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Abstract. We show that Hilbert schemes of planar curve singularities and their
parabolic variants can be interpreted as certain generalized affine Springer fibers
for GLn, as defined by Goresky-Kottwitz-MacPherson. Using a generalization
of affine Springer theory for Braverman-Finkelberg-Nakajima’s Coulomb branch
algebras, we construct a rational Cherednik algebra action on the homology of
the Hilbert schemes, and compute it in examples. Along the way, we generalize to
the parahoric setting the recent construction of Hilburn-Kamnitzer-Weekes, which
may be of independent interest. In the spherical case, we make our computations
explicit through a new general localization formula for Coulomb branches. Via
results of Hogancamp-Mellit, we also show the rational Cherednik algebra acts on
the HOMFLY homologies of torus knots. This work was inspired in part by a
construction in three-dimensional N = 4 gauge theory.

1. Introduction

Let Ĉ = Spec C[[x,t]]
f be the germ of a complex plane curve singularity. In this

paper, we investigate a relationship between the Hilbert scheme of points on Ĉ (plus
its parabolic flag versions) and certain generalized affine Springer fibers in the sense
of [GKM06].

The Hilbert schemes of points on singular curves have been objects of intense study
due to their connections to a wide range of topics including knot theory [ORS18,
GORS14], representation theory [GORS14, Nak97, Kiv19, OY16, EGL15], and curve
counting [PT10, Pan]. Affine Springer fibers, and their various generalizations, have
also seen a wide range of study in combinatorics [Hik14], geometry [Ngô04, LS91],
number theory [Ngô04, Yun16], and representation theory [OY16, VV09].

1.1. Hilbert schemes and affine Springer fibers. We now describe our approach
in some detail. Using the classical interpretation of torsion-free modules of R :=
C[[x,t]]
f as lattices in the total ring of fractions Frac(R), one can identify classical

affine Springer fibers for GLn with compactified Picard schemes of singular locally
planar curves [LN08, MY14], which was a starting point for Ngô’s proof of the
fundamental lemma.
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When the polynomial f is irreducible, the classical affine Springer fibers for SLn
can further be related to compactified Jacobians of the singularity. The compacti-
fied Jacobians have been related to the representation theory of rational Cherednik
algebras by means of affine Springer theory and a perverse filtration [OY16] which,
thanks to results of Maulik-Yun and Migliorini-Shende [MY14, MS13], we know
comes from the Hilbert schemes of points via an Abel-Jacobi map.

We take the relation between affine Springer theory of GLn and Hilbert schemes

further by interpreting (flags of) ideals of R := C[[x,t]]
f as (flags of) lattices in Frac(R).

These moduli spaces of lattices also have a realization as generalized affine Springer
fibers in the sense of [GKM06].

Recall that the generalized affine Springer fibers of a reductive group are sub(ind-
)schemes of partial affine flag varieties, depending on a representation N ∈ Rep(G),
a parahoric subgroup P and a lattice NP ⊂ NK. More precisely, they are “fibers” of
the map

GK ×P NP → NK

and can be thought of as affine generalizations of Hessenberg varieties. In particular,
our first main result is the following. We only state it in the spherical case to keep
this introduction more readable.

Theorem 1.1 (Theorem 3.5). Let Ĉ := SpecR be a germ of a plane curve singularity

and write R = C[[x,t]]
f . If f has x-degree n then there is a generalized Ad⊕V -affine

Springer fiber Mv ⊂ GrGLn so that there is an isomorphism of (ind-)varieties

ϕ : Mv → Hilb•(Ĉ).

Similarly, the parabolic flag Hilbert schemes from e.g. [GSV20] and the incidence

varieties in [ORS18] defined in terms of flag Hilbert schemes of Ĉ have natural
interpretations as parahoric affine Springer fibers, as we explain in Theorem 3.5.

Remark 1.2. By the Weierstrass preparation theorem, there is no loss of generality
in assuming that f has finite degree in x.

Remark 1.3. While it would be tempting to interpret all generalized affine Springer
fibers of this form as variants of Hilbert schemes of points, a moment’s thought shows
that this is not possible.

1.2. Generalized affine Springer theory. The (co)homologies of the classical
affine Springer fibers have an action of the trigonometric double affine Hecke algebra,
at least in the “homogeneous cases” [OY16, VV09], similar to the classical Springer
action of the graded affine Hecke algebra on the (co)homologies of Springer fibers.
Therefore, it is natural to expect there to be a Springer-type action of some algebra
on the homologies of the generalized affine Springer fibers as well, for arbitrary (G,N)
(see [BFN16b, Remark 3.9.(4)]), and in particular in this case of Hilbert schemes of
points.
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This turns out to be the case, as recently explored by Hilburn-Kamnitzer-Weekes
[HKW20] in the spherical case. The algebras in question turn out to be the (“three-
dimensionalN = 4”) Coulomb branch algebras, as mathematically defined in [BFN16b]
by a convolution algebra construction modeled on the affine Grassmannian (and in
our case, other partial affine flag varieties). We generalize the results of [HKW20] to
their natural maximum, allowing in particular for generalized affine Springer fibers
in any partial affine flag variety. Presumably, combining our construction with the
results of [HKW20] will give us more insight to the nature of Springer representations
of various algebras arising as Coulomb branches.

It was shown by Kodera-Nakajima [KN18] that the Coulomb branch algebra, for
the datum G = GLn and N = Ad⊕V , where Ad is the adjoint representation and
V is the vector representation, is isomorphic to the spherical rational Cherednik
algebra of gln. In addition, [Web19, BEF16] prove that the Iwahori version of the
Coulomb branch in question is naturally isomorphic to the full rational Cherednik
algebra. See Theorem 4.12 and subsequent discussion for the precise statements.

Combining the above ingredients, we find an action of the spherical rational

Cherednik algebra of gln on the equivariant Borel-Moore homology of Hilb•(Ĉ) as a
type of “generalized affine Springer theory” similar to the orbital variety version in
[CG09, Section 6.5.]. The Iwahori generalization of this yields an action of the full ra-

tional Cherednik algebra on the parabolic flag Hilbert schemes PHilb[•,•+(1,...,1)](Ĉ).
More precisely, we have

Proposition 1.4 (Theorem 4.9). The rational Cherednik algebra Hn of gln acts on⊕
m≥0

HLv
∗ (PHilb[m,m+(1,...,1)](Ĉ))

and the spherical rational Cherednik algebra eHne acts on⊕
m≥0

HLv
∗ (Hilbm(Ĉ))

via a natural convolution product.

This fits well with the results of [GORS14, ORS18, EGL15, OY16, GSV20], see
e.g. Section 4.3.2, where we compare our calculations with the recent results of
Gorsky-Simental-Vazirani.

For the case where the plane curve singularity Ĉ = Ĉn,k is quasi-homogeneous

and given by f = xn − tk, we find the above actions with parameter m = − k
n~

(to match with most conventions, we must specialize ~ → −1) on the equivariant
Borel-Moore homology with respect to the stabilizer C× ⊂ C×rot × C×dil of a specific
element v ∈ NO, realizing an expectation of [ORS18]. When gcd(n, k) = 1, the

Hilbert scheme of points Hilb•(Ĉn,k) has isolated C×-fixed points and we can take
the analysis quite far. We compute the action in the basis of fixed points by means of
an “abelianization procedure” akin to [BDGH16, BFN16a, DGGH19] in some cases.
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Remark 1.5. This abelianization rests on the rather general localization formula
in Proposition 4.21. According to the introduction of [HKW20], this might be of
independent interest in showing the coincidence of the “BFN Springer action” on
homologies of quasimaps’ spaces and the U~gln-action of Feigin-Finkelberg-Frenkel-
Rybnikov on Laumon spaces [FFFR11].

As a concrete application of the previous Proposition, we prove the following
Theorem (which is natural to expect to hold true, and was anticipated already in
[GORS14]).

Theorem 1.6 (Theorem 5.4). When gcd (n, k) = 1, we have

HC×
∗ (Hilb•(Ĉn,k)) ' eLk/n(triv)

as modules for the spherical rational Cherednik algebra of gln.

Remark 1.7. For the case of (2, 2`+ 1) torus knots we show that this directly, see
Appendix B. For the remaining cases the direct analysis becomes cumbersome, so
we combine earlier work of [Kiv19, VR18, OY16] to conclude the result. It is however
remarkable that our approach is, in principle, amenable to completely explicit com-
putation, when compared with e.g. [OY16]. We also note that Theorem 1.6 is com-
patible with the earlier results and conjectures of [VV09, OY16, ORS18, GORS14]

relating modules for the spherical rational Cherednik algebra and Hilb•(Ĉn,k).

1.3. HOMFLY homology of torus knots. The links of the quasi-homogeneous

(Ĉn,k = {xn = tk}) singularities correspond to (positive) (n, k)-torus links, and it
has been known for a while that the representations constructed above are closely
connected with corresponding “lowest a-degree parts” of the HOMFLY-PT homolo-
gies of these links. In particular, our approach combined with recent results of
Hogancamp-Mellit [HM19] (and the older philosophies of Gorsky-Oblomkov-Rasmussen-
Shende [GORS14, ORS18]) quite directly shows the fact that the rational Cherednik
algebra of gln acts on these link homologies, par transport de structure. This is the
subject of Section 5.

Remark 1.8. The higher a-degrees also have natural interpretations from the para-
horic viewpoint, and the full Iwahori invariant is likely related to the annular in-
variant introduced in Trinh’s thesis [Tri20]. Conditionally on the ORS conjecture
[ORS18], our results also imply the rational Cherednik algebra acts on the HOMFLY
homology of any algebraic link. We do not pursue these directions further.

Remark 1.9 (For the physically minded reader). As is clear from the introduction,
we were inspired in part by the physics of three-dimensional N = 4 gauge theory
[DGH+] and its relationship to a recent construction of the triply graded HOMFLY-
PT homology [OR18], whereby the various a-degrees are realized within a certain
category of matrix factorizations.

In the upcoming (companion) work [DGH+], the construction of [OR18] is inter-
preted as a computation in the B-twist of U(n) gauge theory with hypermultiplets
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transforming in the representation T ∗R for R = Ad⊕V . For the `-th possible a-
degree, one computes the supersymmetric Hilbert space of the theory in the presence

of a Wilson line in the representation
∧` V subject to a certain boundary condition

whose parameters specify the knot in question.
The three-dimensional mirror of this construction is a computation in the A-twist

of the same theory. Again, one computes the supersymmetric Hilbert space of the
theory but now in the presence of a vortex line and subject to a different boundary
condition. The parameters of this boundary condition translate to the eigenvalues
of one of the adjoint fields, which braid around one another along the boundary. For
algebraic links, this computation can be reformulated algebraically and one finds
that the supersymmetric Hilbert space associated to the lowest a-degree component
of HOMFLY-PT homology can be computed as the homology of the generalized
affine Springer fibers we discuss below.

In the general context of three-dimensional N = 4 theories, the supersymmetric
Hilbert spaces associated to boundary conditions and the action of the quantized
Coulomb branch on them appeared previously in [BDGH16] and [BDG+16], and
we make their geometric action rigorous via the BFN presentation in Section 4. In
many cases of interest, we can realize the action of the Coulomb branch using an
“abelianization procedure,” c.f. [BFN16a, BDG17, Web16].

A generalization of these Hilbert spaces, and the local operators that act upon
them, that includes (1

2 -BPS) vortex line operators appeared briefly in [BDGH16] and
was the central aim of [DGGH19]. The results of the current paper have a straight-
forward generalization to higher a-degrees; namely, there is a generalization of the
construction in Section 3 to the incidence varieties of [ORS18]. The homologies of
these incidence varieties (supersymmetric Hilbert spaces in the presence of the above
boundary conditions and vortex lines) are naturally endowed with actions of convo-
lution algebras (the algebra of local operators bound to the vortex line) generalizing
the Coulomb branch construction of BFN. Some features of this generalization will
be discussed in [DGH+]. Understanding the module structure of these homologies is
a direction for future work.

Remark 1.10. Most of our results, including the computations with fixed-point
localization, make sense over other algebraically closed fields, in particular Fq with

Q`-coefficients in cohomology. But since it makes life easier, and the results of
[BFN16b] are also written in the language of algebraic geometry over C, we have
decided to work over C throughout. This also makes the comparison to link homology
more transparent.

