
have valuation 0. As G = GLn, we realize G(F )val=0c also as a subset of g(F ).

Lemma 2.40. If f ∈ C∞c (G(F )val=0c ), then Definition 2.38 and 2.39 agree; we have

ResGM(f) = Res
g
m(f).

Proof. In both definitions, the resulting ResGM(f) and Resgm(f) is evidently sup-
ported on M(F )val=0c . Here one may view M as a product of general linear groups
and M(F )val=0c is again the subset of elements whose all eigenvalues have valuation
0. For m ∈ M(F )val=0c , Ad(m) ∶ N(F ) → N(F ) preserves the Haar measure on
N(F ). This shows

∫
N(F )

f(gmng−1)dn = ∫
n(F )

f(g(m + n)g−1)dn
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and thus the two definitions agree. □

Example 2.41. One has obviously that ResGM(1G(O)) = 1M(O) from Definition
2.38, and hence also Resgm(1G(O)) = 1M(O).

Proposition 2.42. Suppose γ ∈ M(F ) is G-regular, meaning γ is regular when
viewed as an element of G. Then

IGγ (f) = ∣det(Ad(γ)∣LieG/LieM − idLieG/LieM)∣
−1/2 ⋅ IMγ (Res

G
M(f))

Proposition 2.43. Suppose γ ∈ m(F ) is G-regular, meaning γ is regular when
viewed as an element of g. Then

IGγ (f) = ∣det(ad(γ)∣LieG/LieM ∣
−1/2 ⋅ IMγ (Res

g
m(f))

Definition 2.44. We define Indgm ∶ C∞c (m(F ))∗ → C∞c (g(F ))∗ to be the adjoint of

ResGM . It is called parabolic induction.

In particular, Proposition 2.43 effectively says that we have the equality of in-
variant distributions

∣det(ad(γ)∣LieG/LieM ∣
−1/2 ⋅ IndGM IMγ (−) = IGγ (−)

Proposition 2.45. Suppose O is a nilpotent orbit of m(F ) and Õ the induced

orbit in the sense of Lusztig-Spaltenstein, i.e. Õ contains an open dense subset of
O + LieN(F ). Then Indgm I

M
O = IGÕ .

Remark 2.46. In terms of partitions (in the sense of Definition 3.1), ifM = GLn1×
⋯ ×GLnr , and O is a unipotent orbit corresponding to a sequence of partitions

λ(1) ⊢ n1, . . . , λ(r) ⊢ nr
the induced orbit is

Õ↔ (λ(1)1 +⋯ + λ
(r)
1 , . . . , λ

(1)
k +⋯ + λ

(r)
k )

where k is the length of the longest λ(i). For example, when M = T , the zero orbit
in T induces to the principal one in GLn.

Corollary 2.47. For γ ∈ m(F ) which is G-regular, we have

ΓG
Õ(γ) =

⎧⎪⎪⎨⎪⎪⎩

0 if Õ is not induced from M,

∣det(ad(γ)∣LieG/LieM)∣
−1/2 ⋅ ΓM

O (γ) if Õ is induced from O ⊂ m(F ).

where ΓG
Õ(γ) is as in Theorem 2.8 and ΓM

O (γ) is likewise but for G =M .

2.5. Moy-Prasad theory. Introducing some Moy-Prasad theory will be conve-
nient for the statement of our results – we will do it in this section. However, this
section may be skipped on a first reading, and is not essential for any of our proofs.
We will only sketch this for G = GLn. For any point the Bruhat-Tits building of
G, denoted x ∈B, as well as a real number r ∈ R, Moy and Prasad define subspaces
gx,≥r ⊂ g(F ) (and also gx,r,gx,>r, etc.). Suppose x lies in the apartment of our
chosen maximal torus, then gx,≥r can be described as

gln(F )x,≥r = ⊕
⟨α,x⟩+i≥r

tigα

e.g. for generic x this is an Iwahori subalgebra, and for x = 0 the hyperspecial g(O).
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There are analogous notions for the group G itself, which we denote Gx,≥r.
Basically, they can be defined using the exponential map between root subalgebras
and subgroups. Again, if x = 0 (in our chosen coordinates) we get the hyperspecial
and if x is generic, say in the fundamental alcove, we get the ”standard” Iwahori.

Definition 2.48. The depth of γ ∈ G(F ) (respectively, γ ∈ g(F )) is the smallest r
for which there exists x ∈B so that γ ∈ Gx,≥r (resp. γ ∈ gx,≥r).

Remark 2.49. For GLn, the depth of γ coincides with its smallest root valuation.

3. Symmetric functions and combinatorics

In this section, we review some theory of symmetric functions relevant to the
computation of Shalika germs. The theory is very well covered in many sources,
see for example [31, Section 3].

3.1. Combinatorics. We begin with two combinatorial definitions.

Definition 3.1. A partition of an integer n > 0, written λ ⊢ n or λ ∈ P (n) is a
nonincreasing sequence of positive integers

λ1 ≥ . . . ≥ λk > 0, ∑
i

λi = n

and a composition of n, written α ⊧ n is an ordered collection (α1, . . . , αk) of positive
integers such that ∑i αi = n. In both cases, we write ℓ(λ) = ℓ(α) = k for the length
of the composition or partition and denote by λt, αt the conjugate partition (resp.
composition).

We will draw the Young/Ferrers diagrams of partitions in French notation. We
think of them as lying in Z2

≥0 with the first box always at (0,0). For a box ◻ ∈ λ
with coordinates (i, j) we denote

(3.1) a(◻) = λi − i − 1, l(◻) = λtj − j − 1, a′(◻) = i, l′(◻) = j
the arm, leg, coarm, and coleg lengths of the box. The q, t-content of a box is

defined to be qa
′(◻)tl

′(◻). Finally, we have

Definition 3.2. For two partitions (or compositions) λ,µ define

M(λ,µ)
to be the set of nonnegative integer matrices (of size ℓ(λ) × ℓ(µ)) whose rows sum
to λ and columns sum to µ.

Definition 3.3. A standard Young tableau is a filling of the Ferrers diagram of
λ ⊢ n with the letters 1, . . . , n such that the letters increase in columns and rows.

Given a Young tableau and a box ◻i labeled i, we define the arm length as a(◻i)
and so on. We let zi be the q, t−content of the box ◻i.

We will also need the following Lemma in Sections 5, 6.

Lemma 3.4. To each composition α ⊧ n is associated a unique Young tableau
T (α) defined as follows. To each αi we assign the sequence of numbers ∑i−1

j=1 αj +
1,∑i−1

j=1 αj + 2, . . .∑i
j=1 αj and form a tableau by taking one-row diagrams with these

fillings, and then dropping them on top of each other, with the rule that gravity
brings boxes as low as possible. In particular, the tableau decomposes as a sequence
of horizontal αi-strips.
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Example 3.5. To the compositions 4 = 2 + 2, 4 = 1 + 2 + 1 and 4 = 1 + 3 we assign
the tableaux

3 4

1 2

4

2

1 3

2

1 3 4

The final combinatorial gadget we will need are Dyck paths.

Definition 3.6. Let m,n, k ≥ 1, (m,n) = 1. Then the set

Dkm,kn

will be the collection of lattice paths in a kn × km-rectangle in Z2
≥0, fitting under

the diagonal (which has slope m/n).
The area of a Dyck path D ∈ Dkm,kn is defined to be the number of full squares

between the path and the diagonal.

3.2. The ring of symmetric functions. Let Symq,t be the ring of symmetric
functions over Q(q, t) in the alphabet {X1, . . . ,Xn, . . .} and denote the five usual
bases of monomial, homogeneous, elementary, Schur, and power sum symmetric
functions by

{mλ},{hλ},{eλ},{sλ},{pλ}
Here λ is a partition in the sense of Definition 3.1. Note that the first four are also
bases of SymZ while the last one needs a ring containing Q.

Recall that the modified Macdonald polynomials H̃λ[X; q, t], λ ⊢ n are the unique
symmetric functions with the properties

H̃µ[X(1 − q); q, t] ∈ Q(q, t){sλ∣ λ ≥ µ}(3.2)

H̃µ[X(1 − t); q, t] ∈ Q(q, t){sλ∣ λ ≥ µt}(3.3)

⟨H̃µ[X; q, t], s(n)⟩ = 1(3.4)

Here the last pairing is the Hall inner product, defined in Definition 3.10.
We do not require much of the advanced theory of Macdonald polynomials, but

let us note down the following definition as well as some specializations.

Definition 3.7. The operator ∇ of Bergeron and Garsia scales by definition each

H̃λ by qn(λ)tn(λ
t) where n(λ) = ∑ℓ(λ)

i=1 (i − 1)λi.

From [31, Proposition 3.5.8.] we have

Lemma 3.8 (The limit of H̃λ as q → 1). The modified Macdonald symmetric

function H̃λ at q = 1 is given by

(3.5) H̃λ(X; 1, t) = (1 − t)∣λ∣[λt]t!hλt[X/(1 − t)] =∶ h̃λt[X; t]

in other words a plethystically transformed homogeneous symmetric function, up to
normalization.

From the q, t-symmetry of H̃λ we immediately have

Corollary 3.9 (The limit as t→ 1).

H̃λ(X; q,1) = h̃λ[X; q]
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We will denote h̃λ ∶= H̃λ[X; q,1] and call these the specialized Macdonald sym-
metric functions or the plethystically transformed homogeneous symmetric func-
tions. Later on, we will also need the prefactor

(3.6) cλ(q) ∶= (1 − q)∣λ∣[λ]q! =
ℓ(λ)
∏
i=1

λi

∏
j=1
(qj − 1)

in Eq. (3.5).

Note that compared to the Macdonald polynomials, h̃λ are much simpler in
behaviour. For instance, they are multiplicative:

h̃λh̃µ = h̃λ+µ
and one can deduce combinatorial expansions for them in terms of the other stan-
dard bases via known relations between hλ and these bases. This will turn out to be
important in the proof of Theorem 6.20. Further, the ∇-operator from Definition
3.7 becomes a ring homomorphism on symmetric functions in this limit.

We will also need a few different inner products on the ring of symmetric func-
tions, the interplay of whom turns out to play a key role. We remark that by ”inner
product” we simply mean a symmetric bilinear form valued in Q(q, t).

Definition 3.10. (1) The Hall inner product is the inner product on Symq,t

defined by

⟨sλ, sµ⟩ = δλµ
(2) The q-inner product is

⟨f, g⟩q ∶= ⟨f, g[X/(1 − q)]⟩

(3) The q, t-inner product is

⟨f, g⟩q,t ∶= ⟨f, g[
(1 − q)
(1 − t)

X]⟩

(4) The geometric inner product is

(f, g) = −qdeg f ⟨(∇−1(f))[X(1 − t−1)], g[X(1 − t−1)]⟩
q,t−1

Remark 3.11. There is a natural Frobenius characteristic map from the direct
sum of the representation rings of symmetric groups

⊕
n≥0

Rep(Sn)→ SymZ

Endowing the source with the natural inner product on characters, and the target
with the Hall inner product ((1) in the above Definition), this map is an isomor-
phism of Hopf algebras and an isometry.

Similarly, if we let

Hall(GL(Fq))
be the Hall algebra of the general linear groups as n ranges from 0 to ∞ there is
a natural inner product on this space, again coming from the convolution product
on characters, and a map

Hall(GL(Fq))→ Symq

which is an isomorphism of Hopf algebras and an isometry with respect to the inner
product (2) ⟨⋅, ⋅⟩q.
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Remark 3.12. The last inner product will be used in Section 8 and is the one
naturally arising from the geometry of Hilbert schemes of points. It can be more
easily characterized as the unique inner product satisfying

(H̃λ, H̃µ) = δλµgλ
where

(3.7) gλ =∏
◻∈λ
(1 − qa(◻)t−l(◻)−1)(1 − q−a(◻)−1tl(◻))

3.3. Orbital integrals and symmetric functions. Let us review how symmetric
functions arise in the theory of orbital integrals on GLn, following [69, 70]. The
following two propositions will be important to us.

Proposition 3.13 (Proposition 4.2. [69]). Let ψλ be the characteristic function
of the standard parahoric subgroup Pλ ⊂ GLn(F ) corresponding to the partition λ.
Let Iµ(−) be the orbital integral over the unipotent class of type µ. Then we have

(3.8) Iλ(ψµ) = cλ(q)⟨eµ, hλ⟩q
where ⟨−,−⟩q is the q-inner product from Definition 3.10. Note that in terms of the
usual Hall scalar product,

Iλ(ψµ) = ⟨eµ, h̃λ⟩

Remark 3.14. Warning: Waldspurger uses the notation φλ for our ψλ. For him,
ψλ denotes a different function. Note also that Waldspurger has an additional
cµ(q)/c(n)(q) in the formula, this stems from a slightly different normalization for
Shalika germs and the inner product.

