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Abstract

Let u∨ζ denote the small quantum group associated with a simple Lie
algebra g∨ and a root of unity ζ. Based on the geometric realization of u∨ζ
in [8], we use a combinatorial method to derive a formula for the dimension
of a subalgebra in the G∨-invariant part of the center Z(u∨ζ )

G∨
of u∨ζ , that

conjecturally coincides with the whole G∨-invariant center. In case G =
SLn we study a refinement of the obtained dimension formula provided
by two geometrically defined gradings.
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1 Introduction

Let G be a complex simple simply connected algebraic group, and g its Lie
algebra. We will fix Cartan and Borel subalgebras t ⊂ b ⊂ g in g. Denote also
by t∨ ⊂ b∨ ⊂ g∨ the same data for the Langlands dual Lie algebra. Let ℓ be an
odd number that is greater than the Coxeter number h of g and coprime to the
determinant of the Cartan matrix and to h+ 1.

We denote by u∨ζ = uζ(g
∨) the small quantum group associated to the Lie al-

gebra g∨ and a primitive ℓ-th root of unity ζ [33]. Let Λ denote the coweight
lattice of G, and W the Weyl group of g (and g∨). Then u∨ζ decomposes into
a direct sum of blocks enumerated by the orbits of the extended affine Weyl
group of g, W̃ = W ⋉ Λ acting via the ℓ-dilated dot action on Λ, see for exam-
ple the Introduction to [25]. We denote by u∨,λ

ζ the block corresponding to the

W̃ -orbit of λ ∈ Λ. In particular, u∨,0
ζ denotes the principal (regular) block of the

small quantum group.

In this paper we derive a dimension formula for a subalgebra in the G∨-invariant
part of the center Z(u∨

ζ ) of the small quantum group1. Conjecturally, this sub-
algebra coincides with the entire Z(u∨

ζ )
G∨

. In case G = SLn we study a re-
finement of the obtained dimension formula provided by two gradings. Our
treatment is based on the geometric realization of the subalgebra in the G∨-
invariant part of the center of u∨ζ obtained in [8].

Theorem 1.1 (BBASV). There is an algebra embedding

H∗(Grζ,γ)W̃ ⊆ Z(u∨ζ )
G∨

where the product on the left is the cup product.

Conjecture 1.2 (BBASV). The embedding above is an isomorphism.

Here Grζ,γ = Grγ ∩ Grζ , where Grγ is the affine Springer fiber with γ = stℓ−1

for a regular element s ∈ treg, and Grζ are the ζ-fixed points for the cyclic group
action generated by ζ. The W̃ -action is the one induced by the lattice action on

1After this paper was written, we received the complete text of [8], where the same dimension
is computed. We use a different argument based on the block decomposition.
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the affine Springer fiber, as well as a monodromy action coming from variation
of s in a family.

The left-hand side of Theorem 1.1 decomposes naturally in blocks, since Grζ,γ

can be written as a finite disjoint union of generalizations of affine Springer
fibers, as explained in the next section. This block decomposition respects the
one on Z(u∨ζ )

G∨
as explained in loc. cit.

We establish an isomorphism of vector spaces between the geometrically de-
fined subspace of the G∨-invariant part of the center of the regular block Z(u∨,0

ζ )G
∨

of the small quantum group and Gordon’s canonical quotient of the space of
the diagonal coinvariants, which we will denote DRW and simply call diagonal
coinvariants, hoping this will not cause extra confusion. Assuming Conjecture
1.2, the obtained result agrees with (an ungraded form of) the conjecture for-
mulated in [24].

Further, we extend the result to a similar isomorphism for other blocks of
u∨ζ , relating the geometrically defined subalgebra in each block of the center

Z(u∨,λ
ζ ) to a respective space of partial diagonal coinvariants DR

Wλ

n .

Combinatorially, this allows us to derive the formula for the dimension of the
subalgebra isomorphic to H∗(Grζ,γ)W̃ in the G∨-invariant part of the center
(Z(u∨ζ ))

G∨
of the small quantum group in terms of the rational Catalan number

associated with the Weyl group of g.

Theorem 1.3. Suppose that ℓ is as in the beginning of the Introduction. Then

dimH∗(Grζ,γ)W̃ = CatW ((h+ 1)ℓ− h, h),

where CatW is the generalized rational Coxeter-Catalan number of W , and h the Cox-
eter number associated with the root system of g.

In case g = sln our result for the dimension of the subalgebra in the center coin-
cides with the formula conjectured by Igor Frenkel for the whole G∨-invariant
part (see [25]):

Corollary 1.4. Let G = SLn, and suppose that n ̸≡ 0,−1 mod ℓ. Then

dimH∗(Grζ,γ)W̃ = c(n+1)ℓ−n,n =
1

(n+ 1)ℓ

(
(n+ 1)ℓ

n

)
,

the rational ((n+ 1)ℓ− n, n)-Catalan number.