The paper is organized as follows. In Section 2 we recall the necessary definitions
of generalized affine Springer fibers Mv. In Section 3 we identify the generalized

affine Springer fiber (for the datum (GLn,Ad⊕V )) isomorphic to Hilb•(Ĉ), and

generalizations thereof, for Ĉ the germ of a plane curve singularity. In Section 4
we define a convolution action of the quantized Coulomb branches of [BFN16b] on
the equivariant (Borel-Moore) homology of the generalized affine Springer fibers Mv,
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specializing in particular to the action of the spherical rational Cherednik algebra
on the equivariant homology of the Hilbert schemes. The proof that the convolution
really defines an action is relegated to Appendix A. In Section 5 we discuss the quasi-

homogeneous singularities Ĉn,k related to (n, k) torus links and show how they relate
to rational Cherednik algebra representations. In Appendix B we discuss (2, 2`+ 1)
torus knots in detail.

Acknowledgments. The authors thank Tudor Dimofte and Eugene Gorsky for
discussions that initiated this project as well as for comments and for urging us to
publish our results. We also thank Justin Hilburn, Joel Kamnitzer, and Alex Weekes
for sharing their preliminary results in [HKW20], and José Simental Rodriguez for
comments on a draft of this paper. N.G. would like to thank Ingmar Saberi and José
Simental Rodriguez for useful conversations.

Part of this work was carried out during the KITP program Quantum Knot In-
variants and Supersymmetric Gauge Theories (fall 2018), supported by NSF Grant
PHY-1748958.

2. Generalized affine Springer theory

This section is written in more generality than is needed for most of our main
results. Let G/C be reductive, g = Lie(G), and N be an algebraic representation
of G. Let K = C((t)) and O = C[[t]]. Let P be a parahoric subgroup of G(K)
and NP ⊂ N(K) a lattice stable under P. In later sections, we only use standard
parahorics P ⊂ G(O) coming as preimages of parabolic subgroups in G(C) via the
“evaluation at zero” map, but it should be clear where this assumption can be
dropped. Let GrG be the affine Grassmannian of G, FlG the affine flag variety of G
and, more generally, FlP the partial affine flag variety associated to P. On the level
of C-points, FlP(C) = G(K)/P.

Definition 2.1. Let v ∈ N(K). Define the generalized affine Springer fiber (GASF)
associated to the datum (v,P, NP) as the reduced ind-scheme whose closed points
are

MP,NP
v (C) := {g ∈ G(K)|g−1.v ∈ NP}/P.

Remark 2.2. Note that the definition of MP,NP
v also depends on G. Since we will

only be working with G = GLn, we mostly omit these from the notation. When

P = G(O), NP = Ad(O) ⊕ On, we simply denote M
(P,NP)
v by Mv. Similarly, when

P = I, NP = Lie(I)⊕On for I an Iwahori subgroup we use M̃v and, more generally,
when NP = Lie(P)⊕On we use MP

v .

Remark 2.3. The “classical” affine Springer fibers are the case when N = Ad and
NP is the Lie algebra of P. As explained in [GKM06], the GASF can be thought
of as an affine analog of Hessenberg varieties. Note that both our GASF and those
of [GKM06] are different from the Kottwitz-Viehmann varieties, which are group
versions of affine Springer fibers.
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In [Vas05, VV09, OY16], an action of the (degenerate) double affine Hecke algebra
of sln was constructed on the equivariant (K-)homology of certain (usual) affine
Springer fibers using the convolution algebra technique (see e.g. [CG09]).

Just as affine Springer fibers are a source of affine Springer representations of
affine Weyl groups and Cherednik algebras, generalized affine Springer fibers can be
used to construct representations of certain convolution algebras associated to the
datum (G,N) as defined in [BFN16b]. These are the “quantized Coulomb branches”
of three-dimensional N = 4 field theories, or “BFN algebras.” In the classical case
N = Ad, the K-theoretic analog of the Coulomb branch algebra is the DAHA, as
explained e.g. in [FT19].

In particular, in [HKW20], the convolution algebra technique from above was
extended to any Coulomb branch algebra. The authors of loc. cit. were kind enough
to share their preliminary results on the topic with us, and we expand upon these
results in Section 4 (which focuses on the N = Ad⊕V case) and in Appendix A. We
also define the maximal parahoric generalization of the generalized affine Springer
theory, using natural variations of the techniques in [BFN16b, HKW20].

Remark 2.4. In analogy with [Yun11], we expect there to be a “global” Springer
theory defined on certain generalized Hitchin spaces (quasimaps’ spaces) at least for
N with good invariant-theoretic properties. This direction will be pursued in future
work.

3. Hilbert schemes of points on curve singularities

Let Ĉ := SpecR be the germ of a plane curve singularity and write R = C[[x,t]]
f .

Definition 3.1. The Hilbert scheme of m points on Ĉ is defined as the reduced
scheme

Ĉ [m] := Hilbm(Ĉ) := {colength m ideals in R}.
Similarly, given a partition ~p = (p1, ..., pd) of n, the ~p-flag Hilbert scheme of m + n

points on Ĉ is defined as the reduced scheme

Ĉ [m,m+~p] := Hilb[m,m+~p](Ĉ) := {Id ⊂ ... ⊂ I0 ⊂ R|Ii is a colength m+
i∑

j=1

pj ideal in R}.

Remark 3.2. In particular, the reduced scheme

Hilb•(Ĉ) :=
⊔
m≥0

Hilbm(Ĉ)

is naturally the moduli space of finite length subschemes on Ĉ, whereas

Hilb[•,•+~p](Ĉ) :=
⊔
m≥0

Hilb[m,m+~p](Ĉ)

is naturally the moduli space of flags of such subschemes.
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Remark 3.3. Requiring flags of ideals such that Id = tI0 puts a natural constraint
on the allowed partitions p; if f is a polynomial in x of degree n then p must be a
partition of n. When ~p = (1, . . . , 1) is the one-column partition of n, the relevant

Hilbert scheme is the parabolic flag Hilbert scheme PHilb•(Ĉ) (see e.g. [GSV20]),
consisting of full flags of ideals of length n, with the condition that In = tI0. More
generally, if ~p = (p1, ..., pd) is any partition of n we can define the ~p-parabolic flag

Hilbert scheme PHilb[•,•+~p](Ĉ).

Definition 3.4. The ~p-parabolic flag Hilbert scheme PHilb[m,m+~p](Ĉ) is defined as
the reduced scheme

PHilb[m,m+~p](Ĉ) := {I• ∈ Hilb[m,m+~p](Ĉ)|Id = tI0)}.

We now state and prove our first main theorem.

Theorem 3.5. For any Ĉ, there is a generalized Ad⊕V -affine Springer fiber Mv ⊂
GrG so that there is an isomorphism of schemes

ϕ : Mv → Hilb•(Ĉ).

More generally, there is a generalized Ad⊕V -affine Springer fiber

MP
v ⊂ FlP

so that there is an isomorphism of schemes

ϕP : MP
v → PHilb[•,•+~p](Ĉ).

Proof. Note that we can interpret Ĉ and Ĉ [m] as follows. By Weierstrass preparation,
we can assume f(x, t) is a degree n polynomial in x. Then we may write as C[[t]] = O-
modules that

(3.1)
C[[x, t]]

f
= 〈1, x, . . . , xn−1〉O,

where 〈S〉O denotes the free O-module generated by a set S.
Taking the total ring of fractions of R, we see that as C((t)) = K-vector spaces

Frac(R) ∼= (Kn)∗ (K-linear dual of Kn) as follows. If f is square-free so that Ĉ is

reduced, Frac(R) ∼=
∏d
i=1 Fi where d is the number of irreducible factors over K of

f and Fi are finite extensions of K so that
∑

i[Fi : K] = n.

If f has a repeated factor, we take R ∼=
∏d
i=1Oi where each Oi is some finite ring

extension ofO which is torsion-free overO. SinceO is a domain, Frac(Oi) ∼= Oi⊗OK.
In particular, Frac(R) ∼= (Kn)∗.

There is a natural injection R ↪→ Frac(R), and we choose an isomorphism φ∗ :
Frac(R) ∼= (Kn)∗ identifyingR with (On)∗ and 1 ∈ R with the vector e∗1 = (1, 0, . . . , 0)
in (Kn)∗. We may moreover choose φ∗ so that in the costandard basis of (Kn)∗, x
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has the form

γ =


0 1 · · · 0 0
...

...
. . .

. . .
...

0 0
. . . 1 0

0 0 · · · 0 1
a0 a1 · · · an−2 an−1


so that {e∗k = e∗1γ

k−1}nk=1 is a O-basis of (On)∗. Recall that a matrix of the above
form is called the companion matrix of the polynomial xn−an−1x

n−1−· · ·−a1x−a0.
Also, it is worth noting that γek+1 = ek + aken for k = 1, ..., n− 1.

By definition, O-lattices in (Kn)∗ stable under γ are identified with (nonzero)
fractional R-ideals. The variety of nonzero ideals of finite codimension in R is then
identified with fractional ideals in Frac(R) contained in R. Indeed, note that the
condition of being a lattice implies that tensoring Λ with K and projecting to each
factor of K is a surjective map, hence the corresponding ideal is of finite codimension.
Under φ, we get

Hilb•(Ĉ) ∼= X := {Λ ⊂ (On)∗|Λγ ⊂ Λ}.
Now for any Λ, there is an element g ∈ G(K) so that Λ = (On)∗g−1. It is well

defined up to the stabilizer of (On)∗, which is G(O). If Λ ⊂ (On)∗ and Λγ ⊂ Λ, we
have

(1) g−1 ∈ G(K) ∩ gln(O), because (On)∗g−1 = Λ ⊂ (On)∗, and
(2) g−1γg ∈ Ad(O), because (On)∗g−1γg = Λγg ⊂ Λg = (On)∗ and the stabi-

lizer of (On)∗ is gln(O) = Ad(O).

If ei denotes the standard basis in Kn, the first point implies that g−1en belongs to
On.

Let v := (γ, en) and consider the map

Λ 7→ [g]

from X to the scheme

Mv = {[g] ∈ GrG |g−1γg ∈ Ad(O), g−1en ∈ On}.
We will construct an inverse to this map. Given any [g] ∈Mv, we have

(1) g−1 ∈ G(K) ∩ gln(O), because g−1en ∈ On, g−1γg ∈ Ad(O) and

g−1ek = (g−1γg)g−1ek+1 − akg−1en ∈ On

for k = 1, ..., n− 1, and
(2) (On)∗g−1γ ⊂ (On)∗g−1, because g−1γg ∈ Ad(O).

The first point implies that Λ = (On)∗g−1 ⊂ (On)∗ and the second implies Λ is
closed under the action of γ, i.e. Λ ∈ X. As these constructions are inverse to each
other, we have X ∼= Mv.

Finally, composing with the isomorphism to Hilb•(Ĉ) we get that

Hilb•(Ĉ) ∼= Mv.
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By Definition 2.1 the space Mv is the generalized Ad⊕V -affine Springer fiber for
v = (γ, en).

Now choose a partition ~p = (p1, ..., pd) of n and let P be the corresponding para-
horic subgroup. From the above we know that a flag of ideals tI0 = Id ⊂ ... ⊂ I0 ⊂ R
can be identified with a flag of lattices tΛ0 = Λd ⊂ ... ⊂ Λ0 ⊂ (Kn)∗, such that
each lattice is closed under the action of γ. Identifying such a flag with an ele-
ment [g] ∈ FlP implies that g−1.v ∈ Lie(P) ⊕ On. Just as above, the identification
tI0 ⊂ ... ⊂ I0 ⊂ R↔ [g] yields the desired isomorphism with MP

v . �

Remark 3.6. It is interesting to consider the generalized affine Springer fiber over
the same v as above but with NP 6= Lie(P)⊕On. One such variant yields the inci-

dental varieties “C [m≤m+l]” (note the notational difference to this paper) of [ORS18],
where we choose the partition (l, n− l) and require the Ad(O) element to be propor-
tional to t in the first l columns. This choice of NP ensures that the flag of lattices
tΛ0 ⊂ Λ1 ⊂ Λ0 satisfies Λ0γ ⊂ Λ1. In terms of ideals, this latter point implies that
MI0 ⊂ I1 ⊂ I0, where M = 〈x, t〉 is the maximal ideal of R. See [DGH+] for more
details. Note that in the G = SLn, N = Ad-case similar incidental varieties appear
in the work of Cherednik and Philipp [CP18] under the name of flagged Jacobian
factors.