Proposition 3.15. Suppose e ≥ 1, (d, e) = 1 and λ ∈ P (n/e) Let fd,eα be the char-

acteristic function of und/ePλ where Pλ is as above. Here u is the matrix in Eq.
(1.1).

Then

Steλ(1nd/e1cf
d,e
µ ) = (−1)nd−nd/e⟨eµ, hλ⟩

where the pairing is the Hall inner product.
In particular, when d = 0, we have Steλ(101cf

0,e
µ ) = ⟨eµ, hλ⟩ and 101cf

0,e
µ = ψµ.

4. The elliptic Hall algebra

In this section, we define the elliptic Hall algebra (EHA) and recall some neces-
sary facts about it. Apart from Theorem 4.9 results in this section are contained
in [22,29,53–56,61–63,66]. For the basic theory, our main references are [22,53,66]
and for the results on symmetric functions, one may refer to [53–56,62].

For most of the paper, in particular for the application in the proofs of our main
results in Section 2, we want to understand the t → 1 degeneration of the Fock
space representation of the EHA.

Definition 4.1. The elliptic Hall algebra (quantum toroidal gl1) is the C-algebra
E = Eq1,q2,q3 depending on q1, q2, q3 ∈ C×, q1q2q3 = 1, generated by elements

Pm,n, (m,n) ∈ Z2/(0,0)

and satisfying the relations

[Pm1,n1 , Pm2,n2] = 0
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if (m1, n1), (m2, n2) lie on the same line through the origin, and

[Pm1,n1 , Pm2,n2] =
θm1+m2,n1+n2

α1

if (m1, n1), (m2, n2), (m1 +m2, n1 + n2) form a quasi-empty triangle. Here

exp(
∞
∑
k=1

Pkm,knαkx
k) =

∞
∑
ℓ=1

θℓm,ℓnx
ℓ

for (m,n) = 1 and

αk =
(qk1 − 1)(qk2 − 1)(qk3 − 1)

k

Proposition 4.2 (Triangular decomposition). Let E> be the subalgebra generated
by the P1,n, n ∈ Z, E< be the subalgebra generated by the P−1,n, n ∈ Z, and E0 be
the subalgebra generated by P0,±k, k ∈ Z>0. The multiplication map gives a C-linear
isomorphism

E< ⊗ E0 ⊗ E> → E

For the rest of this paper, we may as well restrict our attention to the positive
part E> of the EHA, or rather the nonnegative part E≥ which is by definition
generated by P1,n, n ∈ Z, P0,k, k > 0. Further, we wish to study the q3 → 1 limit of
this algebra and the Fock space representation. The relationship of the parameters
q1, q2, q3 to the Macdonald theory parameters is q1 = q, q3 = t−1 so that this limit
amounts to setting t = 1. We will use these identifications freely.

Note that since the definition of E is symmetric in the qi, this choice is immaterial
for many things. Importantly, it does matter for the Fock space representation (to
be introduced soon), whose definition is not symmetric in the qi.

Let us now remark on the structure of E in the limit t → 1 as an abstract
algebra, although this will not be important for us. Consider the quantum torus
in one variable, or in other words the algebra of q-difference operators on C×. It is
the C[q±]-algebra

D ∶= C[q±]⟨X±,D±⟩/DX − qXD.
Considering this associative algebra as a Lie algebra we get a 2-dimensional central
extension Dc1,c2 [22] with central charges c1, c2 ∈ C defined as

[Xi1Dj1 ,Xi1Dj2] = (qj1i2 − qj2i1)Xi1+i2Dj1+j2 − δ(i1,j1),(−i2,−j2)q
i1j1(i1c1 + j1c2).

By [22] we may view E as a quantization of the universal enveloping algebra of
Dc1,c2 , and taking the q3 → 1 limit recovers just this universal enveloping algebra,
at least up to a completion.

For example for the limit q3 → 1, we have (see [66, Proposition 5.6.]) that

(1 − q)P1,m =DmX, (q−1 − 1)P−1,m =X−1Dm

and

(1 − q−m)P0,m =Dm.

Remark 4.3. It is not possible to directly set q3 → 1 in the defining relations of
the EHA as given above. A way to circumvent this is to redefine:

exp((1 − q3)−1
∞
∑
k=1

Pkm,knαkx
k) =

∞
∑
ℓ=1

θℓm,ℓnx
ℓ
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or alternatively to rescale the generators of E< by 1 − q2 and those of E> by 1 − q1.
Effectively, this gives an integral form of E in the sense of Lusztig. See e.g. [66,
Section 5.4.] and [57] for details.

As the name suggests, E specializes to the Hall algebra of coherent sheaves on an
elliptic curve over a finite field (when q1 is the Frobenius eigenvalue on H1 and q2
its conjugate). In that setting, the slope of vector bundles gives rise to natural Hall
subalgebras. These lift to E , and are by definition the commutative subalgebras
”living on lines through the origin”.

Definition 4.4. Let m,n ∈ Z2
≥0, (m,n) = 1. The slope m

n
-subalgebra of E≥0 is the

subalgebra Em/n generated by Pkm,kn, k ≥ 0

Theorem 4.5 ( [53]). Let Symq,t be the algebra of symmetric functions over C(q, t)
as introduced in Section 3. There is an algebra isomorphism

φm/n ∶ Symq,t → Em/n

sending pk ↦ Pkm,kn.

We will call this homomorphism the slope m/n plethysm.

4.0.1. The Fock space.

Definition 4.6. The Fock space is the C(q, t)-vector space F spanned by the basis

{∣λ⟩}λ⊢n,n≥0

Recall that F appears naturally from the Hilbert scheme of points on A2 or sym-
metric functions over C(q, t). We will freely identify F with the space of symmetric
functions Symq,t (see Section 3) so that the basis ∣λ⟩ corresponds to the Macdonald

basis H̃λ. The reason for our usage of the Fock space as opposed to just Symq,t

will become clear in Section 8.

Theorem 4.7 ( [23, 62]). There is an action of Eq1,q2,q3 on F by so called shuffle
algebra operations.

We will be interested in the action of the operators Pkm,kn ∈ E≥0 and more

generally the slope m/n subalgebras Em/n in the Fock space, especially in the t→ 1
limit. For example, the operators P0,m act as multiplication by the symmetric
functions pm, and the operator P1,0 is a so called Macdonald eigenoperator.

In [54] the matrix coefficients of the operators Pkm,kn in the basis ∣λ⟩ are com-
puted (see also [23]). Below the orthogonalizing inner product ⟨λ∣µ⟩ = δλµgλ corre-
sponds to the geometric inner product (−,−) on symmetric functions, see Definition
3.10.

Theorem 4.8 ( [54], see Eq. (37) in [29]). We have

⟨λ∣Pkm,kn∣µ⟩ =
γkn

[k]q
⋅ gλ
gµ

SYT

∑
µ=λ+◻1+...+◻kn

⎡⎢⎢⎢⎣

k−1
∑
j=0
(qt)j

zn(k−1)+1zn(k−2)+1⋯zn(k−j)+1
zn(k−1)zn(k−2)⋯zn(k−j)

⎤⎥⎥⎥⎦
⋅

⋅ ∏
kn
i=1 z

S′m/n(i)
i (qtχi − 1)

(1 − qt z2
z1
)⋯ (1 − qt zkn

zkn−1
)
∏

1≤i<j≤kn
ω′ −1 (

zj

zi
)
◻∈λ
∏

1≤i≤kn
ω′ −1 (z(◻)

zi
)



24 OSCAR KIVINEN AND CHENG-CHIANG TSAI

where

ω′ (x) = (x − 1)(x − qt)
(x − q)(x − t)

, γ = (q − 1)(t − 1)
qt(qt − 1)

and

Sm/n(i)′ ∶= ⌊
im

n
⌋ − ⌊(i − 1)m

n
⌋

Although we do not need the full strength of the formula in Theorem 4.8, it is
recorded here for our computations in Section 5 and possible generalizations. The
t→ 1 limit of this formula for µ = ∅ is studied in Proposition 5.17.

We will now begin to study the degeneration of the representation on F as t→ 1.
The most important fact about the t = 1 limit is the following.

Proposition 4.9. In the Fock representation at t = 1, the positive half E≥
q,1/q,1 acts

by multiplication operators.

Proof. As shown in [57], the operators Pm,n for (m,n) ∈ Z × N generate E≥ over
Z[q±1 , q±2 ], as do the operators Hm,n which are defined by the identity

1 +
∞
∑
s=1

Hsm,sn

xs
= exp(

∞
∑
s=1

Psm,sn

sxs
)

By [56, Theorem 2.15.] one can write the action of either Hm,n or Pm,n as a contour
integral, for example:

Hm,n ⋅ f[X] = ∫
0<X<∣zn∣<⋯<∣z1∣<∞

z
S′m/n(i)
i

∏n−1
i=1 (1 − qt

zi+1
zi
)∏i<j ω

′(zj/zi)

∧● (−X
z1
)⋯∧● (−X

zn
) ⋅ f [X − (1 − q)(1 − t)

n

∑
i=1
zi]

n

∏
a=1

dza
2πiza

Where ⋀●(−X
z
) = ∑∞k=0 hk

zk . Here the contours are concentric circles in the prescribed
order and are contained between the poles 0, x1, . . . ,∞, see e.g. [54, 56] for details.

Now the plethystic operator

f[X]↦ f[X ± (1 − q)(1 − t)z] = exp
⎡⎢⎢⎢⎣
±
∞
∑
k=1

p†
kz

k

k

⎤⎥⎥⎥⎦
⋅ f[X]

at t = 1 becomes just the identity, so that this is a multiplication operator. □

Remark 4.10. We note that this Proposition is conjectured in [8, 9].

Remark 4.11. The operators P1,n, n ∈ Z can be described as follows, see e.g. [9].
In plethystic notation, their action on the Fock space is given by

P1,n ⋅ f[X] = f[X +
(1 − t)(1 − q)

z
]∑
i≥0
(−z)iei[X]

RRRRRRRRRRRzn

where by ∣zi we mean extracting the coefficient of zi in this series. At t = 1 this
becomes just multiplication by en. It is however not true that the algebra generated
by these operators over Z[q±1 , q±2 ] is all of E≥ anymore.

In addition to the Pm,n we want to understand the elements Ekm,kn ∶= φm/n(ek)
from [55,61,62] in the limit t→ 1.
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Proposition 4.12. Suppose that m,n > 0 and gcd(m,n) = 1. At t = 1 the operator
φm/n(ek)∣t=1 becomes a multiplication operator by the symmetric function:

Em,n,k ∶= ∑
D∈Dkm,kn

qarea(D)eD.

Here D is a Dyck path in (km × kn) rectangle below the diagonal, area(D) is the
area between D and the diagonal, and eD ∶=∏horizontal steps hi(D) of D ehi(D).

Proof. Given Proposition 4.9, this is [8, Eq. (4.5.4)] (see also [7]). □

Remark 4.13. In fact, according to [22] while the construction of the limit t =
q3 → 1 of the algebra E is independent of our choice in q1, q2, q3, the construction
of the Fock representation F naturally breaks the symmetry (in physics, this is
related to the threefold symmetry of the refined topological vertex). The action
of the skein algebra of the torus on that of the solid torus made explicit in [50]
corresponds to the q2 = (qt)−1 → 1 limit, and can be thought of as a ”rotation” of
our representation by 120 degrees.

4.1. Double affine Hecke algebras. In order to define the superpolynomials in
the next section, it will be relevant for us to treat E as the limit of the spherical
double affine Hecke algebras as n → ∞, and the Fock space representation as a
limit of the polynomial representations of the spherical DAHA. This point of view
is adopted in e.g. [61].

Definition 4.14. The double affine Hecke algebra (DAHA) Hn is the Q(q, t)-
algebra generated by

X±1 , . . . ,X
±
n , Y

±
1 , . . . , Y

±
n , T1, . . . , Tn

with the relations

[Xi,Xj] = 0 [Yi, Yj] = 0(4.1)

(Ti − t)(Ti + t−1) = 0 [Ti, Tj] = 0, TiTi+1Ti = Ti+1TiTi+1(4.2)

TiXj =XjTi TiYj = YjTi(4.3)

TiXiTi =Xi+1 T −1i YiT
−1
i = Yi+1(4.4)

Y1X1⋯Xn = qX1⋯XnY1 Y −12 X1Y2X
−1
1 = T 2

1(4.5)

where ∣i − j∣ > 1.
The spherical DAHA is the subalgebra

SHn ∶= eHn e

where e ∶= 1
[n]t! ∑w∈Sn

tℓ(w)Tw is the symmetrizing idempotent for the finite Hecke

algebra. Note also that Hn contains two affine Hecke algebras of Sn as subalgebras,
namely one generated by the Ti,Xi and another one generated by the Ti, Yi. We
will denote these by Haff,X

n ,Haff,Y
n .