The G∨-invariant part of the blocks of the center, indeed the entire blocks of
the center can in fact be equipped with two gradings that arise from the iso-
morphism (as a bigraded vector space) of the center of each block with certain
equivariant cohomologies of coherent sheaves on the Springer resolution [7]
(see Theorem 4.13).

In case G = SLn, assuming the main conjecture in [11], we define a bigrading
on the side of the affine Springer fibers, which coincides with the sign-twisted
bigraded structure on the diagonal coinvariants (see Theorem 4.11). This bi-
grading comes from the realization of the invariant piece of the cohomology
as a quotient of the BM homology of the ”positive part” of the affine Springer
fiber, up to a linear dual.
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We also study another model for the bigrading, coming from the perverse fil-
tration on certain parabolic Hitchin fibers. This formulation is more geometric
and allows us, for example, to define an sl2 action on the blocks of the coho-
mology of affine Springer fibers. We expect that our bigrading (either version)
carried over to the blocks of the center coincides with the one coming from the
equivariant cohomologies of the coherent sheaves on the Springer resolution.
This would imply in particular that the constructed sl2-action on the affine
Springer fiber side coincides with the sl2 action ”along the diagonals” as in [24,
Section 4]. Finally, we exhibit a spectral curve construction which can hope-
fully be used to relate the second model of the bigrading to the (much better
behaved) elliptic homogeneous affine Springer fibers studied e.g. in [12].
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2 Affine Springer fibers

Let ζ be a primitive ℓ-th root of unity, O := C[[t]],K := C((t)), and s ∈ treg .
Define γ = stℓ−1 and consider

Grγ,ζ = Grγ ∩Grζ

where Grγ is the usual affine Springer fiber

Grγ := {gG(O)|Adg−1γ ∈ g(O)}

and Grζ are the ζ-fixed points for the cyclic group action generated by ζ ∈ Grot
m .

More generally, denote by

F lγP = {gP|Adg−1γ ∈ Lie(P)}

the affine Springer fiber of γ for F lP = G(K)/P the partial affine flag variety
of some parahoric subgroup (or some congruence subgroup thereof) of G(K).

Note first that we may view Grγ as an affine Springer fiber in the partial affine
flag variety for the first congruence subgroup G(1)(O) = ker(G(O) ↠ G(C)).
Namely,

Grγ ∼= {[g] ∈ G(K)/G(1)(O)|Adg−1stℓ ∈ tg(O)}.

Remark 2.1. The explanation for taking γ = stℓ−1 as opposed to γ = stℓ is given
by the rewriting of Grγ in terms of stℓ and the congruence subgroup G(1)(O)
above. Ultimately, we will not be interested in the F lγP for standard parahorics,
but their close analogs flγP, to be defined below. They can be directly defined
using stℓ. This should be compared to [8, Lemma 2.6.], where the terminology
”affine Spaltenstein fiber” and notations such as 0Grγ are used.
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By [32, Proposition 4.6.] we have that

Grζ =
⊔

λ∈Λ/W̃ℓ

F lPλ

where Pλ is the parahoric group scheme in G((zℓ)) associated to λ. Here W̃ℓ is
the extended affine Weyl group acting by the ℓ-dilated action on Λ.

Since the actions of ζ and γ commute,

Grγ,ζ =
⊔

λ∈Λ/W̃ℓ

flγPλ
(2.1)

where
flγPλ

= {[g] ∈ F lPλ
|Adg−1stℓ ∈ Lie(Rad(Pλ))}.

The Λ ∼= T (K)/T (O)-action commutes with ζ, so we get a Λ-action on Grζ,γ

and this preserves the decomposition into flγPλ
. On H∗(Grγ,ζ), there is also an

action of W coming from varying s ∈ treg . These assemble to a (left) action
of W̃ on the cohomology. There is also another commuting (right) action of
W̃ coming from the Springer action. Taking invariants for the left action and
antisymmetrizing on the right by the idempotents

e−λ =
1

|Wλ|
∑

w∈Wλ

(−1)l(w)w

for Wλ a parabolic subgroup of W̃ , we have

Proposition 2.1. As (ungraded) W -representations, for the Springer action of W ,

H∗(flγPλ
)W̃ ∼= C[Q/(h+ 1)Q]e−λ .

Here Q is the coroot lattice. In particular,

H∗(flγPλ
)W̃ ∼= DR

Wλ

W ,

where DRW is defined in the beginning of Section 3.1. Here Wλ is the stabilizer of
λ ∈ Λ inside W .

Proof. By [9, Theorem 1.2.] we have that H∗(flγI )
W̃ is isomorphic to

C[Q/(h+ 1)Q]

as a W−representation. This is the sgn-twist of DRW [16].