Remark 3.7. An equivalent, perhaps preferred, description of Hilb•(Ĉ) is as lat-
tices Λ ⊂ On. If we identify 1 ↔ e1, then following the above proof one finds
an isomorphism to the generalized Ad⊕V ∗-affine Springer fiber M ′w for the vector
w = (γT , e∗n) ∈ Ad(O)⊕ (On)∗, c.f. [Yun16].

Remark 3.8. Note that the proof doesn’t assume Ĉ to be reduced. In particu-

lar, this suggests us to define the “compactified Picard variety” Pic(Ĉ) for these
non-reduced curves as the classical GLn-affine Springer fiber, although it is usually
not considered in the literature. For example, when γ is the regular nilpotent ma-
trix, the ASF in question gives an infinite-dimensional affine Springer fiber whose
homology coincides with that of the affine Grassmannian. Similarly, the GASF in
question yields the Hilbert schemes of points on the non-reduced curve {xn = 0},
which are now finite-dimensional projective subvarieties of the “negative part” of
the affine Grassmannian (as opposed to the positive part, i.e. the lattices containing
On, although somewhat misleadingly these contain exactly torus-fixed lattices with
negative exponents in their defining cocharacters).

Remark 3.9. More generally, note that by

Hilb•(Ĉ) ∼= {Λ ⊂ (On)∗|Λγ ⊂ Λ}

we may identify Hilb•(Ĉ) as the intersection

Spγ ∩Gr−GLn
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where Spγ is the “usual” (N = Ad) affine Springer fiber of γ and Gr−GLn is the
negative part of the affine Grassmannian

Gr−GLn := {(On)∗ ⊂ Λ ⊂ (Kn)∗}

not to be confused with the “negative Grassmannian” which is a distantly related
object of intense research. See also [Kiv18, Remark 4.24].

Remark 3.10. Using the decomposition of GrG by π1(G) = Z we find that Mv can
be expressed as

Mv =
⊔
m≤0

Mm
v ,

where Mm
v is the component of Mv inside the degree m part of GrG. Indeed, we

have Mm
v = Hilb|m|(Ĉ). Thus Mv is a (infinite) disjoint union of projective varieties,

because the Hilbert schemes are projective [Gro]. There is a similar decomposition

of MP,NP
v obtained from the decomposition of FlP by π1(G), coming via pullback

by the projection FlP → GrG.

3.1. Links and torus actions. If f(x, t) is a polynomial, we may interpret Ĉ as
the germ of the curve C = {f = 0} ⊂ C2. In this case, the intersection of C with a
small three-sphere centered at the origin yields a compact one-manifold

L := Link0(C) ↪→ S3.

By work of Oblomkov-Rasmussen-Shende and others (see [Mig19] and references

therein) it is conjectured that, topologically, the Hilbert schemes of Ĉ are controlled
by the HOMFLY-PT homology of the corresponding link L.

Consider f of the form f = xn − tk for n, k ≥ 0. The special form of f in this
case means that the singularity is quasi-homogeneous, so there is a straightforward
C× action on M(n,k) := Mv coming from scaling x and t. As has been noted by
various authors, we thus get an extra torus action on the Hilbert schemes. This is
more nontrivial on the generalized affine Springer fiber side.

Namely, let 1 → G → G̃ → GF → 1 be an extension of algebraic groups over C
and let G̃OK be the preimage in G̃K of GF,O. With our definition of Mv, we always

have an action of the stabilizer of v in G̃OK o C×rot on Mv (see the next section).

Let G = GLn, GF = C×dil, G̃ = GLn × C×dil, where C×dil acts by dilating the Ad-part
in Ad⊕V . This action is considered in [OY16] in the case of usual affine Springer
fibers, where C×rot,C

×
dil are denoted Grot

m ,Gdil
m . For v = (γ, en) corresponding to

f = xn − tk as in Theorem 3.5, the stabilizer is given as follows. It is worth noting
that we use different conventions from the usual (physical) conventions used for C×rot
in some of the literature [BDG17, BDGH16, BDG+16, BFN16b] . In particular, we
do not include the overall scaling of N by weight 1

2 in addition to scaling t. These
conventions are those used by Webster, see e.g. [Web16].
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Lemma 3.11. We have

Lv := Stab
G̃OKoC×rot

(v) ∼= C×.

Proof. Consider acting with (g, µ, λ) ∈ G̃OK oC×rot on v = (γ, en) for v corresponding

to f = xn − tk. Here µ denotes the flavor part of g̃ = (g, µ) ∈ G̃OK . Preserving the
determinant of γ imposes the equation

µnλk = 1.

Preserving en then says that the last column of g is en, thus the last column of g−1 is
also en. From this, we find that the last column of gγg−1 is the penultimate column
of gµ, so we need this column of g to be µ−1en−1 for g to preserve the last column
of gγg−1. This process continues column-by-column so we must have

g = diag(µ1−n, . . . , µ−1, 1).

In particular, the stabilizer is the image of the cocharacter C× → G̃OK o C×rot given
by

ν 7→ (diag(ν(n−1)k, . . . , νk, 1), ν−k, νn).

�

Remark 3.12. In general, for inhomogeneous γ, it’s always the case that the stabi-
lizer is trivial by a similar argument. On the other hand, the same proof shows that
γ for the curve {xn = 0} has stabilizer (C×)2 given by (diag(µ1−n, . . . , µ−1, 1), µ, λ).

Remark 3.13. Since Spγ has a T × C×rot-action in the non-coprime/multiple com-

ponent case and Gr−GLn is a stable subset for this action, we also get a large torus

action on Hilb•(Ĉ). This has not been considered in the literature and seems harder
to describe from the point of view of the Hilbert scheme.

Proposition 3.14. In the case gcd(n, k) = 1, the action of Lv on Mv has isolated
fixed points labeled by cocharacters A of the maximal torus T ⊂ GLn such that

(3.2) 〈A,ωn〉 ≥ 0 〈A,αi〉 ≥ 0
n−1∑
i=1

〈A,αi〉 ≤ k,

where ωn is the n-th fundamental weight of GLn, αi are the simple roots of GLn and
〈, 〉 is the pairing of cocharacters and weights.

Remark 3.15. If we write A = (A1, ..., An) the above constraint corresponds to

0 ≤ An ≤ An−1 ≤ . . . ≤ A1 ≤ An + k

This fixed point corresponds to the ideal generated by (tA1 , tA2x, ..., tAn−1xn−2, tAnxn−1).
In this language, the constraint on A is to ensure that this is indeed an ideal. Namely,
the set generated by these over O is closed under multiplication by x.
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Proof. The action of ν ∈ Lv on [g] ∈Mv is simply [νg], where the product of L and

G(K) are viewed within G̃(K) oC×. In particular, we have

ν.[g(t)] = [ν((n−1)k,...,k,0)g(νnt)]

where ν(m1,...,mn) := diag(νm1 , ..., νmn). Define the “orbital variety” (see the next
section for motivation)

V̂v := GK.v ∩NO.
A point g(t) ∈ V̂v will not be invariant under L but will require a compensating
G(O) transformation.

We now describe Mv
∼= V̂v/G(O). By the Iwasawa decomposition of G(K), we

can choose to represent elements of GrG by a lower-triangular matrix in G(K) of the
form h = t−A + q, where q is strictly lower triangular. Moreover, we can always use
G(O) to make the (non-zero) qij Laurent polynomials and with no terms of degree
larger than −Ai − 1, c.f. [LS91]. We interpret A as a cocharacter of T ⊂ GLn.

Under the action of ν, the diagonal entries of h transform as t−Ai 7→ ν(n−i)k−nAit−Ai

whereas uij(t) 7→ ν(n−i)kuij(ν
nt). We can always return the diagonal entries to t−Ai

by means of a diagonalG(O) transformation, sending ν(n−i)kuij(ν
nt) 7→ νk(j−i)+nAjuij(ν

nt).
Since the non-zero entries of u are (Laurent) polynomial and have degree at most
−Ai − 1 in row i, it follows that there is no lower-triangular matrix that can send
this back to h. For example, when j = i− 1 we must solve the equation

νnAi−1−kqii−1(νnt) + t−Aipi(t) = qii−1(t)

for pi(t) ∈ O. This requires tAi(qii−1(t)− νnAi−1−kqii−1(νnt)) to belong to O, hence

qii−1(t)− νnAi−1−kqii−1(νnt) = 0

since qii−1 has no terms of degree more than −Ai − 1. Finally, since k is coprime to
n we conclude that qii−1(t) = 0. With qii−1 = 0, it is straightforward to inductively
show that q = 0.

For tA.v to belong to V̂v, for v corresponding to the (n, k) torus knot, requires

〈A,ωn〉 ≥ 0 〈A,αi〉 ≥ 0
n−1∑
i=1

〈A,αi〉 ≤ k.

�

Remark 3.16. When n and k are not coprime it is possible to have

qii−1(t)− νnAi−1−kqii−1(νnt) = 0

for qii−1(t) nonzero. In these circumstances there are still fixed points but they need
not be isolated. See also Remark 3.13.

Remark 3.17. The above proof works, up to Weyl group elements, for the Iwahori

case of Lv acting on M̃v. In particular, when gcd (n, k) = 1 there are isolated fixed
points which can be represented by matrices h = t−Aσ−1 for cocharacters A of the
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maximal torus of T ⊂ GLn and Weyl group elements σ ∈ Sn. For h−1.v = σtA.v to
belong to Lie(I)⊕On, the non-negative integers (A1, ..., An) must have forced jumps.
In particular, if i ∈ {1, 2, ..., n− 1} we have

Ai ≥

{
Ai+1 + 1 σ(i+ 1) < σ(i)

Ai+1 σ(i+ 1) > σ(i)

and for i = n we have

An + k ≥

{
A1 + 1 σ(1) < σ(n)

A1 σ(1) > σ(n)

In comparison to the discussion in [GSV20], the class |A, σ〉 of this fixed point cor-
responds to their “renormalized” vector ṽσ(A).

Proposition 3.18. In the case gcd(n, k) = 1, the action of Lv on M̃v has isolated
fixed points labeled by cocharacters A of the maximal torus T ⊂ GLn and σ ∈ Sn

such that

(3.3) 〈A,ωn〉 ≥ 0 〈A,αi〉 ≥ τ(i)

n−1∑
i=1

〈A,αi〉 ≤ k − τ(n).

where τ(i) = 1 if σ(i+1) < σ(i) and τ(i) = 0 if σ(i+1) > σ(i), with σ(n+1) := σ(1).

4. Action of the rational Cherednik algebra

In this section, we construct an action of the rational Cherednik algebras on

equivariant BM homologies of Hilbert schemes of Ĉ and some of its variants.
We first recall the construction of the BFN algebras in general. This is a minor

parahoric variant of the construction in [BFN16b]. Suppose 1→ G→ G̃→ GF → 1

is an extension of algebraic groups and let G̃OK be the preimage in G̃K of GF,O. Let

ev0 : G̃O → G̃ be the homomorphism sending t 7→ 0, and P̃ := ev−1
0 (GF ev0(P)).

Note that

FlP ∼= G̃OK/P̃
∼= (G̃OK oC×rot)/(P̃ oC×rot)

and in particular

GrG ∼= G̃OK/G̃O
∼= (G̃OK oC×rot)/(G̃O oC×rot).

Let N be an algebraic representation of G̃.

Definition 4.1. Define the BFN space of (G,N,P, NP) as

RG,N,P,NP
= {([g], s) ∈ FlP×NP|g−1.s ∈ NP}.

Remark 4.2. If P = GO, NP = NO we omit the subscripts P, NP. We naturally
have

RG,N,P,NP
⊂ TG,N,P,NP

:= GK ×P NP
∼= {([g], s) ∈ FlP×NK|g−1.s ∈ NP}
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The last isomorphism is given by the embedding [g, s′] 7→ ([g], g.s′), see [BFN16b,
discussion on p.6]. We use these descriptions interchangeably. When P = GO, NP =
NO, TG,N has the modular interpretation

TG,N ∼= {(P, σ, s)|P is a G−torsor on the formal disk D,σ : P |D×
∼=−→ G|D× , s ∈ Γ(D,P×GN)}.

The locally closed sub-ind-scheme RG,N consists of those triples where σ(s) extends
to a section over D. The versions with P incorporate appropriate parabolic structure;
i.e. we impose that P have a P-reduction and require s to be compatible with this
reduction.