The following is proved in [12,29,61] and will be essential for our computations:

Lemma 4.15. There is an action of the braid group B3 = ŜL2(Z) on Hq,t by
algebra automorphisms.

Proof. See [12, Section 1.3.]. □
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The generators of this action are

τ+ ∶= (
1 1
0 1

) , τ− = (
1 0
1 1

)

and they act by

τ+ ∶ Ti ↦ Ti, Xi ↦Xi, Yi ↦ YiXi(T1⋯Ti−1)−1(Ti−1⋯T1)−1

τ− ∶ Ti ↦ Ti, Xi ↦XiYi(Ti−1⋯Ti)(T1⋯Ti−1), Yi ↦ Yi

Next, let

(4.6) P
(n)
0,k = e(

n

∑
i=1
Y k
i )e ∈ SHn

For arbitrary integers (a, b) ∈ Z2/0 we have the following.

Proposition 4.16 (Section 2.2., [61]). Let k = gcd(a, b) and γa/k,b/k be any matrix
of the form

γa/k,b/k = (
∗ a/k
∗ b/k) ∈ SL2(Z)

Then the elements

(4.7) P
(n)
(a,b) ∶= γa/k,b/k(P

(n)
0,k )

are well-defined, i.e. do not depend on the chosen matrix.

Proposition 4.17. The elements P
(n)
a,b generate SHn as an algebra.

Further, one can show the P
(n)
a,b ∈ SHn satisfy relations similar to those of Pa,b ∈ E .

In fact, by [61, Theorem 4.6.], we have

Proposition 4.18. There is a surjective algebra homomorphism

(4.8) E ↠ SHn

for all n, sending

Pa,b ↦ P
(n)
a,b

This map restricts to a surjection

E>↠ SH+n
where SH+n is generated by P

(n)
a,b with a > 0 or a = 0, b > 0.

It remains to connect these facts to the Fock space. Recall the following

Definition 4.19. The polynomial representation of Hn is

IndHn

Haff,Y ,n
1 ≅ C(q, t)[X±1 , . . . ,X±n]

The polynomial representation of SHn is eC(q, t)[X±1 , . . . ,X±n].

It is clear from the above that by restricting the action of SHn on the polynomial
representation to the positive part SH+n we get an action on symmetric polynomials
in n variables C(q, t)[X1, . . . ,Xn]Sn .

Theorem 4.20 (Section 5.1, [61]). This action together with the Fock representa-
tion of E intertwine the surjections Symq,t↠ C(q, t)[X1, . . . ,Xn]Sn and E>↠ SH+n.
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Figure 1. The Coxeter braid cox7.

5. Knot invariants

5.1. Algebraic knots. Recall from Definition 1.4 and Remark 1.5 that to any
(reduced) germ of a plane curve {f = 0} ⊂ C2 we may associate both a Puiseux
expansion and the link Link0(f) ⊂ S3. To simplify the discussion, we let f be
irreducible, although appropriately interpreted all our results hold for any f . These
correspond to each other as follows. For a single Newton pair, we have the torus
knot T (p, q). It is the braid closure of the q ∶th power of the Coxeter braid coxp

(see Fig. 1).
Next, for knots L1, L2 in the solid torus, or more precisely elements in the skein

algebra of the annulus, we define the satellite of L1 by L2, denoted L1 ∗ L2 by
thickening L1 to an annulus and placing the diagram of L2 inside this annulus.
Note that this operation is ”acting on the right”. Denote T q

p the annular closure
of the diagram of coxq

p shown in Fig. 1 (in the blackboard framing). Finally, for a
given sequence (p⃗, q⃗) define the iterated torus knot

(5.1) T (p⃗, q⃗) ∶= T qd
pd
∗ (T qd−1

pd−1
∗ (⋯∗ (T q1

p1
)⋯)

where we think of these as links in S3 by filling the core of the thickened annulus.

Remark 5.1. The sequence, or pair of sequences (p⃗, q⃗) is denoted (r⃗, s⃗) in [12].
Note that it can be any sequence of (coprime) integers, in which generality we
obtain iterated torus knots. However, the Newton pairs are always positive and
eventually have pk = 1.

An alternative way to produce the iterated torus link is by cabling (see [20,
Appendix A]), for which we need yet another sequence (p⃗, a⃗) where ad = qd, ai ∶=
ai+1pi+1pi+qi,1 ≤ i < d. For a pair of coprime integers (p, a) we let the (p, a)-cable of
a link L ⊂ S3 be the link Cab(p, a)(L) formed by thickening L to a small solid torus
and placing the torus knot T (p, a) inside it. Note that this operation is ”acting on
the left”. Then it is an instructive exercise to check that

T (p⃗, q⃗) = Cab(p1, a1)⋯(Cab(pd, ad)(◯)⋯)

Remark 5.2. We are again opposite to the conventions in [12, 20, 47]. Note that
in [12] the notation (a⃗, p⃗) is used instead. For the satellite construction, we refer
to [47, Section 4].
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5.2. Superpolynomials. The superpolynomial for links in S3 has been proposed
as a three-variable polynomial specializing to the HOMFLY-PT polynomial [19].
There are two main definitions for it:

1) as the Poincaré polynomial

PL(a, q, t) ∶= ∑
i,j,k

qitjak dimHHHi,j,k(L)

of the triply graded Khovanov-Rozansky homology (or HOMFLY homology) HHH(L).
This is a homology theory for knots and links in S3 defined using a braid presen-
tation of L and Soergel bimodules. For more details, we refer to [40].

2) For iterated torus links, a definition of PL(a, q, t) was given by Cherednik-
Danilenko [12] using double affine Hecke algebras; see also [4, 29] and will be re-
peated in Definition 5.5.

The first and second definitions are known to agree for torus knots (see [28] for
a survey with more references) and conjectured to agree in general, but this is still
unproven at the time of writing. We will use the second definition in this paper, but
this also comes with a caveat. Namely, the polynomial is defined using a cabling
presentation as in Eq. 5.1 and the topological invariance is not clear.

More precisely, it is not known whether there exist two distinct presentations of
some iterated torus knot (/link) L as iterated cables, so that the resulting poly-
nomials are different (see e.g. [50, p. 6]). In other words, this second version of
the superpolynomial is not immediately a topological invariant of L. On the other
hand, in this paper we only care about algebraic knots, where any ambiguity in the
resulting isotopy type of the link is fixed by setting q1 > p1 (this is reflected in the
choice of a coordinate in the Puiseux expansion). In other words, we may speak of
PL(a, q, t) as an invariant of the algebraic knot. See also [13, Theorem 4.3.(ii)].

Next, we will recall the approaches of Cherednik-Danilenko and Gorsky-Negut
[12, 29] to superpolynomials of iterated torus knots and how they degenerate at
t = 1. In fact [29] only work out the torus knot case, while [12] do not use the
elliptic Hall algebra, so one should regard what is below as a mixture of the two.

In [29], the approach is as follows. For a sequence of pairs of coprime integers
(p1, q1), . . . , (pd, qd) we have an iterated torus knot T (p⃗, q⃗) = T pd

qd
∗⋯∗T p1

q1 as above.

By Theorem 4.5, we have also have algebra homomorphisms Symq,t → Eqi/pi , i =
1, . . . , d sending pk ↦ Pkqi,kpi . By Theorem 4.7 the algebra E acts on the Fock
space F ≅ Symq,t by shuffle algebra operations. we denote the action of E ∈ E on
f ∈ Symq,t by E ⋅ f .

Definition 5.3. The full, or deformed master symmetric function associated to
(p⃗, q⃗) is

(5.2) f̂p⃗,q⃗ = φqd/pd
(⋯(φq2/p2

(Pq1,p1 ⋅ 1) ⋅ 1)⋯) ⋅ 1

A recursive description is thus as follows. Set f(p1,q1) = Pq1,p1 ⋅1, and for j = 2, . . . d
define f(p1,q1),...,(pj ,qj) as follows. First, expand f(p1,q1),...,(pj−1,qj−1) in terms of the
power sum symmetric functions pk and replace all pk in the resulting expression
by the operators Pqik,pik, then act on 1 ∈ the Fock representation. The result is a
symmetric function.

Define the evaluation vector from [29, Eq. (39)]:

(5.3) v(a) = ∑
µ⊢n

H̃µ

gµ
∏
◻∈µ
(1 − aqa

′(◻)tl
′(◻))
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where
gµ ∶=∏

◻∈µ
(1 − qa(◻)t−l(◻)−1)∏

◻∈µ
(1 − q−a(◻)−1tl(◻))

and a′(◻), l′(◻) denote the coarm and coleg of a box in the Ferrers diagram.

Remark 5.4. The factor gµ is the product of the weights of the G2
m-representation

Λ●T ∨µ Hilbn(A2), where the variable a encodes the exterior degree.

Definition 5.5. Let L = T (p⃗, q⃗) be an iterated torus link. The superpolynomial of
L is defined to be

PL(a, q, t) ∶= (̂fp⃗,q⃗,v(a))
where v(a) is defined in Eq. (5.3). Note that we are using the geometric inner
product.

Remark 5.6. We make three remarks on the above definitions.

(1) Note that the full master symmetric function and the superpolynomial de-
pend on three variables q, t, u. At u = 0 the evaluation vector simplifies
to

v(0) = ∑
µ⊢n

H̃µ

gµ

and it is indeed the quantity

(fp⃗,q⃗,v(0)) = ⟨fp⃗,q⃗, en⟩
at t = 1 that gives the spherical orbital integrals in Section 2.

(2) The homogeneity property of Shalika germs from Proposition 2.11 is re-

flected in the H̃λ-expansion of f̂p⃗,q⃗, as we will prove in the next section (see
Remark 6.18). Namely, the operator ∇ of Bergeron and Garsia scales each

H̃λ by qn(λ)tn(λ
t) where n(λ) = ∑ℓ(λ)

i=1 (i − 1)λi, and in the t = 1 limit this

will turn into scaling the h̃λ in the expansion of fγ by qn(λ). Note that on
the level of the link of the singularity, this scaling γ ↦ tγ corresponds to
adding a full twist.

(3) Note also that the full master symmetric function could be decorated by
a partition or even a sequence of partitions, by replacing the first vacuum
state ”1” in the Fock space by a modified Macdonald polynomial H̃λ (resp.

replacing all of the vacuum states by H̃λd
, . . . , H̃λ1). In principle, our meth-

ods give formulas for these cases as well at t = 1, a = 0.
Let us now discuss how the above connects to the approach in [12]. In loc. cit.

the following ”evaluation homomorphism” or ”coinvariant” {−}ev ∶ Hn → C(q, t) on
the DAHA is defined:

{−}ev ∶Xa ↦ q−(ρ,a), Yb ↦ q−(ρ,b), Ti ↦ t

Recall also from the discussion around Definition 4.19 that the DAHA acts on its
polynomial representation

C(q, t)[X±1 , . . . ,X±n]
and this restricts to an action of SH+n on symmetric polynomials in n variables.

Recall also the ŜL2(Z)-action and the elements P
(n)
a,b ∈ SHn. The DAHA-Jones

polynomial of Cherednik-Danilenko is defined in [12, Eq. (4.26)] (with slightly
different notation) as

(5.4) JD
(n)
p⃗,q⃗ (q, t) = {γq1/p1

(⋯(γqd−1/pd−1
(P (n)qd,pd

⋅ 1) ⋅ 1)⋯) ⋅ 1)}ev
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This is related to the superpolynomial PL from above by

Theorem 5.7 (Cherednik’s stabilization conjecture, Section 3.4., [29]). We have

JD
(n)
p⃗,q⃗ (q, t) = PL(tn, q, t)

Remark 5.8. When m = 0, the superpolynomials coincide with the Poincaré poly-
nomials of triply graded Khovanov-Rozansky homologies of L by the explicit com-
putations in [21,35,48]. It is an important open problem to verify this for algebraic
links and more general iterated torus links.

We now come to explicit combinatorial formulas for the superpolynomials and
the master symmetric functions. We will first recall the full torus knot case as
in [29], and then work out the general formula at a = 0, t = 1.