On the other hand, we claim that H∗(flγPλ
)W̃ ∼= H∗(flγI )

W̃e−λ .

Note that there is a natural inclusion

flγPλ
→ F lγPλ

:= {[g] ∈ F lPλ
|Adg−1stℓ ∈ Lie(Pλ)}

And that we always (i.e. for any parahoric containing I and any regular semisim-
ple γ) have a Cartesian diagram
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F lγI

[̃
lP/LP

]

F lγP [lP/LP]

where the right-hand column is the Grothendieck-Springer resolution for LP,
the Levi quotient of P. Taking the fiber at 0 of the bottom map gives exactly flγP.
The cohomology of this fiber is exactly the Wλ-antisymmetric part of the pull-
back of the Springer sheaf (see [17, Lemma 2.2]), so after noting that everything
commutes with the W̃ -action, we are done.

Remark 2.2. It would be interesting to know if there is an extension of this
Proposition to the singly or doubly graded cases. For the doubly graded case
in type A, see Corollary 4.12.

The relation with the center of the small quantum group is as follows.

Proposition 2.2. We have

H∗(Grζ,γ)W̃ ∼=
⊕

λ∈Λ/W̃ℓ

DR
Wλ

W

where DR
Wλ

W is as in Eq. (3.1). Assuming Conjecture 1.2, this also gives the block
decomposition for Z(u∨ζ )

G∨
.

To compute the dimension of H∗(Grζ,γ)W̃ , it will be enough to understand the
structure of the block decomposition and the dimensions of the DR

Wλ

W . This
will be done in Sections 3.2 and 3.3.

In analogy with the proof of Proposition 2.1, we will need the following simple
fact. Let

e =
1

|W |
∑
w∈W

w, e− =
1

|W |
∑
w∈W

(−1)ℓ(w)w

be the symmetrizing and antisymmetrizing idempotents for W .

Lemma 2.3. Let γ ∈ g(K) be any regular semisimple element. As singly graded
W -representations, we have that

H∗(F ltγI )e− ∼= H∗(Grγ)[−2 dimG/B]

Proof. This is [17, Lemma 2.2.].

The following corollary is probably well-known but we couldn’t find a proof
in the literature and give a Springer-theoretic proof here, which may be of in-
dependent interest.

Corollary 2.4. Let m > h be coprime to h. Then

C[Q/mQ]e− ∼= C[Q/(m− h)Q]e
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Proof. For any m coprime to h, it is known by [34] that C[Q/mQ] can be real-
ized as a W̃ -representation using the cohomology of the affine Springer fiber
corresponding to a certain ”elliptic homogeneous element γm/h of slope m/h”.
More precisely, let Φr denote the set of roots for g of height r. Write m = ah+ b
where 0 ≤ b < h and define

γm/h = ta(t
∑

ϕ∈Φh−b

eϕ +
∑

ϕ∈Φ−b

eϕ) (2.2)

On the other hand, if m > h, the element is divisible by t. Dividing by t, we get
an elliptic homogeneous element in the same family, but of slope m/h − 1 =
(m− h)/h. Now apply Lemma 2.3.

Remark 2.3. This corresponds to the relation between the number of all orbits
vs. the regular orbits of W in Q/mQ, which are by [20, Theorem 7.4.4.] given
by Eq. (3.3) and Eq. (3.4).

3 Combinatorics of the blocks

3.1 Singular blocks from the principal block

For the Lie algebra g, fix a Cartan and Borel subalgebras t ⊂ b ⊂ g. Then t
carries an irreducible representation of the Weyl group W . Let DRW denote
Gordon’s canonical quotient of the diagonal coinvariants for W . The latter is
by definition the quotient ring of C[t × t∗] over the natural doubly homoge-
neous ideal containing the invariants without the constant term with respect
to the diagonal action of W , and in [16] the further quotient DRW and its struc-
ture as a W -module is studied. In particular, the dimension of DRW is (h+1)r,
where r = rank(g), and h its Coxeter number [16, Theorem 1.4.] and as a
W−representation, DRW

∼= sgn ⊗ C[Q/(h + 1)Q], where sgn is the sign repre-
sentation of W.

Let λ ∈ Λ, and Wλ be the stabilizer of λ, and consider

DR
λ

W := DR
Wλ

W = HomWλ
(triv,DRW ). (3.1)

By Frobenius reciprocity, the latter is the same as HomW (IndWWλ
(triv),DRW ).