Theorem 4.3 (Braverman-Finkelberg-Nakajima). There is a natural convolution

product on AG,N := HGO
∗ (RG,N ) and A~

G,N := H
GOoC×rot
∗ (RG,N ), making them asso-

ciative algebras with unit. Moreover, A~
G,N is a filtered quantization of AG,N , which

is commutative.

Definition 4.4. We will call either of these algebras the BFN algebra or the (quan-
tized) Coulomb branch.

Remark 4.5. The BFN algebra AG,N and its quantization have natural deforma-

tions given an extension as above. Namely, the homologies ÃG,N := HG̃O
∗ (RG,N )

and Ã~
G,N := H

G̃OoC×rot
∗ (RG,N ) have the structures of algebras that deform AG,N and

A~
G,N , respectively, with Ã~

G,N a filtered quantization of the commutative ÃG,N . See

[BFN16b, Section 3(viii)] for more details. This physically corresponds to turning
on complex mass parameters for the flavor group GF . In that context, one assumes
that GF is a torus.

4.0.1. Parahoric versions. A slight modification of the construction in [BFN16b]
gives

Theorem 4.6. There is a natural convolution product on AG,N,P,NP
:= HP

∗ (RG,N,P,NP
)

and A~
G,N,P,NP

:= H
PoC×rot
∗ (RG,N,P,NP

), making them associative algebras with unit.

Moreover, A~
G,N,P,NP

is a filtered quantization of AG,N,P,NP
.

Remark 4.7. Similarly, one defines the flavor-deformed versions ÃG,N,P,NP
and so

on. Note that unless P = GO, the algebra AG,N,P,NP
is in general not commutative.

For example, ÃG,N,P,NO is a matrix algebra (of size dimCGO/P×dimCGO/P) over

ÃG,N .

Remark 4.8 (For the physically minded reader). The algebra AG,N,P,NP
encapsu-

lates the algebra of local operators bound to a (1
2 -BPS) vortex line operator labeled

by the algebraic data P, NP. As described in [DGGH19], the choice of P is a break-
ing of the gauge group in the vicinity of the line operator. The choice NP is related
to a choice of superpotential (compatible with the choice of symmetry breaking)
coupling the bulk degrees of freedom to the degrees of freedom on the line operator.
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Examples of such line operators have been used to obtain non-commutative resolu-
tions of Coulomb branches [BFN16a] and played a central role in understanding of
symplectic duality between Higgs and Coulomb branches [Web16].

4.1. Convolution action of Coulomb branches on GASF. Recall that we have
defined the BFN space RP,NP

:= RG,N,P,NP
of a representation N . We will also

consider the infinite-rank vector bundle

TP,NP
:= TG,N,P,NP

:= GK ×P NP → FlP .

Define
VvNP

:= (G̃OK oC×rot).v ∩NP.

This is analogous to the orbital varieties in [CG09], and is also called such by
[HKW20] in the case P = GO. Note that on the level of closed points (which is
what we are concerned with, since we only work with the reduced structure), it is

clear that VvNP
/(P̃ oC×rot) = MP,NP

v .

We now define the convolution action of Ã~
P,NP

:= Ã~
G,N,P,NP

, following [BFN16b]

and [HKW20] (which consider the case P = GO, NP = NO).

Theorem 4.9. Suppose the stabilizer Lv of v is contained in P̃ o C×rot. Then there

is an action of Ã~
P,NP

on HLv
∗ (MP,NP

v ).

Proof. Note that there is a natural map

(4.1) p : G̃OK oC×rot ×NP → TP,NP
×NP

given by
(g, s) 7→ ([g, s], s).

Let Lv be the stabilizer of v in G̃OK o C×rot. If XP,NP
v := {g ∈ G̃OK o C×rot|g−1.v ∈

NP}, there are two natural projections to MP,NP
v and VvP,NP

, which are P̃ o C×rot
and Lv-torsors, respectively. Taking the equivariant cohomology of the dualizing
sheaves, we get

HLv
∗ (MP,NP

v ) ' HP̃oC×rot
∗ (VvP,NP

),

where the left-hand side makes sense because Lv is compact.
Consider the groupoid

PP,NP
:= {(g, v) ∈ G̃OK oC×rot ×NP|g−1.v ∈ NP}

π1:(g,v)7→v−−−−−−−→ NP.

Note that there is another projection map π2 to NP given by (g, v) 7→ g−1.v. Then for

FvP,NP
:= ωVvP,NP

[−2 dim P̃] (which is an object in the P̃ o C×rot-equivariant derived

category of NP) we have a natural isomorphism

π∗1FvP,NP
∼= π∗2FvP,NP

.

By definition we have p−1(RP,NP
×NP) = PP,NP

, and that m◦q = π2, π ◦ j = π1,

where π : G̃OK oC×rot ×NP → NP is the projection.
Consider then the following diagram:
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RP,NP
×NP PP,NP

q(PP,NP
) NP

TP,NP
×NP G̃OK oC×rot ×NP

i

p

q

j

m

p

Here p is as above, q is quotient by the P̃ o C×rot-action h.(g, s) = (gh−1, h.s) and
m is the multiplication map [g, s] 7→ g.s. The composition m ◦ q is the above map
π2 : PP,NP

→ NP.
Using the “restriction with support” map of Section A.1 (see [BFN16b, Section

3(ii)]) applied to the leftmost Cartesian square, and the map

p∗ωTP,NP
[−2 dimNP] � FvP,NP

∼= ω
G̃OKoC×rot

[−2 dim P̃ oC×rot] � FvP,NP

we get a map (omitting the shifts for sake of readability)

p∗ :H−∗
P̃oC×rot×P̃oC×rot

(RP,NP
×NP, ωRP,NP

� FvP,NP
)

= H
P̃oC×rot
∗ (RP,NP

)⊗HP̃oC×rot
∗ (VvNP

)→ H∗
P̃oC×rot

(PP,NP
, π!

1FvP,NP
).(4.2)

Since FvP,NP
is a P-equivariant complex, we have π!

1FvP,NP

∼= π!
2FvP,NP

and since
π2 = m ◦ q, we get

H∗
P̃oC×rot

(PP,NP
, π!

1FvP,NP
) = H∗

P̃oC×rot
(q(PNP

),m!FvP,NP
)

Finally, m is proper, so that using the adjunction m!m
! → id we get a map

(m ◦ q)∗ : H
P̃oC×rot
∗ (q(p−1(PP,NP

),m!FvP,NP
)→ H

P̃oC×rot
∗ (VvP,NP

).

In particular, composing gives us an “intersection pairing”

? := (m ◦ q)∗p∗ : H
P̃oC×rot
∗ (RP,NP

)×HLv
∗ (MP,NP

v )→ HLv
∗ (MP,NP

v ).

This is clearly bilinear over Q. We prove the associativity in Lemma A.3 and the
fact that the identity acts by 1 in Lemma A.4. �

4.1.1. The case of Hilbert schemes. Specializing the construction of the Theorem
to N = Ad⊕V and P = GO, NP = NO, the Lv-equivariant homology of GASF
admits an action of the spherical rational Cherednik algebra of gln. Similarly, for
P = I, NP = Lie(I) ⊕ On we get an action of the (full) RCA of gln, as we now
describe.

Definition 4.10. The rational Cherednik algebra of gln is the quotient algebra

Hn =
C[~,m]〈x1, . . . , xn, y1, . . . , yn〉oCSn

∼
where ∼ consists of the relations [xi, xj ] = [yi, yj ] = 0 for all i, j, and

[yi, xj ] =

{
−~ +m

∑
k 6=i(i k) if i = j,

−m(i j) if i 6= j.
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The spherical subalgebra is defined as eHne where e = |Sn|−1
∑

w∈Sn w. We often
refer to the spherical subalgebra simply as the spherical rational Cherednik algebra
of gln.

Remark 4.11. To match with the conventions in most other sources, we should spe-
cialize ~→ −1. Indeed, it is the specialized algebra which will act on the equivariant
homology as in Theorem 5.4 and for example [OY16].

We record the following theorems of Kodera-Nakajima and Braverman-Etingof-
Finkelberg [KN18, BEF16] (see also [Web19, LW19]).

Theorem 4.12 (Kodera-Nakajima). For G = GLn, N = Ad⊕V, the quantized BFN

algebra Ã~
G,N is isomorphic to the spherical rational Cherednik algebra of gln.

Theorem 4.13 (Braverman-Etingof-Finkelberg). For G = GLn, N = Ad⊕V,P =

I, NP = Lie(I) ⊕ On, the quantized BFN algebra Ã~
G,N,P,NP

is isomorphic to the
rational Cherednik algebra of gln.

Remark 4.14. The extended group G̃ in the above theorems is simply G × GF
where GF = C×dil acts by scaling Ad with weight 1 and V with weight 0.

In the situation of Theorem 3.5 we get

Corollary 4.15. The spherical rational Cherednik algebra eHne of gln acts on

HLv
∗ (Hilb•(Ĉ)) where Lv is the stabilizer in G̃OK o C×rot of v ∈ Ad(K) ⊕ Kn asso-

ciated to Ĉ as in Theorem 3.5.

Corollary 4.16. The rational Cherednik algebra Hn of gln acts on HLv
∗ (PHilb•(Ĉ)).

Remark 4.17. The action in Corollary 4.16 coincides by [Web19, Section 7] with
that studied in [GSV20]. Both papers use a different set of generators than us, and
we compare their construction to ours in Section 4.3.2.

4.2. Comparison of the convolution action to an action by correspon-
dences. For many of our results, in particular Theorem 5.4, we will need to compare
the convolution action from Theorem 4.9 to another action by correspondences. We
will do this again in greater generality than needed for the rest of the paper. In
particular, we make rigorous expectations from [BDG17] and [BDGH16].

Definition 4.18. Define the raviolo space/Hecke stack for v which has C-points
given by

RvP,NP
(C) = {(s2, g, s1) ∈ VvNP

× G̃OK oC×rot × VvNP
|g.s1 = s2}/P̃ oC×rot.

Here the P̃ oC×rot-action is on s1 and the right of g.

Definition 4.19. Define also

T vP,NP
(C) = {(s2, g, s1) ∈ Wv × G̃OK oC×rot × VvNP

|g.s1 = s2}/P̃ oC×rot,

where Wv := (G̃OK oC×rot).v ⊂ N(K).
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Next, note that RvP,NP
is a locally closed sub-ind-variety of RP,NP

via [s2, g, s1] 7→
[g, s1] and therefore inherits a stratification RvP,NP,≤w := RvP,NP

∩ RP,NP,≤w (ditto

for T vP,NP
, TP,NP

.) Here w ∈W aff/WP is a coset for the extended affine Weyl group
of G. We also have maps

RvP,NP

MP,NP
v NP

ϕ1 ϕ2

where ϕ1 is the P̃ oC×rot- equivariant projection map

ϕ1 : [s2, g, s1] 7→ [s1],

whose restriction to RvP,NP,≤w is smooth, and ϕ2 is another proper equivariant pro-
jection given by

ϕ2 : [s2, g, s1] 7→ s2,

whose image is naturally identified with VvNP
.

The map in Equation (4.1) restricts to

p : p−1(RP,NP
× VvNP

) → RvP,NP
× VvNP

(4.3)

p : G̃OK oC×rot × VvNP
→ T vP,NP

×Wv(4.4)

and q(p−1(RP × VvP)) ∼= RvP by the right quotient. Note that when the stabilizer
of v is trivial, we have p−1(R × Vv) ∼= Vv × Vv by (g, s) 7→ (s, g.s). Our goal is to
interpret the “push-pull” maps in equivariant cohomology of Vv giving rise to the
action.

Note that q∗p
∗, where p∗ is defined in Theorem 4.9, defines a map

HP̃oC×
∗ (RvP,NP

× VvNP
)→ H∗

P̃oC×rot
(PNP

, π!
1FvP,NP

) = H∗
P̃oC×rot

(RvP,NP
).