The following formula for the full master symmetric function of a torus knot is
given by [29, Theorem 1.1]. Let T be a standard Young tableau on n letters. For
the box labeled i in its diagram, denote by zi the q, t-content of the box. Recall
also that

ω′ (x) = (x − 1)(x − qt)
(x − q)(x − t)

and

S′i ∶= Sq/p(i)′ ∶= ⌊
iq

p
⌋ − ⌊(i − 1)q

p
⌋

and define ν ∶= (1−q)(1−t)(1−qt) . Then we have the following.

Theorem 5.9 (Theorem 1.1. and Eq. (37), [29]).

(5.5) f̂m,n = ∑
λ⊢n

νn
H̃λ

gλ
∑

SYT(λ)

∏n
i=1 z

S′m/n(i)
i (qtzi − 1)

(1 − qt z2
z1
)⋯ (1 − qt zn

zn−1
)
∏
i<j
ω′ (

zj

zi
)
−1

Note that to pass from this description to the case of iterated cables is rather
cumbersome. Namely, one should expand each H̃λ in the power sum symmetric
functions (or perhaps the elementary ones [55]), replace each pk by operators of the
form Pkq,kp, use the formula [29, Eq. (37)], and proceed, but it is not obvious if
this gives rise to any simple combinatorial formula.

However, at t = 1 the above formula massively simplifies and we may write down
the general result. To do this, let us introduce some notation.

Definition 5.10. The degenerate master symmetric function (or just master sym-
metric function in the rest of the text) of an iterated torus knot T (p⃗, q⃗), is the t = 1
specialization of f̂p⃗,q⃗:

fp⃗,q⃗ ∶= f̂p⃗,q⃗ ∣t=1
Remark 5.11. This definition stems from a somewhat unfortunate notation clash
between knot homology, symmetric functions and point-counting on affine Springer
fibers – it would possibly be more appropriate to define fp⃗,q⃗ = f̂p⃗,q⃗ ∣q=1 and then
replace t by q everywhere. Since the q, t-formulas are transposition-symmetric under
switching q, t, this will affect our formulas by a transposition and a q → q−1 in the
Shalika germ expansion as well as the orbital integrals.

Definition 5.12. We call the coefficient of H̃λ in Eq. (5.5) for a fixed T ∈ SYT(λ)
the (q, t)-weight of the SYT T . We will denote it by ŵtm/n(T ). Note that the
weight depends on m/n.
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Lemma 5.13. By comparison to Eq. (5.5), a convenient formula for the weight is
given by

(5.6) ŵtm/n(T ) =
∏n

i=1 z
Sm/n(i)−1
i

∏n
i=2(1 − 1

zi
)(1 − qt zi−1

zi
)∏i<j

ω ( zi
zj
)

where

ω(x) = (1 − x)(1 − qtx)
(1 − qx)(1 − tx)

and

Sm/n(i) = ⌈
im

n
⌉ − ⌈(i − 1)m

n
⌉

Proof. First, note that Sm/n(n − i) = S′m/n(i) and ω′(x−1) = ω(x). In particular,

reversing the labeling on the zi we see

wtm/n(T ) =
νn

gλ

z
Sm/n(i)
i ∏i(qtzi − 1)
∏n

i=2(1 − qt
zi−1
zi
) ∏

i>j
ω ( zi

zj
)
−1

On the other hand, one can check that

gλ = z1⋯zn
νn∏n

i=1(1 − z−1i )(1 − qtzi)

∏i<j ω ( zizj )ω (
zj
zi
)

Plugging the latter equation into the former one, we are done. □

Let us now study the limit as t→ 1.

Proposition 5.14.

(1) Let T ∈ SYT(λ). then the order of vanishing of the weight wt(T )m/n at t = 1
equals

(5.7) v(T ) = ∣λ∣ − ℓ(λ) − π(T )

where π(T ) is the number of pairs of consecutive boxes ◻i,◻i+1 in T s.t.
they lie in consecutive columns. Note that this number is always ≥ 0 and
independent of m/n.

(2) Suppose that v(T ) = 0, so that the weight does not vanish at t = 1. Then it
is equal to

∏n
i=1 z

Sm/n(i)−1
i

∏n
i=2(1 − z−1i )(1 − q

zi−1
zi
)

Here zi are (q, t)-contents of boxes in T now specialized at t = 1 and as
in [29], we simply ignore ℓ(λ) − 1 + n(T ) zero factors in the denominator.

Proof. From the formula for the weight in Eq. (5.6) independence of the subscript
m/n is clear. Looking at the denominator, we have the claimed factor and the
factors

ω ( zi
zj
) =
(1 − zi

zj
)(1 − qt zi

zj
)

(1 − q zi
zj
)(1 − t zi

zj
)
, i < j
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At a first glance it looks like this factor is always just 1 at t = 1. However, this only
holds if zi

zj
∉ { 1

q
, 1
t
, 1
qt
} (wheel conditions). For example, if zi

zj
= 1/q, then we get

ω ( zi
zj
) = (1 − 1/q)(1 − t)

(1 − t/q)
which gives a zero at t = 1 or order 1. Similarly, for zi

zj
= 1/t we get a zero of order 1

from (1−1/t)(1−q)
(1−q/t) , and at zi

zj
= 1/qt we get a pole of order 1 from (1−1/qt)

(1−1/t)(1−1/q) . Since

each box which has a box to the right of it contributes a zero, each box with a box
above it contributes a zero, and a box with a box diagonally above it contributes a
pole, we see that this gives a total number of ∣λ∣ − 1 zeroes.

The factors (1− z−1i ) in the denominator vanish at t = 1 iff zi = tk for some k ≥ 1,
i.e. ◻i is at the beginning of a row and we ignore the first factor. Therefore, they
contribute a pole of order ℓ(λ) − 1.

Finally, the factors (1 − qtzi−1/zi) contribute a pole of order π(T ) at t = 1, since
this factor vanishes at t = 1 iff zi = qzi−1. The result follows. □

Remark 5.15. The first author thanks Eugene Gorsky for explanations related to
the combinatorics of this Proposition.

Recall from Lemma 3.4 that to each composition α ⊧ n there is associated an
unique Young tableau.

Lemma 5.16. The weight wt(T )m/n does not vanish iff T comes from a composi-
tion.

Proof. We need to show that only the tableaux coming from compositions have
v(T ) ∶= ∣λ∣ − ℓ(λ) − π(T ) = 0, cf. Eq. (5.7). Note that v(T ) = 0 iff π(T ) =
∣λ∣ − ℓ(λ). Additionally, the latter is an upper bound (i.e. the condition is satisfied
for every box except the ends of the rows, which is obviously the maximum number
of boxes), so we are looking to maximize the number of consecutive pairs of boxes
in consecutive columns.

For a tableau of shape λ, coming from a composition α = α1 + ⋯ + αr we have
exactly

π(T ) = (α1 − 1) +⋯ + (αr − 1) = ∣α∣ − ℓ(α)
by construction. Conversely, if π(T ) = ∣λ∣ − ℓ(λ), the horizontal strip coming from
the top boxes in the diagram must have consecutive labels. Stripping it away gives
αr, and we continue inductively to build α1 +⋯ + αr. □

At t = 1 we then finally have

Proposition 5.17.

(5.8) Pm,n ⋅ 1 = ∑
α⊧n

wt(α)m/nh̃α = ∑
α⊧n

(−1)n−ℓ(α)zS1

1 ⋯zSn
n

cα−1(q)
h̃α

where Si = ⌈ imn ⌉ − ⌈
(i−1)m

n
⌉. Here (m,n) = 1.

Proof. From the second part of Proposition 5.14 we have that the denominator of
wt(α)m/n is

n

∏
i=2

1

(1 − z−1i )(1 − qzi−1/zi)
with the convention that zero factors are ignored.
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Arranging the q, t-contents at t = 1 into a vector by reading the tableau box by
box, we write

z(α) = (1, q, . . . , qα1−1,1, q, . . . , qα2−1, . . . ,1, . . . , qαr−1)

and by definition z(α)i = zi.
It is easy to see that the 1 − qzi/zi+1 factors are only nonvanishing at the ends

of the parts of α so this becomes

r

∏
j=1

1

(1 − q−1)⋯(1 − q−αj−1)

r−1
∏
j=1

1

1 − qαj
= (−1)n−ℓ(α)z1⋯zn
(1 − q)n−1[α1]!⋯[αr−1]![αr − 1]!

= (−1)
n−ℓ(α)z1⋯zn
cα−1(q)

where [m]! =∏m
i=1(1 − qm)/(1 − q) and α − 1 is the composition where we remove 1

from the last part.

Since the numerator was z
Sm/n(1)−1
1 ⋯zSm/n(n)−1

n we get the result. For further
reference, we will denote the coefficient for a fixed α the weight of α:

(5.9) wt(α)m/n =
(−1)n−ℓ(α)zSm/n(1)

1 ⋯zSm/n(n)
n

cα−1(q)
□

In order to write down the transition matrix of Shalika germs, we will also need
the case when m,n are not coprime. This is the t → 1 limit of the formula in
Theorem 4.8 at µ = ∅.

Proposition 5.18.

(5.10) Pkm,kn ⋅ 1 = ∑
α⊧kn

wt(α)m/nh̃α

where for α ⊧ kn

(5.11) wt(α)m/n =
⎛
⎝
1 +

k−1
∑
j=1

qj
z(k−j)n⋯z(k−1)n

z(k−j)n+1⋯z(k−1)n+1
⎞
⎠
(−1)n−ℓ(α)z1⋯zn

cα−1(q)

Proof. Comparing to Theorem 4.8 and Proposition 5.17 this is proved exactly in
the same way, but we also have the coefficient

k−1
∑
j=0

qj
zn(k−1)+1⋯zn(k−j)+1
zn(k−1)⋯zn(k−j)

where the first summand is to be just read as 1. □

6. The combinatorial formulas

In this section, we state and prove the inductive combinatorial formula for the
Shalika germs and the Steinberg germs, as well as the orbital integrals themselves.
Our method is on the harmonic analysis side heavily based on results of [70], in
particular the combinatorial result Lemme V. 12. therein. Currently, it can be
regarded as the most technical part of our computations, but we also hope the
results in this section give insight to the rather brute-force approach in [70].

Definition 6.1. Let m ≥ n ≥ 0, let λ ⊢m have n parts and µ ⊢ n and consider the
set Υµ

λ ⊂ Z
n defined by
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Υµ
λ ∶=
⎧⎪⎪⎨⎪⎪⎩
(d1, . . . , dn)∣(

k

∑
i=1
di)(

n

∑
i=k+1

λi) − (
k

∑
i=1
λi)(

n

∑
i=k+1

di)

⎧⎪⎪⎨⎪⎪⎩

= 0, if there is a j so that k = ∑j
i=1 µi

> 0, otherwise
, k = 1, . . . , n − 1

⎫⎪⎪⎬⎪⎪⎭
Example 6.2. Let m = n, µ = (n) and λ = (1n). Then

Υ
(n)
(1n) = {d⃗ ∣ (n − k) ⋅

k

∑
i=1
di − k ⋅

n

∑
i=k+1

di > 0, k = 1, . . . , n − 1}

Proposition 6.3. The subset Dd,n ⊆ Υ(n)(1n) given by d⃗ with ∑i di = d is in bijection

with the slope d/n rational Dyck paths D<d,n strictly under the diagonal.

Proof. Giving a Dyck path is the same as giving the sequence of its horizontal steps.
If we are looking at d/n-Dyck paths, these steps have to sum to d and there are at
most n steps, which gives us a sequence (d1, . . . , dn). Since such a Dyck path lies
above the line with slope d/n, we must have

(n − k)(
k

∑
i=1
di) − k(d −

k

∑
i=1
di) = n

k

∑
i=1
di − kd > 0

for all k (if we allowed all Dyck paths, for noncoprime d,n equality could also hold).
The converse is clear.

□

Example 6.4. Let n = 4, d = 3. The allowed sequences are

(3,0,0,0), (2,1,0,0), (2,0,1,0), (1,2,0,0), (1,1,1,0)
and these correspond to the Dyck paths

Now let P = ∑d⃗ ad⃗X
d⃗ ∈ Z[[X1, . . . ,Xn]]∏Xi and define

(6.1) Υµ
λ(P ) ∶= ∑

d⃗∈Υµ
λ

ad⃗X
d⃗

Remark 6.5. The notation used in [70, I 10] for Υµ
λ is Γµ

λ, but we have avoided
this notation in order not to get it confused with the shalika germs Γλ(−). Note
also that on pages 856 and 878 of loc. cit. the confusing notation ΓµP

λ is used, but
this seems to be due to a printing/typographical error.