Given a class [RP,NP,≤w] ∈ A~
P,NP

and α ∈ HLv
∗ (MP,NP

v ) ∼= HP̃oC×
∗ (VvNP

) we

have that q∗p
∗([RP,NP,≤w]⊗ α) is identified with the restriction of the map q∗p

∗ to
RvP,NP,≤w × V

v
NP

. In particular, by smoothness of the maps in Eq. (4.3) and the
natural inclusion RP,NP

→ TP,NP
we may use the “classical” refined pullback map

as in [Ful13] to compute q∗p
∗([RP,NP,≤w]⊗ α) given good enough understanding of

RvP,NP
and how it sits in T vP,NP

. Moreover, m∗ : H
P̃oC×rot
∗ (RvP,NP

) → HLv
∗ (MP,NP

v )
as given as in Theorem 4.9 is identified with ϕ2,∗. In Section 4.3 we will see that
it is possible to compute (m ◦ q)∗p∗ using this interpretation in the abelian setting,
which enormously simplifies computations.

4.2.1. The case of Hilbert schemes. Suppose now λ = (1, . . . , 0) and we are in the set-

ting of Theorem 3.5. Then HG̃OoC×
∗ (Rv≤λ) ∼= HLv

∗ (Hilb•,•+1(C)) where Hilb•,•+1(C)

is the flag Hilbert scheme and (after forgetting equivariance) the map ϕ∗1 = q∗p
∗ can

be identified with the refined pullback map also denoted “p” in [Kiv19, Theorem
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1] restricted to the punctual Hilbert scheme (the versal deformations needed in loc.
cit. work locally, whereas global curves are needed for the rest of the arguments).
Similarly, if λ = (−1, . . . , 0), we recover the map “q∗” of loc. cit.

Let us now explain why this happens. The affine Grassmannian of GLn is the
increasing union of the projective varieties

GrdGLn := {Λ ⊂ Kn|tdOn ⊂ Λ ⊂ t−dOn}.

It is clear that Mv as in Theorem 3.5 corresponding to the germ of a curve Ĉ has

Mm
v :=

⊔m
i=0 Hilbi(Ĉ) ⊂Mv contained in GrdGLn for all m and some d depending on

m.
Let moreover Nd := N(O)/tdN(O) and Vvd be the image in the quotient. Let

also Rd := {[g, s] ∈ GrdG×G(O)/tdNd|g−1.s ∈ Nd}. Then R is the colimit of Rd for

the inclusions coming from Grd ↪→ Grd+1
G , in particular the equivariant Borel-Moore

homology is the corresponding colimit.
Choose d � 0 and some open neighborhood U of v ∈ Nd. Then choosing some

transversal slice S to Vvd , we locally have Vvd × S ∼= U . In particular, if we let

ϕ : Rd → Nd be the projection, and

Σ := ϕ−1(Vvd ), ΣU := ϕ−1(U ∩ Vvd )

then
ΣU
∼= (Vv ∩ U)×Md

v .

Consider the inclusion Vvd ∩ U ↪→ U . The map ϕ−1(U)→ U is smooth, so we get
a refined pullback map [Ful13]

ϕ∗ : H
G̃(O)/tdoC×
∗ (Vvd ∩ U)→ H

G̃(O)/tdoC×
∗ (ΣU ).

We will in fact abuse notation and denote by ϕ∗ the composition of this map and
the pushforward

H
G̃(O)/tdoC×
∗ (ΣU )→ H

G̃(O)/tdoC×
∗ (Σ).

Possibly further increasing d and throwing away some high codimension subset of U
not containing v, note that by Theorem 3.5 it is possible to identify ϕ−1(U) → U
with the family of Hilbert schemes of 0, 1, . . . , d points (i.e. the union thereof) since
having a cyclic vector is an open condition.

Since Nd is the space of all matrices and vectors in O/td, the associated family of
(germs of) planar curves is versal for large enough U . By results of Shende and others
(see e.g. Sections 2 and 3 of [Kiv19] for discussion and references), the associated
total space is smooth.

Further restricting ϕ to ϕ−1(U)∩R≤λd for the cocharacter λ = (1, . . . , 0) identifies
the refined intersection map p∗ for the inclusion v ↪→ U in [Kiv19, Definition 3.4]
with ϕ∗≤λ. The other case is similar.

In particular, this gives an interpretation of one of the Weyl algebras appearing
in [Kiv19, VR18]. The other one has to do with the Hilbert schemes of global curves
and cannot be defined in our setting. Indeed, the other Weyl algebra depends on



GASF AND HILBERT SCHEMES 21

the number of components of the curve, whereas our Cherednik algebra depends on
the degree of the curve.

Remark 4.20. It is remarkable to note that the convolution action works on the level
of punctual Hilbert schemes directly. In [Kiv19] and [VR18], one of the main points
is to define convolution maps for the Hilbert schemes of (locally planar) singular
curves using refined intersection products, which are constructed by deforming the
singularities as we saw above. The role of the deformation in our context is played
by considering the infinite-dimensional ind-variety Vv in place of Mv. Note also that
the “restriction with supports” map is a refined intersection product in the case of
a regular embedding, while here we use a rather special form of the map p, which is
very far from anything like a regular embedding, but rather a principal bundle.

4.3. Localization to fixed points. Let us analyze the construction of Theorem
4.9 first in the case G = T is a torus. In this case, RT is a collection of (infinite
rank) vector bundles over a discrete set GrT ∼= X∗(T ), of finite codimension in T .
Its complex points are

RT (C) = {(g, s) ∈ T̃OK oC×rot ×N(O) : g−1.s ∈ NO}/T̃O oC×rot,
and the map πT : RT → GrT given by forgetting s. The map

T̃OK ×NO → TT ×NO
is simply many copies of the quotient map

C((t))× → C((t))×/C[[t]]×.

Fix now G reductive and T a maximal torus in it. We may think of RT as an
“abelianized” BFN space for G, as it also admits an inclusion map ι : RT ↪→ R via
inclusion of GrT ↪→ GrG. The space RT has a natural convolution product and it
admits a natural action of the Weyl group W . By Lemma 5.10 of [BFN16b] there
is an algebra homomorphism (ιWR )∗ : (A~

T )W → A~ coming from the inclusion ιR :

RT ↪→ R. We call A~
T the “abelianized” BFN algebra. This construction generalizes

to the flavor deformed algebras (Ã~
T )W → Ã~, where Ã~

T := H
T̃OoC×rot
∗ (RT ).

Consider RvT = RT ∩Rv. By definition of the generalized affine Springer fiber for
v, where we consider N as a representation of T ⊂ G, we see that RvT is the Hecke
stack associated to the datum (T,N, v). Using the convolution action of Theorem

4.9 for (T,N), we get an action of Ã~
T on H

LT,v
∗ (Mv,T ) where LT,v is the stabilizer

of v in T .
We can now try to compare the two actions.

Proposition 4.21. Suppose GrG has isolated fixed points under the stabilizer Lv ⊂
G̃OK oC×rot of v and that Lv is contained in T̃O × C×rot. Then

(1) Mv,T = MLv
v

(2) (ιMv)∗ : HLv
∗ (MLv

v ) → HLv
∗ (Mv) becomes an isomorphism after inverting

countably many characters of L.
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(3) (ιMv)∗ intertwines the actions of (Ã~
T,N )W and Ã~

G,N .

Proof. The first assertion follows from the fact that the Lv-fixed points are contained
in the Lv = T -fixed points on the affine Grassmannian, which for T is topologically
a discrete set of points coinciding with GrT . The second assertion is the Atiyah-Bott
localization theorem.

Consider the following diagram:

R× Vv Pv q(Pv) Vv

T × Vv G̃OK oC×rot × Vv

TT × VvT T̃OK oC×rot × VvT

RT × VvT PvT qT (PvT ) VvT

i

p

q

j

m

p

pT

iT

ιR×ιVv

pT

qT

jT

ιP

mT

ιq(P)

Here i, j, p, q,m are as before, and the versions with subscript T are the corresponding
maps for T ⊂ G. The inclusions ι? come from the maps T ↪→ G,GrT ↪→ GrG and
variations. The space Pv is defined as Pv := p−1(R × Vv) and PvT by replacing G
with T .

Note that the upper and lower squares on the left tower of squares are clearly
Cartesian. We claim that the middle one is so too. By definition the fiber product

(G̃OK oC×rot × Vv)×T ×Vv (TT × VvT )

consists of (g, v′′, [t, v′]) so that [g, v′′] = [t, v′] and v′ = v′′. In particular, there is

some g′ ∈ Lv such that gg′ = t. But since Lv is contained in T̃O o C×rot, we must

have g ∈ T̃OK oC×rot. So every square in the tower is Cartesian. Note that this is not
true without our assumptions (take for example N = 0, v = 0).

Let F = ωVv [−2 dim G̃O] and FT = ωVvT [−2 dim T̃O]. Let ιVv : VvT ↪→ Vv. Then
ι∗VvT
F = FT . Let then

r ⊗ α ∈ HG̃OoC×rot
∗ (R)⊗HLv

∗ (Mv) ∼= H−∗
G̃OoC×rot×G̃OoC×rot

(R× Vv, ωR � F).

By Lemma 5.10. of [BFN16b], the pushforward map

(ιR)W∗ : (Ã~
T )W → Ã~

given by taking the W -invariants of the T̃O oC×rot-equivariant pushforward becomes

an isomorphism after localizing at countably many characters of T̃ ×C×rot. By parts
(1) and (2),

(ιVv)∗ : H
T̃OoC×rot
∗ (VvT ) ∼= HLv

∗ (MLv
v )→ HLv

∗ (Mv) ∼= H
G̃OoC×rot
∗ (Vv)
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also becomes an isomorphism after localizing at countably many characters of Lv.
If we define moreover

ι∗ := (ιR)W∗ ⊗ (ιVv)∗
and work in this localization, the intertwining property we need to show becomes

ι∗(mT ◦ qT )∗p
∗
T ((ι∗)

−1(r ⊗ α)) = (m ◦ q)∗p∗(r ⊗ α).

Define
A := ωT [−2 dimNO] � F , AT := ωTT [−2 dimNO] � FT

and

B := ω
G̃OKoC×rot

[−2 dim G̃O oC×rot] � F , BT := ω
T̃OK oC×rot

[−2 dim T̃O oC×rot] � FT

The restriction with support map p∗ from Theorem 4.9 and Definition A.1 is (the
induced map in hypercohomology of) the composition

i!A→ i!p∗p
∗A = p∗j

!p∗A→ p∗j
!B.

Similarly we have

i!TAT = (ιR × ιVv)!i!A→ i!T pT∗p
∗
TAT → pT∗j

!
TBT

Using proper base change, we rewrite this as

(ιR × ιVv)!i!A→ i!T pT∗p
∗
TAT = (ιR × ιVv)!i!p∗p

∗A→ pT∗j
!
TBT = (ιR × ιVv)!p∗j

!B.

Passing to T̃O oC×-equivariant hypercohomology, we get that the square

H−∗
T̃OoC×rot×G̃OoC×rot

(R× Vv, i!A) H−∗
T̃OoC×rot×G̃OoC×rot

(Pv, π!
1F)

H−∗
T̃OoC×rot×T̃OoC×rot

(RvT × VvT , i!AT ) H−∗
T̃OoC×rot×T̃OoC×rot

(PvT , π!
1,TFT )

p∗

p∗T

(ιR)∗⊗(ιVv )∗ (ιP )∗

commutes. Now taking W -invariants on the R-factor everywhere and passing to the
localization where the left column becomes an isomorphism, we get

p∗T ((ι∗)
−1(r ⊗ α)) = (ιP∗)

−1p∗(r ⊗ α).

Since the right large square is also Cartesian and ιP is a closed embedding, using
proper base change once more we get

ι∗(mT ◦ qT )∗(ιP)−1
∗ p∗(r ⊗ α) = (m ◦ q)∗p∗(r ⊗ α).

�

Remark 4.22. Parts (1) and (2) of the above Proposition were also obtained in
[HKW20, Theorem 5.13].

Remark 4.23. While it is natural to anticipate similar localization results for the
parahoric cases, we do not know how these work due to a lack of an obvious replace-
ment for the map GrT ↪→ GrG respecting the convolution structure in the case of
other partial affine flag varieties.
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4.3.1. Computations in the spherical case. Let GrλG be the GO-orbit of tλ ∈ GrG

and set R≤λ = R ∩ π−1(GrλG), where π : R → GrG is the projection forgetting

NO. In what follows we will determine the action of various classes in Ã~ by means
of two-fold fixed-point localization. Recall that there are commutative subalgebras

H∗
G̃×C×rot

(pt) ↪→ Ã~ and H∗
T̃×C×rot

(pt) ↪→ Ã~
T . Denote the equivariant parameters the

maximal T̃ × C×rot collectively by ϕ (for T ), m (for GF ) and ~ (for C×rot).
Let [tλ] denote the fundamental class of RT ∩ p−1

T (GrλT ), often called an “abelian-

ized monopole” [BDG17, BDGH16]. For λ dominant with GrλG closed we can then
write the following localization formula, c.f. [BFN16b] Proposition 6.6:

(4.5) [R≤λ] = ι∗

( ∑
w∈W/Wλ

[tw.λ]

e(Tw.λ Gr≤λG )

)
,

where Wλ is the stabilizer of λ in the Weyl group W .1 The unit of the algebra Ã~ is

1 := [R≤0]. Other generators of Ã~ can be constructed by including a Wλ-invariant
function f(ϕ,m, ~) to the numerator of this expression:

(4.6) [R≤λ][f ] = ι∗

( ∑
w∈W/Wλ

(w.f)[tw.λ]

e(Tw.λ Gr≤λG )

)
These are called “dressed” monopole operators, which are known to generate Ã~

[BFN16a, Wee19].

Remark 4.24. More precisely, it was shown in [Wee19] that the [R≤λ][f ] with

minuscule λ and a slightly smaller collection of f ’s generate Ã~
G,N for any quiver

gauge theory; the quiver in this case is a Jordan quiver with a framing node of rank
1.

Remark 4.25. The terminology “dressed monopole” has its origins in the physics
literature, in our context they appear for example in [CHZ14]. These operators also
appear as the dimensional reduction of the four-dimensional mixed Wilson-’t Hooft
operators of [Kap06].

Assume the hypothesis of Proposition 4.21 and, moreover, that the map Lv →
GF × C×rot is injective. Thus, the action of H∗

T̃×C×
(pt) factors through the action of

H∗Lv(pt) [HKW20].
A representative in TK of a fixed point p ∈Mv will generically not be exactly fixed

by Lv, instead requiring a compensating T ⊂ TO transformation. The requirement
that Lv → GF × C×rot is injective implies that there is a unique such compensating
transformation, hence the action of H∗T (pt) ⊂ H∗

T̃×C×rot
(pt) on the fixed point class |p〉

is uniquely determined by the action of H∗TF×C×(pt) on |p〉. We write ϕ |p〉 = ϕ(p) |p〉.

1Since the ϕ do not commute with [tλ], we take the convention that the denominator is to the
right of the numerator in writing this formula.
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The action of H∗TF×C×(pt) is then determined by the injection Lv → GF×C×rot, which

imposes rank GF +1− rank Lv linear relations on the m |p〉 , ~ |p〉. This is the source
of the specialization discussed earlier.

Remark 4.26. The bra-ket notation used to denote the fixed point classes |p〉 is
used due to the realization of these classes as vectors in the supersymmetric Hilbert
space in the gauge theory setup. It is important to note that this isn’t an honest
Hilbert space as the twisted theory need not be unitary. Nonetheless, there is a
natural symmetric, non-degenerate pairing of classes, c.f. [BDG+16, Section 3.3].

Lemma 4.27. Assume that Mv has isolated fixed points under the action of Lv ⊂
T̃ × C×rot and that the map Lv → GF × C×rot is injective.

For λ a minuscule cocharacter and f(ϕ,m, ~) a Wλ-invariant function we have

(4.7) [R≤λ][f ] |p〉 =
∑

w∈W/Wλ

(
w.f(ϕ(tw.λp),m, ~)

)
e(Ep,w.λ)

e(Tw.λ Gr≤λG )
|tw.λp〉 ,

where Ep,ν is an excess intersection factor. The denominator in this formula should

be understood as replacing ϕ in the polynomials e(Tw.λ Gr≤λG ) with ϕ(p).

Proof. By the previous Proposition we only need to compute this inside HLv
∗ (MLv

v )⊗
C(l). Let |p〉 be (the inclusion of) the fundamental class of a fixed point in Mv ⊂
N(O)/G(O). The subalgebra H∗T (pt) = C[t] ⊂ Ã~

T acts as ϕa |p〉 = ϕa(p) |p〉 . Since

π−1
T (GrλT ) is a vector bundle over a point, using the excess intersection formula for

the refined pullback p∗ (see Fulton [Ful13, Section 6.3]) we have

[tλ] |p〉 = (m ◦ q)∗p∗([tλ]⊗ [p]) = e(Ep,λ
)
|tλp〉 .

As a vector space over C, Ep,λ can be expressed as

Ep,λ ' N(O)/(N(O) ∩ t−λN(O)).

The equivariant structure of this vector space is determined by λ and p; Ep,λ should

be thought of as a quotient of tangent spaces at (tλp, tλ, p) ∈ TT . A straightforward
computation shows that

e(Ep,λ
)

=
∏

µ̃ s.t. 〈µ,λ〉<0

[〈µ̃, ϕ(p) +m〉]〈µ,λ〉,

where the product runs over the G̃ weights µ̃ of N , with µ its restriction to G. We
also use the notation that

[x]r =



r−1∏
j=0

(x+ j~) r > 0

1 r = 0
|r|∏
j=1

(x− j~) r < 0

.
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It is worth noting that if tλ maps p outside N(O) then Ep,λ will necessarily have a
vector that transforms trivially under C×, i.e. e(Ep,λ) = 0. By Eq. (4.6) the result
follows. �

Remark 4.28. The above localization computations and the “abelianization pro-

cedure” appear in [BFN16a] as an embedding of the algebra Ã~ to an algebra of
differential(-difference) operators on the maximal torus T ⊂ G.

4.3.2. Comparison to results of Gorsky-Simental-Vazirani. In the recent preprint

[GSV20], when Ĉ = {xn = tk}, gcd(n, k) = 1, another action of the rational Chered-
nik algebra of gln (see Definition 4.10) is defined on the localized equivariant (Borel-

Moore) homology of the parabolic flag Hilbert schemes PHilbm,m+n(Ĉ). (In the

above notation, this would correspond to PHilbm,m+(1,1,...,1)(Ĉ).) By Remark 3.3
and Theorem 3.5,

PHilb•(Ĉ) :=
⊔
m≥0

PHilbm,m+n(Ĉ) ∼= M̃v := M I,Lie(I)⊕On
v

where I is the standard Iwahori of GK and v is associated to Ĉ as in Theorem 3.5.
We show that the actions defined in Theorem 4.9 and [GSV20, Theorem 7.14]

coincide.

Theorem 4.29. The action in [GSV20, Theorem 7.14] on the module

HC×
∗ (

⊔
m≥0

PHilbm,m+n(Ĉ))[~−1]

agrees with the action defined by Theorem 4.9 on HC×
∗ (M̃v)[~−1].

Proof. After inverting ~, the Atiyah-Bott localization formula implies the fixed point
classes are a basis for the equivariant BM homology. As proven in [Web19, LW19,
GSV20], the rational Cherednik algebra Hn is generated by the Dunkl-Opdam sub-
algebra, the finite symmetric group Sn, as well as two elements τ, λ, which can be

identified with π, π−1 ∈ Saff
n under Suzuki’s embedding of Hn to the trigonometric

Cherednik algebra (see [KN18, GSV20]). We only need to identify these generators
on both sides - the relations they satisfy are proved in [Web19, LW19, GSV20].

The Springer action is induced by the following diagram

(4.8)

RNI,I [g̃/G] = [b/B]

RNO,GO [g/G]

ϕ′

π π′

ϕ

and the action of the simple reflections s1, . . . , sn−1 comes from convolution with

[R≤siNI,I
], which come about via pullback from classical correspondences on the Stein-

berg variety. The Springer action of [GSV20] is the usual one coming from projections
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to smaller affine flag varieties which is also defined via pullback from the right. The
coincidence of the two is a classical result.

The equivariant cohomology classes ui ∈ H∗T (pt) are identified with cap product
by the Chern classes c(Li) of the natural line bundles on the affine flag variety. The
identification of these two is e.g. [OY16, Lemma 5.1.6].

Finally, we need the π = τ and π−1 = λ operators. In [LW19, Theorem 5.2]
and [Web19, Lemma 4.2], τ is identified with convolution by the correspondence in
Section 4.2 corresponding to the space

Xτ := {(V•, V ′•)|Vi = V ′i+1} = {(gI, g′I)|gt = g′}
and similarly σ is identified with convolution by the correspondence

Xσ := {(V•, V ′•)|Vi = V ′i−1} = {(gI, g′I)|g′t = g},
where t is the matrix sending ei 7→ ei+1, i = 1, . . . , n − 1 and en 7→ te1 in the
standard basis of Kn. It is immediate that these coincide with the maps T,Λ on

HC×
∗ (

⊔
m≥0 PHilbm,m+n(Ĉ))[~−1] in [GSV20, Theorem 7.14]. �

5. Torus Links and the spherical RCA

In this section we speculate on the relation with a conjecture of Oblomkov-
Rasmussen-Shende [ORS18] concerning the relation between the homology of the
Hilbert schemes of points on plane curve singularities and minimal a-degree HOM-
FLY homology of the associated link. These cases of the ORS conjecture follow
from the results of [ORS18] and Hogancamp-Mellit’s computation of the HOMFLY
homologies of torus knots [HM19].

It is still unclear whether the rational Cherednik algebra acts naturally on the
triply graded homologies of algebraic links. Of course, assuming the ORS conjecture’s
validity (which we have in the toric cases), one has such an action par transport de
structure. It would be interesting to know what this action means in terms of knot
homology. For some speculations one can consult [GORS14].

Fix G = GLn, N = Ad⊕V,GF = C×dil and set R = RG,N ,A~ = A~
G,N . We focus

on the case of v ∈ N(O) corresponding to positive (n, k) torus knots, which can be

realized by the plane curve singularities Ĉn,k associated to f = xn − tk. Based on

the relation between Hilbert schemes of points on Ĉn,k and GASF in Theorem 3.5,
we see that

M(n,k) := Hilb•(Ĉn,k) = Mv

for, e.g. v = (γ, en) with

γ =


0 1 · · · 0 0
...

...
. . .

. . .
...

0 0
. . . 1 0

0 0 · · · 0 1
tk 0 · · · 0 0

 .
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5.1. Computation of the convolution action. The assumptions of Lemma 4.27
hold for (n, k) torus knots due to Lemma 3.11. The Lv-fixed points are labeled by
cocharacters as described in Proposition 3.14. We will label the fixed point classes

inside C[~±1]HC×
∗ (M(n,k)) by |A〉 . The map Lv → GF ×C×rot ∼= C×dil×C×rot is realized

by ν 7→ (ν−k, νn). This implies the relation (nm+k~) |A〉 = 0 for all A. We explicitly
solve this by replacing m |A〉 = − k

n~ |A〉. Let ϕa, a = 1, ..., n be the components of
ϕ in the standard basis.

Lemma 5.1. The action of C[t] is given by

ϕa |A〉 =

(
(n− a) kn −Aa

)
~ |A〉

and the action of [tλ] is given by

[tλ] |A〉 =

( ∏
λa<0

|λa|−1∏
α=0

((n−a)
k

n
−Aa+α)~

)( ∏
λa>λb

λa−λb−1∏
β=0

((b−a+1)
k

n
−Aa+Ab+β)~

)
|A+ λ〉 .

Proof. This is a direct application of Lemma 4.27. �

Using these ingredients and equation (4.7) one can obtain an expression for the
action of any [R≤λ][f ]. Therefore, for λ a minuscule cocharacter we have
(5.1)

[R≤λ][1] |A〉 =
∑

λ′∈W ·λ

( ∏
λ′a<0

|λ′a|∏
α=1

(ϕa − α~)

)( ∏
λ′a>λ

′
b

λ′a−λ′b∏
β=1

(ϕb − ϕa +m− β~)

)
( ∏
λ′a>λ

′
b

λ′a−λ′b∏
γ=1

(ϕb − ϕa − γ~)

) |A+ λ′〉 .

There is a similar expression for the action of [R≤λ][f ] for f(ϕ,m, ~) a Wλ-invariant
function, though we will not need it in the following.

Proposition 5.2. Comparing to [BFN16a, A(iii)], we have an identification (up to

numerical factors) Er[f ] = [R≤λr ][f ] and Fr[f ] = [R≤−λr ][f̃ ] where λr = (1, 1, ..., 1, 0, 0..., 0)

with r 1’s and f̃(ϕ) = f(ϕ− ~).

Using this presentation of the algebra, the following result is straightforward.