In general, one should think of the elements of Υµ
λ Lie-theoretically as follows.

Zn is the weight lattice of GLn, and each collection of n integers λ1, . . . , λn gives
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a linear form on Zn as defined above. On the other hand, µ gives a parabolic
subgroup of GLn, and the (in)equalities above decide that this linear form should
(not) vanish on the relative root subspaces of the corresponding Levi subgroup.
This cuts out a cone in the apartment of T . Fixing the coordinatewise sum is
intersecting this cone with an affine hyperplane. We remark that the definition of
Υµ

λ is related to the definition of ”Hecke-regular functions” in [3, Section 4].

6.1. Comparison to Waldspurger’s recursion. Let us recall the setup of [70,
Séction VI–VII], in slightly simplified form (the simplification being that for us
E = F and r = 1 in the notation of loc. cit.). Now F is a nonarchimedean local field
of characteristic zero (but see Remark 2.5), F ′/F is a tamely ramified extension of
F , and n′ = n/ef where f is the residual degree and e the ramification index. Let
G′ = GLn′(F ′). Consider γ ∈ GLn(F ) that is elliptic.

Definition 6.6. We call δ ∈ F
′∗ cuspidal for F ′/F if (valF ′(δ), e) = 1 and if the

reduction of t−valF ′(δ)δe in the residue field of OF ′ generates the residue field over
that of OF .

Let I1G′ be the unipotent radical of the Iwahori of G′. We can always write
γ = δγ′ where δ is F ′ ∶= F (δ)/F -cuspidal and γ′ ∈ I1G′ (see Lemme VI 3. in loc.
cit.). Note that γ′, δ are not uniquely determined but n′, e, f,valF ′(δ) are, and so
is the extension F ′, up to isomorphism.

Remark 6.7. If we are working with a totally ramified extension, in terms of the
Puiseux expansion, this is like writing

adu
nrd +⋯ + a1unr1 = adunrd(1 +

ad−1
ad

un(rd−1−rd) +⋯ + a1
ad
un(r1−rd))

which is analogous to our γ−adunrd = γ<. Namely, we inductively reduce to elements
of smaller depth in the smaller group GLn′ , cf. Definition 2.48.

Following loc. cit. if we further suppose γ ≡ 1 mod ϖF (γ)OF (γ) where ϖ is some
chosen uniformizer, for example if γ = 1 + adunrd +⋯ + a1unr1 then we may write

γ = η(1 + δγ′)
where η ≡ 1 mod ϖFOF where ϖF is a chosen uniformizer, e.g. t in the function
field case. Write then δγ′ =∶ γ′′. This is also an analog of our γ<, but note that since
ΓSt are only defined on the group, which is where Waldspurger is working, we need
to pass through the map x ↦ 1 + x as in Proposition 2.9. This, with homogeneity,
will ensure Γλ(γ<) = Γλ(γ′), but we tacitly avoid keeping track of group vs. Lie
algebra Shalika germs in order to not overburden the notation.

Definition 6.8. Let X(T ) = ∑i≥0 hiT
i ∈ Symq,t[[T ]]. Fix λ′ ⊢ n′ and number the

squares in its diagram 1, . . . , n′. Let

P =
n′

∏
k=1

X(Xk)

and let xn(dλ′, q) be the coefficient of Tn in the series

Υλ′(P )

evaluated at X◻ = qi−(λ
′

j−1)/2T , where Υλ′ is as defined in Eq. (6.1) and where i, j
run over the coordinates of the boxes in λ′. See [70, Section I 10., V 12.].
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In [70, Lemme VII 5.], Waldspurger proves the following.

Proposition 6.9. We have

(6.2) ∑
λ⊢n

ΓSt
λ (γ, q)hλ = qn

′nd/2−n′ ∑
λ′⊢n′
(−1)

n
e −ℓ(λ

′)ΓSt
λ′ (γ′′, q)xn(dλ′, q)

where xn(dλ′, q) is as defined in Definition 6.8 and the Steinberg germs are as in
Theorem 2.19.

We refer the reader to [70, Lemme VII 5., Lemme V 12.] for details. We warn
the interested reader that there are some printing errors in the latter lemma, e.g.
the second displayed equation on p. 880 should have a subscripted X2, a sentence
after it there seems to be an extra ”A” in front of λ, and on line 7 of p. 881 another
subscript seems to have gone astray. Also in the statement the ”q” should not be
a subscript of t(λ) but on the same line as (−1).

Definition 6.10. Let γ ∈ GLn(O) be elliptic. By Corollary 2.7 we have the
group Shalika germs Γλ(γ) for γ and the Steinberg germs ΓSt

λ (γ). Let the master
symmetric function of γ be

fγ ∶=∑
λ

Γλ(γ)h̃λ

or equivalently by Propositions 3.13, 3.15 fγ = ∑λ Γ
St
λ (γ)hλ. If valF (det(γ)) = d,

we define
fγ ∶=∑

λ

ΓSt
λ (γ)hλ

but note that there is no obvious analog of the Shalika germs in this case. Of course,
one may define these via a change of basis a posteriori, but the harmonic analysis
meaning is unclear.

Similarly, if γ ∈ gln(F ) define

fγ ∶=∑
λ

Γλ(γ)h̃λ

It is clear from Proposition 2.9 that this coincides with fγ above if for example γ
is of the form 1 + γ′ where γ′ is topologically nilpotent. In this case we also have
fγ = fγ′ .

Definition 6.11. Let γ be as above. The coefficients of the expansion of fγ in the
elementary symmetric polynomials are called the Dyck germs of γ. This is also the
definition for γ non-elliptic, where fγ is as in Definition 6.28.

By construction, our recursion for fp⃗,q⃗ from Section 5 which is essentially the
totally ramified case yields

(6.3) ∑
λ⊢n

σλ(γ)eλ = ∑
λ′⊢n/e

σλ′(γ′′)Ed,e,λ′

Where σλ are the ”Dyck germs” of Definition 6.11. A good example to keep in
mind here is γ = 1 + u6 + u7 = 1 ⋅ (1 + u6(1 + u)) ∈ GL4(O), with γ′′ = δγ′, δ = u6,
γ′ = (1 + u) and η = 1. Also in this case, f = 1, e = 2, n′ = 4/2 = 2, d = 3.

The main goal of this section is to compare the construction of fp⃗,q⃗ from Section
5 to fγ introduced above. We start with a Lemma.

Lemma 6.12. We have xeλ′(dλ′, q) = qn
′nd/2−n/2∏ℓ(λ′)

i=1 (∑π∈D<
eλi,dλi

qarea(π)eπ) where
we only sum over Dyck paths strictly under the diagonal.
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Proof. Since

xeλ′(dλ′, q) =
ℓ(λ′)
∏
i=1

xeλ′i(λ
′
id, q)

(see e.g. the second displayed equation of p. 883 in [70]), we may restrict to a

single factor in the product. Up to replacing qi−(λ
′

j−1)/2T by qiT in Definition 6.8,
this follows from Proposition 6.3. □

Our main theorem is

Theorem 6.13. The right-hand sides of Eqs. (6.2) and (6.3) are equal. That is,

qn
′nd/2−n/2 ∑

λ′⊢n′
(−1)

n
e −ℓ(λ

′)ΓSt
λ′ (γ′′)xn(dλ′, q) = ∑

λ′⊢n′
σλ′(γ′′)Ee,d,λ′

In particular, the left-hand sides are also equal.

Proof. We will prove this by induction. It is clearly true for n/e = 1. Start by
writing

∑
λ′⊢n/e

σλ′(γ′′)Ed,e,λ′

where Ee,d,λ′ ∶=∏ℓ(λ′)
i=1 Ed,e,λ′i

and

Ed,e,λ′i
= ∑

π∈Deλ′
i
,dλ′

i

qarea(π)eπ

as before.
The analogous equation on the left is [70, p. 883]

xn(dλ′, q) =
ℓ(λ′)
∏
i=1

xeλ′i(dλ
′
i, q)

where

xeλi(dλi, q) = ∑
π∈D<

eλi,dλi

qarea(π)eπ

by Lemma 6.12.
Let E<d,e,λ′i

= ∑π∈D<
eλ′

i
,dλ′

i

qarea(π)eπ, which is the same as Ed,e,λ′i
where we only

sum over Dyck paths strictly under the diagonal. This is again by Lemma 6.12 the
same as xeλi(dλi, q) up to a factor. In order to get rid of the factor, we prefer to

again renormalize P from Definition 6.8 by replacing qi−(λ
′

j−1)/2T by qiT , replacing
the exponent by the arm length of the Dyck path thought of a partition inside a
staircase shape (note that the arm sequence of a Dyck path determines the area).
For example when λ′ is a single row, it is easy to check the two series differ exactly

by q(ed(n
′)2−en′)/2 = q(n

′nd−n)/2.
Now, note that from the equation ∑n

k=1(−1)khn−kek = 0 it follows that

en = ∑
α⊧n
(−1)ℓ(α)hα

where we sum over all compositions of n. On the other hand, we have

Ee,d,λ′i
= ∑

α⊧λ′i
∑

π∈Deλ′
i
,dλ′

i
touchπ=α

qarea(π)eπ

where touch(π) = α specifies that π touches the diagonal at α.
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Suppose by induction then that

∑
λ′⊢n/e

ΓSt
λ′ (γ′′, q)hλ′ = ∑

λ′⊢n/e
σλ′(γ′′)eλ′

Writing λ′ = (λ′1, . . . , λ′ℓ(λ′)) we then have

eλ′ =
ℓ(λ′)
∏
i=1
( ∑
α⊧λ′i
(−1)ℓ(α)hα)

Now, for two arbitrary compositions denote by α + β their concatenation. By
sorting, this gives a partition of ∣α∣ + ∣β∣ of length ℓ(α) + ℓ(β). Given a collection

α⃗ of compositions α(1) ⊧ λ′1, . . . , αℓ(λ′) ⊧ λ′ℓ(λ′) write α⃗ ↔ λ′ . In particular, for a

fixed µ′ ⊢ n/e collecting all collections of compositions whose sum has associated
partition µ′ we see that

ΓSt
µ′ (γ′′) = ∑

λ′↔α⃗
sort(α(1)+⋯+α(k))=µ′

(−1)
n
e −ℓ(λ

′)σλ′(γ′′).

It now remains to replace Ed,e,λ′ by a similar expansion. Indeed, by definition
we have

Ed,e,λ′ =
ℓ(λ′)
∏
i=1
( ∑
α⊧λ′i

∑
π∈Deλ′

i
,dλ′

i
touchπ=α

qarea(π)eπ)

but also that

∑
π∈Deλ′

i
,dλ′

i
touchπ=α

qarea(π)eπ =
ℓ(α)
∏
i=1

E<d,e,αi
.

Again collecting all α⃗↔ µ′ and by our inductive assumption, we see that

∑
λ′⊢n/e

(−1)
n
e −ℓ(λ

′)ΓSt
λ′ (γ′′)xn(dλ′, q) = ∑

λ′⊢n/e
σλ′(γ′′)Ed,e,λ′

□

Example 6.14. We illustrate this theorem in the simplest nontrivial example,
n = 4, e = 2, d =odd. Then we can write the RHS of Eq. (6.3) as

σ11Ed,e,11 + σ2Ed,e,2 = σ11E2
d,e,1 + σ2Ed,e,2

= σ11(E<d,e,1)2 + σ2(E<d,e,2 + (E<d,e,1)2) = (σ11 + σ2)(E<d,e,1)2 + σ2E<d,e,1.
On the other hand, we have

σ2e2 + σ11e11 = σ2(h11 − h2) + σ11h11
= (σ2 + σ11)h11 + (−1)2−1σ2h2.

This does not quite yet cover the induction for general tamely ramified γ over
nonarchimedean local F as outlined in [70, Section VII 7.], in which each interme-
diate step may carry some unramified extension.

For example, in the notation introduced above and in [70, VII 1.], namely γ = δγ′,
suppose F (δ)/F has residue degree f ≥ 1, valF (detG(δ)) = nd/e =∶ a. By Theorem
2.19 there is a Steinberg germ ΓSt

λ for each λ ⊢ n
e
. Note that even though we are

working on GLn, these are partitions of n/e. Similarly, we have germs ΓSt
λ′ (γ′) for
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λ ⊢ n/ef . The associated master symmetric functions are fγ = ∑λ Γ
St
λ (γ)hλ and

similarly for fγ′ . From [70, Proposition VII 2.] we then have

Proposition 6.15.

fγ = (−1)nd−nd/efγ′[Xf ]

We will also denote this latter plethysm/Adams operation by τr ∶ f[X]↦ f[Xr].
Note that when f = 1 this allows us to compare Steinberg germs of γ and γ′ directly.