Lemma 5.3. For coprime (n, k), HC×
∗ (M(n,k)) is irreducible as the module for the

spherical rational Cherednik algebra at parameter m = − k
n~.

Proof. We show that this module is irreducible by identifying the unique singular
vector, namely |0〉. Recall that being a singular vector for the spherical rational
Cherednik algebra corresponds to being in the kernel of all Fr[f ] = [R≤−λr ][f ].
First consider the kernel of Fn[f ], or the classes corresponding to the cocharacter
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λ = (−1,−1, ...,−1). The choice of f is that of a W invariant polynomial f(ϕ,m, ~).
From the action given in (5.1), we find that

Fn[1] |A〉 =
n∏
b=1

(
ϕb − ~

)
~ |A− (1, 1, ..., 1)〉 =

n∏
b=1

(
(n− b)k

n
−Ab

)
~ |A− (1, 1, ..., 1)〉 .

Since gcd(n, k) = 1, the factor ((n− b) kn −Ab) can only vanish for b = n and An = 0.
It follows that the kernel of Fn[1] is exactly those classes |A〉 with An = 0. Moreover,
such classes are in the kernel of Fn[f ] for all f .

Now consider the action of Fn−1[f ] on sums of fixed point classes with An = 0.
Using Eq. (4.7) for we have, after a dramatic simplification following from An = 0,

Fn−1[1] |A1, ..., An−1, 0〉 =

( n−1∏
b=1

(
(n− 1− b)k

n
−Ab

)
~
)
|A1 − 1, ..., An−2 − 1, 0〉 .

Again, since gcd(n, k) = 1, the factor ((n−1−b) kn−Ab) can only vanish for b = n−1
and An−1 = 0. Therefore |A1, ..., An−1, 0〉 is in the kernel of Fn−1[1] if and only if
An−1 = 0. Thus kerFn[1] ∩ kerFn−1[1] only contains classes with An = An−1 = 0.
Moreover, these classes belong to the kernel of Fn−1[f ] for all f . Continuing this
process shows that

kerFn[1] ∩ kerFn−1[1] ∩ ... ∩ F1[1] = span{|0〉}

and that it also belongs to the kernel of all Fr[f ]. �

Now we state and prove the main theorem of this section.

Theorem 5.4. For coprime (n, k), HC×
∗ (M(n,k)) can be identified with the irre-

ducible representation eLk/n(triv) of the spherical rational Cherednik algebra of gln

at parameter m = − k
n~. That is, setting the equivariant parameter ~ in HC×

∗ (M(n,k))

to −1, the quotient algebra eHne/(m− k
n) acts.

Proof. From [KN18], or a direct computation using (5.1), it follows that for all n the
operators X = [R≤(1,0,...,0)] = E1[1] and Y = [R≤(−1,0,...,0)] = F1[1] generate an ap-
propriately scaled copy of the Heisenberg algebra: [X,Y ] = n~. Since we have shown

that HC×
∗ (M(n,k)) is irreducible as a module for the spherical rational Cherednik

algebra of gln at parameter m = − k
n~ it follows that it must decompose as a product

C[X]⊗M , where M is some irreducible module for the spherical rational Cherednik
algebra of sln. Finally, noting that the spherical rational Cherednik algebra of sln at
parameter m = − k

n~ has a unique finite dimensional, irreducible module, it suffices
to show that kerY 'M is finite dimensional.

Consider the graded Euler character of this homology, which can easily be com-
puted from counting fixed points. Recall that the fixed points in M(n,k) are labeled
by cocharacters A as in Prop. 3.14, denote the set of such A by A(n,k). The degree
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in the Hilbert scheme is given by

d(A) =
n∑
a=1

Aa

and one finds

χ(M(n,k)) =
∑

A∈A(n,k)

qd(A) =
1

1− qn

[
n− 1 + k
n− 1

]
q

.

Noting that X changes q-degree by 1, we can determine the dimension of M by
multiplying the above by 1 − q, counting the C[X] factor, and setting q = 1. One
finds

dimCM =
1

n

(
n+ k − 1

n− 1

)
= dimCH

∗(J n,k),

where J n,k is the compactified Jacobian of the curve Ĉn,k. �

Remark 5.5. It is worth noting that Ã~ is bi-filtered by the degree in GrG, called
“monopole number” in the physics literature, and by the action induced by scaling
C[t, ~]W with weight 2, called “R-charge” in the physics literature. In particular, we
assign the degree (±r, r + 2 deg f) to [R≤±λr ][f ]. The spherical rational Cherednik
algebra of gln is also bi-filtered by total polynomial degree and by difference in degree
of x’s and y’s. That the respective filtrations agree follows from [KN18].
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Appendix A

A.1. Restriction with supports. In this section, we define the restriction with
support homomorphisms used in the definition of p∗ in Theorem 4.9. We follow
[BFN16b].

Definition A.1. Suppose we have a Cartesian diagram of ind-varieties

Y Z

W X

j i

g

f

and let A,B be (possibly unbounded) complexes of constructible sheaves on W,X.
Then suppose we are given ϕ ∈ Hom(A, f∗B) ∼= Hom(f∗A,B). Define the morphism
of complexes

j!A→ j!f∗f
∗A ∼= g∗i

!f∗A→ g∗i
!B

as the composition of the adjunction map and ϕ. This induces a map on hyperco-
homology:

H∗(Y, j!A)→ H∗(Z, i!B).

We will call this map “restriction with supports”.

Remark A.2. Suppose we have a Cartesian diagram of varieties

Z Y

X W

If

the first arrow is a regular embedding, let N be the pullback to Z of the normal
bundle NX/W . There is a specialization map

σ : H∗(Y )→ H∗(N), [V ] 7→ [C(C∩Z)/V ].

The usual refined intersection map/pullback with support is defined as the compo-
sition H∗(Y )→ H∗(N)→ H∗(Z).

A.2. Finite-dimensional approximation. In many parts of this paper, we con-
sider equivariant complexes on infinite-dimensional ind-varieties, in particular R, T
and NO and their substacks. We refer the reader to [BFN16b, Section 2] for more
precise definitions in the first two cases, and in the latter case define

Db
G̃O

(NO)

to be the direct limit over the finite-dimensional approximations to NO given by
NO/t

iNO. The degree shifts such as [−2 dimNO] we use, are also to be understood
as in [BFN16b, Section 2].
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A.3. Associativity. In this section, we prove that the convolution product defined
in Theorem 4.9 is associative. We follow the proof of associativity of the convolution

product of Ã~
G,N,P,NP

:= Ã~
P,NP

in [BFN16b, Section 3] and the rough outline in the

preprint [HKW20] .

Lemma A.3. The convolution product defined in Theorem 4.9 is associative.

Proof. We consider the following commutative diagram, which is a ‘product’ of the
upper row of (4.1) and the appropriate version of [BFN16b, (3.2)]:
(A.1)

RP,NP
×NP PNP

q(PNP
) NP

q(p−1(RP,NP
×RP,NP

))×NP 3 4 q(PNP
)

p−1(RP,NP
×RP,NP

)×NP 1 2 PP

RP,NP
×RP,NP

×NP RP,NP
× PNP

RP,NP
× q(PNP

) RP,NP
×NP,

p q m̃

m×idRP,NP
m

q×idNP

pRP,NP
×idNP

p

q

idRP,NP
×p idRP,NP

×q idRP,NP
×m

where we have defined

1 = {(g1, g2, v
′) ∈ G̃OK oC×rot × G̃OK oC×rot ×NP | g2v

′, g1g2v
′ ∈ NP},

and 2 , 3 , 4 are quotients of 1 by 1× P̃oC×rot, P̃oC×rot×1, P̃oC×rot× P̃oC×rot
respectively. Here P̃ oC×rot × P̃ oC×rot acts on 1 by

(h1, h2) · (g1, g2, v
′) = (g1h

−1
1 , h1g2h

−1
2 , h2v

′) for (h1, h2) ∈ P̃× P̃.

The horizontal and vertical arrows from 1 , 4 are given by

(A.2) (g1, [g2, v
′], v′) (g1, g2, v

′) ∈ 1�
p1
oo

_

p2

��
([g1, g1g2v

′], g2, v
′),

[g1g2, v
′]

4 3 [g1, [g2, v
′]]

_

OO

� // [g1, g2v
′].

Arrows from 2 , 3 are given by the obvious modification of above ones, as 1 → 3 ,
etc. are fiber bundles. Also, pRP,NP

is as defined in [BFN16b], i.e.

(g1, [g2, s]) 7→ ([g1, g2s], [g2, s]).

Let α ∈ HLv(MP,NP
v ) and c1, c2 ∈ Ã~

P,NP
. The convolution product c2 ?α is given

by applying the construction in Theorem 4.9 (i.e. induced homomorphisms in BM
homology) to the bottom row from left to right, and c1 ? (c2 ? α) is then obtained
by going up in the rightmost column. Similarly (c1 ? c2) ? α is given by going up
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the leftmost column using the construction in [BFN16b] and then from left to right
along the top row.

Therefore the associativity of the convolution product is the statement that the
induced morphisms

− ? (− ?−), (− ?−) ?− : Ã~
P,NP

⊗ Ã~
P,NP

⊗HLv
∗ (MP,NP

v )→ HLv
∗ (MP,NP

v )

are equal. This would follow commutativity of the associated “large square” in
BM homology. (It might be helpful for the reader to recall the usual diagram for
associativity of an algebra action).

We will in fact prove that each square is commutative after applying BM homology.
Let us first look at the bottom left square. We can extend the square to a cube as

G̃OK oC×rot ×RP,NP
×NP

p′×idNP

��

G̃OK oC×rot × PNP

P

��

id
G̃OKoC×rot

×p
oo

p−1(RP,NP
×RP,NP

)×NP

55

��

1

55

oo

��

TP,NP
×RP,NP

×NP TP,NP
× PNP

idTP,NP
×p

oo

RP,NP
×RP,NP

×NP

44

RP,NP
× PNP

oo

44

Arrows from spaces in the front square to those in the rear square are closed
embeddings. Arrows in the rear square are as indicated, where we have defined

P : G̃OK oC×rot×PNP
→ TP,NP

×PNP
by (g1, g2, v

′) 7→ ([g1, g1g2v
′], g2, v

′), just as the

downward arrow from 1 above.
The top, right, left and bottom faces of the cube are Cartesian and we have the

isomorphisms

P ∗(ωTP,NP
� π!

1FvP,NP
) ∼= ω

G̃OKoC×rot
� π!

1FvP,NP

(p′ × idNP
)∗ωTP,NP

� ωRP,NP
� FvP,NP

∼= ω
G̃OKoC×rot

� ωRP,NP
� FvP,NP

.

This gives us two pullbacks with supports

H∗
P̃oC×rot×P̃oC×rot

(RP,NP
×PNP

, ωRP,NP
�π!

1FvP,NP
)→ H∗

P̃oC×rot×P̃oC×rot
( 1 , ω

G̃OKoC×rot
�π!

1FvP,NP
)

and

H∗
P̃oC×rot×P̃oC×rot

(p−1
RP,NP

(RP,NP
×RP,NP

)×NP, ωRP,NP
� ωRP,NP

� FvP,NP
)→

H∗
P̃oC×rot×P̃oC×rot

( 1 , ω
G̃OK

� π!
1FvP,NP

).
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We claim that these are the same homomorphism. Consider ωTP � ωRP
� FvP,NP

on TP,NP
×RP,NP

×NP, and consider the pull-backs of ωTP,NP
and ωRP,NP

�FvP,NP

separately. Let us first consider ωRP,NP
� FvP,NP

.

P ∗(idT ×p)∗(ωTP,NP
� ωRP,NP

� FvP,NP
) ω

G̃OKoC×rot
� π!

1FvP,NP
[2 dimNP − 2 dim P̃]

(p′ × idNP
)∗(id

G̃OKoC×rot
×p)∗(ωTP,NP

� ωRP,NP
� FvP,NP

) ω
G̃OKoC×rot

� π!
1FvP,NP

[2 dimNP − 2 dim P̃]

by following left, top arrows and bottom, right arrows in the rear square. They
are the same, as both are essentially given by the homomorphism

p∗ωRP,NP
� FvP,NP

→ π!
1FvP,NP

.