Let us finally note that in [69, Théoréme 1.3.] the following situation, which is
implicit in the above, is addressed. Suppose F ′ ∶= F (γ)/F is unramified of degree
f , and write γ = 1 + taX + tbY where a < b, X ∈ OF (γ) generates the residue field
of F ′ and Y is such that F ′(Y ) is a degree n′ = n/f extension. Suppose also
γ′ ∶= 1 + tb−aY . Translating the notation to ours, we have

Theorem 6.16.

fγ = (−1)n−n
′

∇∣at=1τf(fγ′)
where ∇ is the Macdonald eigenoperator from Definition 3.7

Proof. One notices that in order to compare the Shalika germs sλ(γ) in loc. cit. to
ours, there is a factor of cλ(q) and another of cλ′(qf) inside the plethysm. This is
explained by the fact that there is a mismatch between [69,70], namely we use the
master symmetric function in the latter whereas in the former paper the Shalika
germs are collected into a generating function

∑
λ

sλ(γ, q)cλ(q)hλ

instead of fγ = ∑λ Γλ(γ)h̃λ which has an additional plethysm X ↦ X/(1 − q).
Composing this with τf explains the power q ↦ qf as well as the sign.

Finally, on the LHS of the Theorem in loc. cit. we have factors of the form

qan(λ
t) which are exactly the ones coming from homogeneity of Shalika germs as

observed in Remark 5.6. □

Remark 6.17. In [70] an unramified character and some ”twisted” Steinberg germs
appear. While these are not studied in the present paper, we expect them to have
nice expressions and combinatorics in terms of symmetric functions. For example,
we do not know what the fundamental lemma proved in [70] looks like in our
language.

Remark 6.18. As can be seen in 6.16 or by changing the first Newton pair from
(p, q) to (p, q+p), the ∇−operator at t = 1 corresponds to multiplying the element γ
in the Lie algebra or taking 1+γ → 1+ tγ in the group. Comparing to our formulas,
this actually yields homogeneity of Shalika germs for the tamely ramified elements
(compare to the proof of [69, Lemme 1.2.]). See Remark 2.5 for more discussion.

Let us end this section with introducing a canonical t-deformation of fγ as de-
fined above for either γ ∈ G(F ) or γ ∈ g(F ). Note that by induction, as explained
in [70, VII 7.], fγ is constructed using the steps in Theorem 6.13 as well as Proposi-
tion 6.15 (or Theorem 6.16), which are operations on symmetric functions, namely
compositions of slope m/n plethysms φm/n ∶ Symq → Symq, the specialized nabla
operator ∇∣t=1, scalar multiplication, and the Adams operations τf . Promoting
∇∣t=1 to ∇ ∶ Symq,t → Symq,t, the slope m/n plethysms to a family of operators
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coming from Symq,t → Em/n, and keeping the τf as they are, we may run the sim-
ilar recursion which only depends on the datum of γ. We recover in the totally
ramified case the deformed master symmetric function f̂p⃗,q⃗ from Section 5, and in
general have proved Theorem 1.12 from the introduction, namely

Theorem 6.19. Let γ ∈ g(F ) be compact and elliptic. Then the master symmetric
function admits a canonical t-deformation, namely

f̂γ =∑
λ

Γ̃λ(γ)H̃λ

where H̃λ are the modified Macdonald polynomials. In particular, the Shalika germs
Γλ(γ) admit a canonical t-deformation.

6.2. The formula for Shalika germs. In this section, we will state and prove
the main formula for Shalika germs. Let

fp⃗,q⃗ = ∑
λ⊢n

Γλ(γ)h̃λ

be the Shalika expansion of the master symmetric function for γ elliptic. The
cabling process passing from γ<i to γ with new Newton exponents (p, q) (above,
the correspondence is p = e, q = d) expands fp⃗,q⃗ in the {eλ}, replacing each eλ by
Eq,p,λ. On the level of Shalika expansions, denote the transition matrix between
the bases {hλ}λ⊢n and {hλ′}λ′⊢n/p by M = {Mλ,λ′}. Denote also n′ = n/p.

Theorem 6.20. The matrix M has a combinatorial description as follows:

(6.4) Mλ,λ′ =
⎛
⎝
cλ′ ∑

µ⊢n′

∣Sλ ∩Cµ∣
bµλ!

ℓ(µ)
∏
i=1
( ∑
α⊧pµi

wt(α)q/ph̃α)
⎞
⎠

RRRRRRRRRRRh̃λ

In particular, it is possible to interpret this sum combinatorially as follows: For
each λ′, take the partitions µ which refine it. Next, consider the compositions the
parts of eµ and attach to each composition the respective weight. Finally, sum up
the result (weighted with the appropriate prefactors above).

Proof. We need to compute the slope ”q/p plethysm” of the functions h̃λ′ , i.e.
expand them in the pµ and replace each pk by Pkq,kp and bring the result back

to the basis h̃λ. In order to do this, we note that by the untransformed complete
homogeneous symmetric functions satisfy

hλ =∑
µ

∣Sλ ∩Cµ∣
λ!

pµ

where ∣Sλ∩Cµ∣ is the number of permutations simultaneously lying in the Young/parabolic
subgroup Sλ ∶= Sλ1 ×⋯×Sλℓ

and the conjugacy class Cµ of permutations with cycle
type µ.

Since

h̃λ′ = cλ′hλ′[X/(1 − q)],
we get

h̃λ′ = cλ′ ∑
µ⊢n′

∣Sλ′ ∩Cµ∣
λ′!bµ

pµ

where bµ =∏i(1 − qµi) is the principal specialization of pµ and cλ′ is as before.
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Now, φq/p(pµ) = ∏
ℓ(µ)
i=1 Pµiq,µip =∶ Pµq,µp which at t = 1 we know how to write

down using Proposition 5.17. Using the prescription of Lemma 3.4 and the fact
that h̃λh̃µ = h̃λ+µ,

Pµq,µp =∏
i

( ∑
α⊧µip

wtq/p(α)h̃α)

is a linear combination of h̃λ, λ ⊢ N where the coefficient of each h̃λ is the sum of
the weights associated to all compositions of the rows of µ adding up to λ after
sorting. □

Remark 6.21. One may view Theorem 6.20 as giving a combinatorial expression
for the ”λ′-colored” master symmetric functions of torus knots at a = 0, t = 1.
Remark 6.22. There is a ”slope zero” analog of this Theorem, where F ′/F is an
unramified extension, say of residue degree r. By Proposition 6.15 this amounts to
applying the Adams operation τr. In this case, we only need to take wt(α)0/r to
be defined as in Eq. (5.11) but with S0/r(i) ∶= 0 for all i.

6.2.1. Graphs. In this section, we conjecture a different combinatorial approach to
the renormalized Shalika germs.

We start with a lemma. Let λ,µ ⊢ n ≥ 1. Let G(λ) be the set of directed graphs
(loops allowed) with vertex set the boxes of the Ferrers diagram of λ, labeled with
{1, . . . , n} and edges only between boxes in the same row. Further, require each
vertex to have in- and outdegree 1. Let G(λ,µ) ⊂ G(λ) be the subset of graphs
whose connected components sort to give the partition µ. Note that µ is necessarily
a refinement of λ.

Lemma 6.23. There is a natural bijection Sλ ∩Cµ ↔ G(λ,µ)
Proof. Writing a cycle decomposition for elements on the left gives rise to a graph
by drawing the boxes labeled 1, . . . , n and adding edges ai → ai+1 for each cycle
(a1⋯ak). The converse is clear. □

Next, we note that by deleting at least one edge from each cycle of a graph
G ∈ G(λ), we get a composition of n, by remembering the ordering on the original
boxes of λ. This composition naturally refines λ. Accordingly for G ∈ G(λ), we
say α ⊧ n refines G if we can obtain the composition α by deleting edges from G.
Finally, for e ≥ 1, let eG be the graph obtained by e-dilating each cycle in G.

In order to only have one kind of combinatorial object, we may further associate

to each G′ ∈ G(λ′, µ) and a composition α ≤ eG′ exactly ∏ℓ(µ)
i=1 µi different graphs by

cyclic permutation of vertices in G′. It is easy to see these graphs G ≤ mG′ are the
ones coming exactly from mG′ by removal of one or more edges so that the resulting
composition is α.

Next, define the weight of a graph to be

wt(G)M/N = q∑v∈G coarm(v)SM/N (v)

where coarm is the i-coordinate of the vertex minus 1, counting from the start of
the chain v belongs to.

Conjecture 6.24. In the renormalized basis hλ[ X
1−q ] = h̃λ/cλ, the transition matrix

of Shalika germs is given by

(6.5) M ′
λ,λ′ =

cλ
cλ′

Mλ,λ′ = (−1)N−ℓ(λ)
1

λ′!
∑

G′∈G(λ)
(−1)n−ℓ(α(G

′)) ∑
G≤pG′

sort(G)=λ

wt(Gq/p)
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This is a purely combinatorial conjecture, which we expect to be verifiable by
direct comparison of Eqs. (6.4) (6.5).

While it may not seem obvious from this formula, from the easily checked fact
that the symmetric functions cλeλ expand with Z[q]-coefficients in the basis h̃λ it
is also clear that this latter transition matrix has entries in Z[q].

Proposition 6.25. The renormalized Shalika germs cλΓλ(γ) are integral, i.e.
cλΓλ(γ) ∈ Z[q].

In effect, Eq. (6.5) gives a conjectural combinatorial interpretation for these
integral polynomials.

Remark 6.26. Eq. (6.5) was conjectured in a slightly different form by the sec-
ond author in 2018, based on extensive computer experiments, a slightly different
algorithm based on [67], and an expectation for (6.5) when q → 1.

Remark 6.27. The renormalized Shalika germs are not in N[q] in general, even
up to an overall sign. In particular it is easy to find examples for which cλΓλ(γ)
has both positive and negative integer coefficients.

6.3. The formulas for orbital integrals. In this section, we give a combinatorial
formulation of the orbital integrals and comment on the non-elliptic case.

Definition 6.28. For γ ∈ m ⊂ g, where m is the Lie algebra of a Levi subgroup
conjugate to L(µ), let γ1, . . . , γℓ(µ) we define the master symmetric function to be

fγ =
ℓ(µ)
∏
i=1

fγi

Remark 6.29. This is only a definition at t = 1. For the equivalued, deformed
case the relevant symmetric functions are defined in [7]. In the DAHA-version,
the superpolynomials (in general) are defined in [13, Section 4.2.], but as far as
the authors are aware, this has not been explored on the level of the elliptic Hall
algebra.

Theorem 6.30. Let γ be compact and regular semisimple, and let 1λ be the char-
acteristic function of the standard parahoric Pλ associated to λ ⊢ n. Then

Iγ(1λ) = qdimSpγ ⟨fγ , eλ⟩

where we pair using the Hall inner product and fγ is as above.

Proof. Assume first γ is elliptic. From Theorem 2.19, we have

Iγ(1λ) =∑
µ

ΓSt
µ (γ)Stµ,c(1λ)

and by Theorem 6.13 plus Definition 6.10 we have

∑
µ

ΓSt
µ (γ)hµ =∑

µ

Γµ(γ)h̃µ =∑
µ

σµ(γ)eµ = fγ

The result then follows from Propositions 3.13, 3.15 and Proposition 2.9.
For general γ, suppose γ belongs to a Levi of type µ, WLOG to the standard

one and has blocks γ1, . . . , γℓ(µ). Then by Proposition 2.43

IGγ (1λ) = ∣det(ad(γ))∣Lie(G)/Lie(M)∣
1/2

IMγ (Res
g
m(1λ))
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Let us write Resµ = ResGM . By [70, Lemme IV 3.] and Lemma 2.40, we get

Resµ(1λ) = ∑
m∈M(λ,µ)

⊗ℓ(µ)
j=1 1m⋅,j

where 1m⋅,j is the characteristic function of the corresponding standard parahoric
and M(λ,µ) is as in Definition 3.2. It is clear that this implies

IMγ (Resµ(1λ)) = ∑
m∈M(λ,µ)

ℓ(µ)
∏
j=1
⟨em⋅,j , fγj ⟩

On the other hand, the first displayed equation on [70, p. 883] implies that we may
write the RHS of the above equation as

⟨eλ,∏ fγi⟩

Comparing to Definition 6.28 and the dimension formula for affine Springer fibers
we are done. □

In particular, given the Newton pairs of an elliptic γ, we compute Iγ(1λ) by
forming the master symmetric function fγ recursively using Dyck paths, and then
expand it in the elementary symmetric functions. In this expansion, we give the
coefficient of eµ the weight ⟨eλ, eµ⟩ and sum the result up (and finally invert the
powers of q appearing). If λ = (n) the inner product is always one, so this is just
summing up the coefficients in the expansion.

6.4. Examples.

Example 6.31. Let γ = u7 + u6 ∈ gl4(F ), following Example 1.6. Then on the
second step of our induction n = 4, n′ = 2. Suppose we want to compute the entry
M211,2 of our transition matrix.

We compute

c2 = (q − 1)(q2 − 1), b2 = (1 − q2), b11 = (1 − q)2, z2 = z11 = 2

and therefore h̃2 = q+1
2
p11 + 1−q

2
p2. Now since (p2, q2) = (3,2) we must apply the

slope 3/2 plethysm and replace p11 ↦ P 2
3,2, p(2) ↦ P6,4.

Now by formula (5.8) we have P3,2 = 1
1−q h̃11 −

q
1−q h̃2 so

P 2
3,2 =

1

(1 − q)2
h̃1111 −

2q

(1 − q)2
h̃211 +

q2

(1 − q)2
h̃22

There are 8 compositions of 4, and we compute

S3/2(1) = 2, S3/2(2) = 1, S3/2(3) = 2, S3/2(4) = 1

Plugging this in to Eq. (5.11) gives

wt(2 + 1 + 1)3/2 =
−q(1 + q2)

(1 − q)2(1 − q2)
, wt(1 + 2 + 1)3/2 =

−2q2

(1 − q)2(1 − q2)
,

wt(1 + 1 + 2)3/2 =
−q(1 + q)
(1 − q)3

,

so that the coefficient of H̃211 in P6,4 is

−q(1 + q2)(1 − q)2(1 − q2) + −2q2

(1 − q)2(1 − q2)
+ −q(1 + q)
(1 − q)3

= −2q
2 − 2q

(q − 1)3



44 OSCAR KIVINEN AND CHENG-CHIANG TSAI

Taken together, we get

−2q(q + 1)
2(1 − q)2

+ (1 − q)(−2q
2 − 2q)

2(q − 1)3
= 0

One verifies in Sage that the slope 3/2 plethysm of h̃2 has vanishing coefficient for

h̃211. Let us write down the master symmetric function.

f(1,2),(3,2) = φ3/2(φ1/2(1)) = φ3/2(e2) =

= (q2 + q + 1) e1,1,1,1 + (q5 + 2q4 + 4q3 + 2q2 + 2q) e2,1,1+

(q6 + q4 + q2) e2,2 + (q7 + q6 + 2q5 + q4) e3,1 + q8e4
Indeed, there are 23 Dyck paths in a 6×4 rectangle with these horizontal steps and
area statistics. The weight polynomial of the spherical affine Springer fiber is

qdimSpγ ⟨f(1,2),(3,2), e4⟩∣q↦q−1 = 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 4q6 + 3q7 + q8

and that of the Iwahori affine Springer fiber is

qdimSpγ ⟨f(1,2),(3,2), e1111⟩∣q↦q−1 = 1+4q+10q2+20q3+34q4+48q5+54q6+48q7+24q8

Note that the first one is just the sum of the coefficients of the various eλ up to
normalization. It agrees up to q ↦ q−1 with the computation in [12, Eq. (3.1)]
– it seems that there is a typo in their paper, repeating one from Piontkowski’s
work [59].

Example 6.32. The simplest elliptic case with three Puiseux pairs appears in [12,
Eq. (3.8.)] as well as in [59] as an example where previous methods fail. This
example corresponds to the plane curve singularity C[[t8, t12 + t14 + t15]], so we
have (p1, q1) = (p2, q2) = (2,1), (p3, q3) = (2,3). The dimension of the ASF is 42 in
this case. Using Sage, we compute

q42⟨fγ , e8⟩∣q↦q−1 =
q42 + 7q41 + 24q40 + 56q39 + 104q38 + 166q37 + 236q36 + 306q35 + 370q34 +
424q33 + 465q32 + 492q31 + 507q30 + 510q29 + 504q28 + 488q27 + 466q26 +
437q25 + 406q24 + 370q23 + 335q22 + 298q21 + 264q20 + 230q19 + 199q18 +

168q17 + 143q16 + 118q15 + 97q14 + 78q13 + 63q12 + 48q11 + 38q10 +
28q9 + 21q8 + 15q7 + 11q6 + 7q5 + 5q4 + 3q3 + 2q2 + q + 1

which by Theorem 1.10 is the weight polynomial of the compactified Jacobian in
this case. We refer the reader to the attached computer program for computing the
Shalika germs and other data in this case.

Example 6.33. Let G = GL4 and γ = u6. This is an element whose characteristic
polynomial is x4 − t6, so that the link is a (6,4)-torus link. The element γ is
conjugate to one in a Levi isomorphic to GL2 ×GL2, and on each of the blocks we
have an equivalued element of valuation 3/2. We compute the master symmetric
function to be the product of the two factors in this case, namely fγ = (e11 + qe2)2.
The Shalika expansion of fγ reads

fγ = (
1

q2 − 2q + 1
) h̃1111 + (

−2q
q2 − 2q + 1

) h̃211 + (
q2

q2 − 2q + 1
) h̃22
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Theorem 6.30 gives that Iγ(1(4)) = q8 + 2q7 + q6 and Iγ(1(14)) = 24q8 + 24q7 + 6q6.
Note that up to q ↔ t, the first result agrees with the numerator of [35, Example
1.3.] at a = 0, q = 1.

Example 6.34. Let us work out an unramified example. Suppose k = Fq and
a ∈ F×q − (F×q )2. Let

γ = (0 at
t 0

)

Then γ splits over a degree two unramified extension of F . By Hilbert’s Theorem
90, stable conjugacy in GLn is rational conjugacy, so by [72, (3.5.4)] we should have

IGLn
γ (1g(O)) = SOγ(1sln(O)) = q + 2

where SOγ is the stable orbital integral in SLn, defined as in [72, Section 3.5.3.].
Indeed, we are in a situation where 1 + γ ∼ 1 + tX with X generating Fq2 over

Fq, and by Theorem 6.16 and Proposition 2.9

fγ = −∇t=1τ2(e1) = e11 + 2qe2
By Theorem 6.30 we get

Iγ(1(2)) = q⟨fγ , e2⟩∣q↦q−1 = q + 2
as desired.

7. Applications

7.1. Affine Springer fibers. Let G = GLn/K where K = k((t)) as before, with
k = Fq now. Appropriately modifying the definition of Spγ below to account for
mixed characteristic F , we get similar results but leave these for the interested
reader. Suppose P ⊂ G(K) is a parahoric subgroup. Let FlP = G(K)/P be the
corresponding partial affine flag variety.

Definition 7.1. The affine Springer fiber is the reduced ind-subscheme of FlP
defined by

SpPγ (k) = {gP∣Ad(g−1)γ ∈ Lie(P)}
Let Tγ be the centralizer of γ. Then it acts naturally on SpPγ , and in particular

gives rise to an action of Tγ(K)/Tγ(O) =∶ Λγ on SpPγ .

Unraveling the definitions, it is not hard to prove

Proposition 7.2. When γ is totally ramified,

∣SpPγ (k)/Λγ(k)∣ = Iγ(1P)
where the Haar measure on the right is normalized as in Definition 2.1.

Combined with Theorem 6.30 this implies

Corollary 7.3. If P is of type λ,

∣SpPγ (k)/Λγ(k)∣ = qdimSpγ ⟨fγ , eλ⟩∣q↦q−1

which is a polynomial in q with nonnegative coefficients.

We note that for more general γ, the orbital integral also seems to be a polyno-
mial in q with nonnegative coefficients. Let us also note the following application
to components of affine Springer fibers.
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Theorem 7.4. Let γ ∈ G be compact, tamely ramified and regular semisimple.
Then the number of irreducible components of SpIγ/Λ is always at most the order
of the Weyl group of GLn, and always divides this number.

Proof. By [68, Eq. (4.5)], the number of irreducible components is the coefficient
of the leading term in q of the integral of 111⋯1 along the orbit of γ. By Theorem
6.30, this orbital integral can be computed using fγ by pairing it with e11⋯1. On
the other hand, fγ is formed by multiplying the master symmetric functions for the
blocks of γ. Suppose for a moment γ is totally ramified. By Lemma 7.5 the smallest
power in the Dyck germs is 1, it appears with coefficient one, and it appears for
the least dominant partition. Since pairing with eλ does not introduce powers of q,
the highest power of q appearing in

qdimSpγ ⟨fγ , e11⋯1⟩∣q↦q−1

is qdimSpγ and it appears with coefficient ⟨eλ, e11⋯1⟩ = ∣W ∣
∣Wλt ∣ where λ is the smallest

partition in the dominance order appearing in the Dyck expansion of fγ . This
proves the claim in the totally ramified case.

For the general case where the construction fγ involves the operator τf , cf.
Proposition 6.15, note that the plethysm τf is designed so that for any homogeneous
symmetric function f of degree n′ = n/f , λ ⊢ n, we have

⟨eλ, τf(f)⟩ =
⎧⎪⎪⎨⎪⎪⎩

⟨eλ/f , f⟩, if λ is divisible by f

0, if λ is not divisible by f

In particular, we may reduce these cases to the computation above. □

Lemma 7.5. Let γ be elliptic and totally ramified. Then the smallest power of
q appearing in the coefficients (i.e. Dyck germs) of fp⃗,q⃗ = ∑λ σλ(γ)eλ is 1 = q0
and it only appears in front of the smallest partition in dominance order for which
σλ(γ) ≠ 0. In addition, it appears with coefficient 1.

Proof. We will prove this by induction. For one Puiseux pair it is clear, as there is al-
ways a Dyck path with area 0. Suppose it holds for Newton pairs (p1, q1), . . . , (pi−1, qi−1).
Then by the recursive construction of fp⃗,q⃗, the ”least dominant” horizontal steps
appearing in all the possible concatenations of Dyck paths when applying the
plethysm φqi/pi

appear from those smallest in the dominance order before applying
the plethysm. This combined with the facts that there is always a unique Dyck
path with area 0 and

φqi/pi
(eλ) =

ℓ(λ)
∏
j=1

⎛
⎜
⎝

∑
π∈Dλjqi,λjpi

qarea(π)eπ
⎞
⎟
⎠

we are by induction done. □

Remark 7.6. Let m/n be the minimal root valuation of γ. When γ is totally
ramified and elliptic, the above shows that the minimal partition appearing in the
eλ-expansion is formed from the horizontal steps of the maximal staircase partition

fitting under a line of slope m/n, i.e. the one with parts ⌊ (m−k)n
m
⌋, k = 1, . . .m. For

example, when m/n = 3/7 this gives the partition 4+ 2(+0), and the corresponding
Dyck path in the 3 × 7 rectangle has horizontal steps 3,2,2. In particular when
m/n ≥ 1 the horizontal steps give the one-column partition. It is easy to extend
this to γ non-elliptic by multiplying the corresponding eλ together. This gives
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another (slightly more general) proof of a Theorem of Z. Yun in type A, which
states that the minimal reduction type of γ determines the number of components
in the Iwahori affine Springer fiber.

Remark 7.7. Theorem 7.4 proves [68, Conjecture 8.7.] in type A. From the main
result of [68], there are always exactly n! components when the depth is > 1. In
fact the last statement is true for depth ≥ 1 because any depth-1 element either
differs from a depth > 1 element by a central element, or is contained in a Levi
subalgebra in which case we can reduce the assertion to the Levi case as in the
proof of Theorem 6.30.

Theorem 7.4 has the following interesting corollary about the W -representation
given by H∗(SpIγ/Λ). Let us assume that γ is totally ramified, and note that the
top degree part of the cohomology is always pure. A well-known argument using
finite Springer theory tells us there is a graded isomorphism of W−representations
for the affine Springer action:

H∗(SpPλ
γ /Λ) ≅H∗(Sp

I
γ/Λ)Wλ

In particular, knowing the dimensions of the top degree cohomologies of each
SpPλ

γ /Λ tells us exactly all the dimensions of the Wλ-invariants of the representa-

tion on top degree cohomology of SpIγ/Λ. Recall that using the Hall inner product,
this is the same as knowing the inner products of the Frobenius character with hλ.
Since the hλ are a basis of the ring of symmetric functions, this uniquely determines
the representation. A similar argument shows that assuming purity, fγ actually de-

termines the Frobenius character of H∗(SpI/Λ) in the elliptic case. In fact, since
ω(hλ) = eλ and the standard involution on symmetric functions is an isometry for
the Hall inner product, the Frobenius character will simply be ω(fγ).