Next consider ωTP,NP
. The TP,NP

-component of (idTP,NP
×p) ◦P = (id

G̃OKoC×rot
×p) ◦

(p′ × idRP,NP
) (which is (g1, g2, s) 7→ [g1, g1g2.s]) factors as

G̃OK oC×rot × PNP

id
G̃OKoC×rot

×Π′

−−−−−−−−−→ G̃OK oC×rot ×NP

p′TP,NP−−−−−→ TP,NP
,

where Π′ : PNP
→ NP is (g2, s) 7→ g2.s. So we have

((idTP,NP
×p)◦P )∗(ωTP,NP

�ωRP,NP
�FvP,NP

) ∼= ω
G̃OKoC×rot

�π!
1FvP,NP

[2 dimNP−2 dim P̃].

The two restriction with supports homomorphisms from above constructed by going
along left, top arrows and bottom, right arrows in the rear square are thus identical.
This completes the proof of the commutativity of the bottom left square.

Since q̃ : PNP
→ q(PNP

) is a fiber bundle with fibers P̃ oC×rot, commutativity for
squares involving q is obvious.

Let us finally consider the right bottom square. We extend it to a cube:

G̃OK oC×rot × q(PNP
)

P ′

��

id
G̃OKoC×rot

×m̃
// G̃OK oC×rot ×NP

p

��

2

55

//

��

PNP

��

55

TP,NP
× q(PNP

)
idTP,NP

×m̃
// TP,NP

×NP

RP,NP
× q(PNP

) //

44

RP,NP
×NP

44
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Arrows from the front to rear are closed embeddings. The map P ′ : G̃OK o C×rot ×
q(PNP

)→ TP,NP
× q(PNP

) is given by

(g1, [g2, s]) 7→ ([g1, g1g2.s], [g2, s]).

The left and right faces of the cube are cartesian, and the commutativity of the rear
square in the cube is enough to conclude that the corresponding proper pushforwards
give the same map.

Finally, the commutativity of the induced maps in the right top square is clear, as
it involves only pushforward homomorphisms. In particular, the whole large square
is commutative. �

Lemma A.4. The class of [1] ∈ HP̃oC×
∗ (RP,NP

) acts by the identity on HLv
∗ (MP,NP

v ).

Proof. Consider the following diagram.

NP ×NP P̃ oC×rot ×NP NP

RP,NP
×NP PNP

q(PNP
)

The vertical maps are the natural inclusions (where we include NP ↪→ RP,NP
as the

fiber over Fl≤1
P ). Since [1] ⊗ c is the pushforward of 1 ⊗ c along the left inclusion,

by proper base change, q∗p
∗([1]⊗ c) is given by the pushforward along right vertical

embedding

NP → q(PNP
).

Composing with m : q(PNP
) → NP, this embedding becomes the identity map on

NP, so we must have m∗q∗p
∗([1]⊗ c) = c. �

Appendix B

B.1. Modules for (2, 2`+ 1) Torus Knots. In this section we discuss the module

structure of HLv
∗ (M(2,2`+1)) and HLv

∗ (M̃(2,2`+1)).
Recall that the rational Cherednik algebra of gl2 is the quotient algebra

Hn =
C[~,m]〈x1, x2, y1, y2〉oCS2

∼
where ∼ consists of the relations [xi, xj ] = [yi, yj ] = 0 for all i, j, and

[yi, xj ] =

{
−~ +m(12) if i = j,

−m(12) if i 6= j.

The sphericizing element is given by e = 1
2(1 + (12)).

The spherical subalgebra has generators given by an sl2 triple

E = −1
2e(x

2
1 + x2

2)e F = 1
2e(y

2
1 + y2

2)e H = 1
2e(x1y1 + y1x1 + x2y2 + y2x2)e
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and a Heisenberg pair

X = e(x1 + x2)e Y = e(y1 + y2)e

transforming in the defining representation of that sl2. In particular, the non-
zero commutation relations between these generators are those defining sl2 and the
Heisenberg algebra

[E,F ] = ~H [H,E] = 2~E [H,F ] = −2~F [X,Y ] = 2~,

and those describing the way X,Y transform under sl2

[E,X] = [F, Y ] = 0 [H,X] = [E, Y ] = ~X [H,Y ] = −[F,X] = −~Y.

Denote W+ = 1
2X

2,W 0 = −1
2(XY + Y X),W− = −1

2Y
2, so that the W±,W 0

transform in the adjoint representation of the above sl2. There is one additional
relation amongst these operators:

C2 = 2(EW− + FW+) +HW 0 +m(m− ~),

where C2 = 2(EF + FE) +H2 is the quadratic Casimir of the sl2 triple and m is a
complex parameter.

Theorem B.1. The spherical subalgebra, realized as the quantized BFN algebra

Ã~
G,N for G = GL2, N = Ad⊕C2, acts via convolution on HC×

∗ (M(2,2`+1)) for

m = −2`+1
2 ~. As a module for the spherical rational Cherednik algebra of gl2, we

have

HC×
∗ (M(2,2`+1)) ' eL(2`+1)/2(triv),

where e is the S2 symmetrizer in rational Cherednik algebra of gl2 and L(2`+1)/2(triv)

is the simple rational Cherednik algebra (at parameter m = −2`+1
2 ~) module induced

from the trivial representation of S2.

To simplify the expressions below, we will simply write k instead of 2` + 1. The
below does not apply when k is even.

Proof. First consider the monopole operator X := [R(1,0)]. This arises from the orbit

Gr
(1,0)
GL2

, which form a copy of P1 parameterized by two affine charts given by(
t 0
a1 1

) (
1 a2

0 t

)
with transition function a2 = 1

a1
. There are G(O) torus fixed points at the origins of

these affine charts, and the coordinate a1 (resp. a2) transforms with weight ϕ2 −ϕ1

(resp. ϕ1 − ϕ2). Applying Eq. (5.1) yields

X |A1, A2〉 =
A1 −A2 − k
A1 −A2 − k

2

|A1 + 1, A2〉+
A1 −A2

A1 −A2 − k
2

|A1, A2 + 1〉 .



GASF AND HILBERT SCHEMES 37

Similarly, there is the monopole operator Y := [R(0,−1)] coming from the orbit

Gr
(0,−1)
GL2

, which forms a copy of P1 parameterized by two affine charts(
1 0

a1t
−1 t−1

) (
t−1 a2t

−1

0 1

)
with transition function a2 = 1

a1
. The coordinate a1 again transforms with weight

ϕ1 − ϕ2. We find that

Y |A1, A2〉 =
(A1 −A2)(k2 −A1)~

A1 −A2 − k
2

|A1 − 1, A2〉+
A2(k −A1 +A2)~
A1 −A2 − k

2

|A1, A2 − 1〉 .

There are two other monopole operators we will be interested in, namely E =

[R(1,1)] and F = −[R(−1,−1)]. They come from Gr
(1,1)
GL2

and Gr
(−1,−1)
GL2

respectively,

both of which are single points. Applying Eq. (5.1) gives

E |A1, A2〉 = |A1 + 1, A2 + 1〉 F |A1, A2〉 = (k2 −A1)A2~2 |A1 − 1, A2 − 1〉

from which it is straightforward to compute that H = ~− ϕ1 − ϕ2 acts as

H |A1, A2〉 = (A1 +A2 + 1− k
2 )~ |A1, A2〉

and makes (E,F,H) an sl2 triple. The quadratic Casimir C2 = 2(EF + FE) + H2

acts as

C2 |A1, A2〉 =

(
(A1 −A2 − k

2 )2 − 1

)
~2 |A1, A2〉 .

It is straightforward to check that the desired relations are indeed satisfied with
m = −k

2~.
From the action of sl2, we see that the classes |A1, 0〉 are lowest weight vectors

with weights ν = (A1 + 1 − k
2 )~. Therefore, the homology of this GASF can be

expressed as an sl2 module as

HC×
∗ (M(2,k)) =

k⊕
A1=0

Λ(
A1+1−k2

)
~
,

where Λν is the sl2 Verma module generated by a lowest weight vector of weight ν.
It is also worth noting that |0, 0〉 is a vacuum vector for the Heisenberg algebra gen-
erated by X,Y ; hence it is the unique spherical rational Cherednik algebra singular
vector. We can therefore identify this with the SCA module:

HC×
∗ (M(2,k)) ' eLk/2(triv),

where e is the S2 symmetrizer in the rational Cherednik algebra and Lk/2(triv) is the
simple rational Cherednik algebra module induced from the trivial representation of
S2. �
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Remark B.2. It is worth noting that there is another presentation of the GL2

spherical rational Cherednik algebra given by a (different) sl2-triple (Ẽ, F̃ , H̃) and
the Heisenberg pair X,Y .2 In this presentation X,Y transform trivially under sl2
and the quadratic Casimir of the sl2-triple is given by

C̃2 = (m− 3
2ε)(m+ 1

2ε)

with no other constraints. In this presentation we find that the homology of our
GASF is given by

HC×
∗ (M(2,2`+1)) ' C[X]⊗ Sym`�,

where Sym`� is the `+ 1 dimensional representation of sl2. We can identify Sym`�
as the cohomology of P`, the compactified Jacobian for the (2, 2` + 1) torus knots.
This feature was predicted in [ORS18].

We now move to the action of the rational Cherednik algebra on the homology of
parabolic Hilbert schemes. In particular, we spell out the comparison in Theorem
4.29 between the action given by Theorem 4.9 and [GSV20].

Theorem B.3. The action of the rational Cherednik algebra on the homology of

PHilb•(Ĉ) given in Theorem 4.9 agrees with the action of [GSV20, Theorem 7.14].

Proof. As discussed at the end of Section 3, we describe the action on classes |A, σ〉
associated to the fixed points σtAp and match the action of the rational Cherednik
algebra given in [GSV20] by identifying these fixed points with their “renormalized
basis.” We start by identifying

|A1, A2, ()〉 = ṽ(A1,A2) |A1, A2, (12)〉 = ṽ(A2,A1).

The action of the equivariant parameters ϕa on the class |A, σ〉 can be easily seen
to be

ϕ1 |A, ()〉 = (k2 −A1)~ |A, ()〉 ϕ1 |A, (12)〉 = −A2~ |A, (12)〉

and

ϕ2 |A, ()〉 = −A2~ |A, ()〉 ϕ2 |A, (12)〉 = (k2 −A1)~ |A, (12)〉 ,

which translates to (for A2 ≤ A1)

ϕ1ṽ(A2,A1) = (k2 −A1)~ṽ(A1,A2) ϕ2ṽ(A1,A2) = −A2~ṽ(A2,A1)

and (for A1 > A2)

ϕ1v(A2,A1) = −A2~v(A2,A1) ϕ2v(A2,A1) = (k2 −A1)~v(A2,A1)

we can thus identify u1 = ϕ1 and u2 = ϕ2 in [GSV20, Theorem 7.14].

2The change of variables is given by Ẽ = E − 1
4
X2, F̃ = F + 1

4
Y 2, H̃ = H + 1

4
(XY + Y X).
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The action of the transposition s on |A, σ〉 is given by

s |A1, A2, ()〉 =
k

2(A2 −A1)− k
|A1, A2, ()〉+

2(A2 −A1)

2(A2 −A1)− k
|A1, A2, (12)〉

s |A1, A2, (12)〉 =
2(A2 −A1 + k)

2(A2 −A1)− k
|A1, A2, ()〉 −

k

2(A2 −A1)− k
|A1, A2, (12)〉

.

from which it follows that 1− s acts as

(1− s) |A1, A2, ()〉 =
2(A1 −A2)

2(A2 −A1)− k
(|A1, A2, ()〉 − |A1, A2, (12)〉)

(1− s) |A1, A2, (12)〉 =
2(A1 −A2 − k)

2(A2 −A1)− k
(|A1, A2, (12)〉 − |A1, A2, ()〉)

In agreement with the action of 1− s in [GSV20, Theorem 7.14].
Finally, the actions of T and Λ do not require a fancy localization formula as they

correspond to point classes in the affine flag variety. In particular, we find that the
excess intersection factors are trivial for T :

T |A1, A2, ()〉 = |A1 + 1, A2, (12)〉 T |A1, A2, (12)〉 = |A1, A2 + 1, ()〉

and they are −A2~ (resp. (k2 −A1)~) for Λ on |A1, A2, ()〉 (resp. |A1, A2, (12)〉):

Λ |A1, A2, ()〉 = (k2−A2)~ |A1, A2 − 1, (12)〉 Λ |A1, A2, (12)〉 = (k2−A1)~ |A1, A2 − 1, ()〉

in agreement with the action of T,Λ on ṽa from [GSV20, Theorem 7.14]. �
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