More precisely, we get

Theorem 7.8. The W = Sn-representation on Htop(SpI/Λ) has Frobenius char-
acter hν = ω(eν), where ν is the smallest partition in dominance order appearing
in the eλ−expansion of fγ . In particular, when γ has depth ≥ 1, this is the regular
representation by above.

If γ is further elliptic and totally ramified and we assume the purity conjecture,
ω(fγ) is the Frobenius character of H∗(SpI/Λ).

Remark 7.9. Note that this proves [27, Conjecture 7.17.] in type A.

Suppose for a moment γ is a split element, i.e. lies in some split maximal torus.
In [11], Zongbin Chen proves that the generating function (summing over elements
of varying root valuation data) for the number of points on a so called fundamental
domain of Spγ is rational, and that the number of points only depends on the
root valuation datum. This is further related to the ”weighted” Shalika expansion
of Arthur, indeed the rationality is proved using homogeneity properties of these
functions. See [11] for more details. We have not compared our techniques with the
weighted Arthur-Shalika expansion, but it would be interesting to see how Chen’s
results could be combined with ours to yield stronger rationality results.

7.2. Compactified Jacobians. In this section, we apply Theorem 1.10 to show
that the point-counts of compactified Jacobians of rational, unibranch plane curves
are polynomials in q.
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Let us recall some relevant material from [44]. Let C be a reduced, projective
and geometrically connected curve over the residue field k, with only planar singu-
larities. Suppose for simplicity that the normalization of C is rational. Let Pic(C)
be the compactified Picard scheme of C. It is the moduli space whose closed points
parametrize torsion-free rank one sheaves on C. For each c ∈ Sing(C) fix an iso-

morphism ÔC,c ≅ k[[x, y]]/f and let Spc be the affine Springer fiber associated to
γc ∶= γf ∈ gldegx f where γf is the companion matrix of f . Let Λc be the lattice part
of the centralizer of γf and Λ = Pic(C)/Jac(C). Fix a section Λ → Pic(C) of the
quotient map.

From [44, Proposition 2.3.1.] we have

Proposition 7.10. There is a universal homeomorphism

∏
c∈Sing(C)

Spc/Λc → Pic(C)/Λ

If k is a finite field, we have

Corollary 7.11. Let k′/k be a finite extension. Then
RRRRRRRRRRRR
∏

c∈Sing(C)
Spc(k′)/Λc

RRRRRRRRRRRR
= ∣Pic(C)(k′)/Λ∣

Combined with Corollary 7.3, we have

Theorem 7.12. The number of points on Pic(C) is a polynomial in q = ∣k∣. In
addition, it is a polynomial with nonnegative integer coefficients.

A standard spreading-out argument, combined with [37, Theorem 1] and the
previous Theorem gives

Corollary 7.13. Let k = C. Then X = Pic(C) is strongly polynomial-count in the
sense of Katz [37], and the E-polynomial

EX(x, y) ∶=∑
p,q

ep,qx
pyq

is given by the weight polynomial of Pic(C) as EX(x, y) = PX(xy), defined by

PX(q) =∑
i,j

(−1)iqj dimgrjW Hi(Pic(C))

Yet another corollary of Corollary 7.3 together with Corollary 7.11 and Definition
5.5 is a virtual version of [12, Conjecture 2.4.(iii)], which compares Betti numbers
of Jacobian factors with superpolynomials at q = 1 (or t = 1).

Proposition 7.14. For unibranch C, the weight polynomial of Jac(C) is given by
the superpolynomial at a = 0, q = 1, with t replaced by q.

7.3. Orbital integrals. Let us finally comment on possible other applications of
our results, as the explicit computation of orbital integrals bears on many problems
in number theory and automorphic forms.

For example, in [65] Shin and Templier prove an equidistribution theorem for
”families” of automorphic L-functions (for any G). Their main result [65, Theorem
1.3.] rests on an explicit, residue-characteristic independent bound for the size of
orbital integrals derived by Kottwitz from the Shalika germ expansion. For G =
GLn, our methods should be applicable to give sharper bounds and as they remark,
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possible improvements on their analytic results. It would be interesting to see more
analytic applications of our results.

In his Beyond Endoscopy -proposal [43], Langlands computes global orbital in-
tegrals for GL(2) using ”elementary” methods. In the thesis of Espinosa Lara [45],
which builds on work of Altug [1], the corresponding local orbital integrals are
computed and compared via a product formula to Langlands’ results. In Altug’s
work analysis of orbital integrals is used to ”isolate” the contribution of the trivial
representation to a certain trace formula Langlands introduces.

A priori, as suspected by Arthur in [2], it should be possible to use an explicit
computation of the local orbital integrals (which is where our results come in)
to have similar results for GLn. It would be interesting to see how the possible
application to Beyond Endoscopy plays out.

8. Hilbert schemes of points

In this section, we give a conjectural geometric expression for the Shalika germs
of γ in terms of the Hilbert scheme of points on A2. Here we work over a field K,
which is algebraically closed of characteristic zero.

Let Hilbn(A2) be the Hilbert scheme of n points on A2, see e.g. [31]. There is a
natural action of G2

m on it given by scaling the coordinates on A2.

Proposition 8.1 ( [31]). The direct sum of the equivariant K-theory groups of
Hilbn(A2), n ≥ 0 is naturally isomorphic to F :

K(Hilb) ∶= (⊕
n≥0

KG2
m(Hilbn(A2)))⊗C[q±,t±] C(q, t) ≅ F ≅ Symq,t

The fixed point basis on the left corresponds to the basis ∣λ⟩ = H̃λ on the right.

Proposition 8.2. Under the isomorphism of Proposition 8.1, the action of E on
the Fock space F is realized on K(Hilb) by certain geometric correspondences.

Recall from [27] that to each (conjugacy class of) γ we may associate a quasi-
coherent sheaf

Fγ ∈ QCohGm(Hilb(T ∗Gm))
using a Z-algebra construction.

We now sketch an extension of this construction along the lines of [24] to give a
sheaf

Fγ ∈ QCohGm×Gm(Hilb(A2))
in which the other grading records the ”number of points” grading on the Hilbert
scheme of points of the spectral curve/a generalized affine Springer fiber associated
to the companion matrix of γ as in [24] (this is just the intersection of the positive
part of the affine Grassmannian with the affine Springer fiber for γ conjugated to
a specific form).

Namely, let γ be the companion matrix of a polynomial f ∈ K[x] and let χ(t) =
diag(tn−1, tn−2, . . . , t,1). Then we have

Lemma 8.3. For any k, the matrix

χ−ktkγχk

is the companion matrix of f(tkx).
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We denote by Ck the germ of the plane curve singularity

{char(tkχ−kγχk) = 0}

Now we will use the Z-algebra construction in [27, Section 5] when we take our
flavor symmetry to be constructed using this cocharacter of G. Namely, we let
ηk be the action on Ad(K) + V (K) sending γ ↦ tkχ−kγχk and v ↦ v, so that
(1,0, . . . ,0)t ↦ (1, . . . ,0)t. Since this is just a twisted form of the cocharacter
γ ↦ tkγ, the Z-algebra we get should be (but we have not checked carefully) the
Gordon-Stafford Z-algebra. Assuming this is the case, the construction of [27,
Section 7] yields a sheaf Fγ on Hilbn(A2) such that by the main theorem of [24] the
global sections of O(k) ⊗ Fγ are given by the Borel-Moore homologies of Hilbert
schemes of points on Ck:

H0(O(k)⊗Fγ) =H∗(Hilb●(Ck))

If all of the above works out, one hopes to compare the constructions of [62]
and [54] to our results as follows. Recall from above the convolution action of the
EHA on the K−theory K(Hilb) (see Proposition 8.2). Similar to the construction
of the full master symmetric function of Definition 5.3, one constructs a K-class
[Gγ] of a complex of coherent sheaves from the datum of γ, with

[Gγ] = f̂γ = ∑
λ⊢n

Γ̃λ(γ)H̃λ

Remark 8.4. Similarly, one may think of the passage from γ< to γ by addition of
the largest depth part as an ”action” by the EHA on the constructible side but we
have not made this precise.

Note that the sheaf Fγ is G2
m-equivariant, so we may write its class in localized

equivariant K-theory as the sum of fixed point classes. Recall from Proposition 8.1
that the fixed points are indexed by λ ⊢ n and correspond to H̃λ in the Fock space.
Now writing

[Fγ] = ∑
λ⊢n

Γ̂λ(γ)H̃λ

inside K(Hilb) gives us coefficients Γ̂λ(γ) ∈ Q(q, t).
We should emphasize that we do not know whether Γ̂λ = Γ̃λ. But according

to [27, Conjecture 1.9.], the sheaf Fγ or at least its K-theory class [Fγ] agrees
with the one constructed using shuffle algebra techniques, i.e. the one denoted [Gγ]
above. In other words, the K-class of [Fγ] is presumably the full master symmetric
function from Definition 5.3. This would also imply the following conjecture.

Conjecture 8.5. The coefficients Γ̂λ(γ) limit to the Shalika germs Γλ(γ) of γ as
t→ 1. In particular, they can be thought of as a natural t-deformation of the Shalika
germs of γ and

[Fγ]
t→1ÐÐ→ fp⃗,q⃗

Remark 8.6. When γ is homogeneous i.e. its characteristic polynomial is quasi-
homogeneous with the Puiseux pair (m,n) these coefficients appear, up to multi-
plication by a combinatorial factor, at the end of [58, Section 5] under the name
gm/n and some values for them are computed using explicit combinatorics of the
Hilbert schemes on the spectral curves. One can check that these coefficients limit
to the Shalika germs as t→ 1.
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Our conjecture applies to any compact regular semisimple element. For example,
when γ is the split unramified element from [25], one knows only the leading Shalika
germ is nonvanishing, see Proposition 2.42. However, the above suggests

[Fγ] = ∇pn1
whose expansion in the modified Macdonald polynomials is quite nontrivial (but
limits as t→ 1 to the Shalika expansion).

From the point of view of harmonic analysis, this t−deformation seems fasci-
nating. If one further had a version of the Shalika germ expansion enhanced with
this second variable, one could then try to mimic the strategy of Waldspurger’s
recursion to say that the symmetric function attached to the constructible side is
obtained from an action of the EHA. There is a combinatorial candidate already,
coming from the construction of the master symmetric function using Theorem 4.8.
We leave these explorations for future work.
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group.” Ann. Sci. Éc. Norm. Supér (2002): 391-422.
[19] Dunfield, Nathan M., Sergei Gukov, and Jacob Rasmussen. ”The superpolynomial for knot

homologies.” Experimental Mathematics 15.2 (2006): 129-159.

[20] Eisenbud, David, and Walter D. Neumann. Three-dimensional link theory and invariants of
plane curve singularities. No. 110. Princeton University Press, 1985.



52 OSCAR KIVINEN AND CHENG-CHIANG TSAI

[21] Elias, Ben, and Matthew Hogancamp. ”On the computation of torus link homology.” Com-

positio Mathematica 155.1 (2019): 164-205.

[22] Feigin, Boris, et al. ”Quantum toroidal gl1-algebra: Plane partitions.” Kyoto Journal of
Mathematics 52.3 (2012): 621-659.

[23] Feigin, B. L., and A. I. Tsymbaliuk. ”Equivariant K-theory of Hilbert schemes via shuffle

algebra. Kyoto J. Math. 51 (4), 831–854 (2011).” arXiv preprint arXiv:0904.1679: 21562261-
1424875.

[24] Garner, Niklas, and Oscar Kivinen. ”Generalized Affine Springer Theory and Hilbert Schemes

on Planar Curves.” International Mathematics Research Notices (2022).
[25] Goresky, Mark, Robert Kottwitz, and Robert Macpherson. ”Homology of affine Springer

fibers in the unramified case.” Duke Mathematical Journal 121.3 (2004): 509-561.

[26] Goresky, Mark, Robert Kottwitz, and Robert MacPherson. ”Codimensions of Root Valuation
Strata.” Pure and Applied Mathematics Quarterly 5.4 (2009): 1253-1310.

[27] Gorsky, Eugene, Oscar Kivinen, and Alexei Oblomkov. ”The affine Springer fiber-sheaf cor-
respondence.” arXiv preprint arXiv:2204.00303 (2022).
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Mathématiques de l’IHÉS 111.1 (2010): 1-169.
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[56] Neguţ, Andrei. ”Operators on symmetric polynomials.” arXiv preprint arXiv:1310.3515

(2013).
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