The bigraded dimension of this space is given by the ”Hall inner product” of
Frobenius characters:

dimq,t(DR
λ

W ) = ⟨Frobq,t(IndWWλ
(triv)),Frobq,t(DRW )⟩. (3.2)

Here the Frobenius character Frobq,t : RepZ2−graded(W ) → K0(RepZ2−graded(W ))
takes a doubly graded representation to its class in the Grothendieck group,
where a representation in bigrading (i, j) is weighted by qitj . When G = SLn,
so that W = Sn, we use the notation Frobq,t to also denote the composition of
the above map with K0(RepZ2−graded(W )) → Symq,t sending the Specht mod-
ule labeled by λ to the Schur function sλ, see the next Section.
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3.1.1 Type A

Let us now upgrade the type A result to include the natural bigrading. In case
g = sln we have W = Sn and we write

DRSn
= DRn = DRn =

C[x1, . . . , xn, y1, . . . , yn]

C[x1, . . . , xn, y1, . . . , yn]W+
.

Let Symq,t[X] be the ring of symmetric functions over Q(q, t) in the alphabet
X = {x1, x2, . . .} and let ∇ be the nabla operator of [6], diagonal in the ba-
sis of modified Macdonald polynomials. Let {eλ}, {pλ}, {hλ}, {mλ}, {sλ} be
the bases of elementary, power sum, complete homogeneous, monomial, and
Schur symmetric functions, and ω = ωX the usual involution on symmetric
functions.

In this case we have the following more explicit statement about the bigraded
dimension of DR

Wλ

n .

Proposition 3.1. Let λ ∈ Λ and Wλ ⊂ Sn be the stabilizer of λ. Then

dimq,t(DR
λ

n) = ⟨hλ,∇en⟩,

where hλ is the homogeneous symmetric function associated with λ, en the n-th el-
ementary symmetric function, and ∇ the Garsia-Haiman nabla operator acting on
symmetric functions.

Proof. It is clear that DRn is bigraded by x, y-degree and that this decompo-
sition respects the W -action. The q, t-Frobenius character is given by Haiman
[19] as the symmetric function ∇en where ∇ is the Garsia-Haiman ∇-operator
on symmetric functions and en is the n-th elementary symmetric function.

It is also well known that the (trivially graded) Frobenius character of IndWWλ
(triv)

is given by hλ, the homogeneous symmetric function attached to λ. Therefore,
we compute using (3.2):

dimq,t(DR
λ

n) = ⟨Frobq,t(IndWWλ
(triv)),Frobq,t(DRn)⟩ = ⟨hλ,∇en⟩.

Remark 3.1. We will later use the interpretation of the Frobenius characters as
symmetric functions when G = SLn. If we are for example interested in the
bigraded multiplicity of λ, it is given by

⟨∇en, sλ⟩.

Proposition 3.2. When W = Sn and λ is subregular, we have

dim(DR
λ

n) = ⟨hλ,∇en⟩ =
n−1∑
k=0

∑
i+j=k

qitj ,

in particular the bigraded dimensions of DRn are

1 1 · · · 1 1
1 1 · · · 1...

...
...

1 1
1
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Proof. The Shuffle Theorem of Carlsson-Mellit [11] states that

∇en =
∑

π∈PFn

qarea(π)tdinv(π)xπ

where π ∈ PFn is a parking function on n letters, and area and dinv are cer-
tain combinatorial statistics (see [11] for the definition). The monomial xπ is
a monomial in the alphabet {x1, . . . , xn, . . .} associated to π. Collecting all the
monomials in the Sn-orbit of a fixed π and using the orthogonality of the bases
{mλ}, {hµ} for the Hall inner product, we see that ⟨hλ,∇en⟩ is a weighted
count of Dyck paths whose associated monomial is λ. For λ = (n− 1, 1), these
are Dyck paths differing from the one with minimal area by allowing an extra
horizontal step (compare [15], where a similar result is proved using Schröder
paths). Fixing the length of this step, we get n − length Dyck paths, each of
which has the same area. It is easy to see that they all have a different dinv
statistic. In total, we get

(
n+1
2

)
Dyck paths, each with distinct statistics. This

completes the proof.

Corollary 3.3. Let g∨ = sln and let Z(u∨,λ
ζ ) denote the block of the center of the

small quantum group uζ(g
∨) with λ a subregular weight. Let Pλ ⊂ G = SLn be

the parabolic subgroup associated to λ and Ñλ ≃ T ∗(G/Pλ) the Springer resolution.
The additional grading of the coherent sheaf of poly-vectorfields ∧jTÑλ is given by
the induced action of C∗ along the fibers of the Springer resolution. Then there is an
isomorphism of bigraded vector spaces

Z(u∨,λ
ζ )i,j ≃ Hi(Ñλ,∧jTÑλ)

−i−j ≃
(
DR

λ

n

)(n+1
2 )− i+j

2 , j−i
2

.

Proof. The first isomorphism is a particular case of theorem 7 in [7]. The bi-
graded dimensions of the equivariant coherent sheaf cohomologies in case
when λ is subregular and G/Pλ ≃ Pk are computed in Theorem 3.3 of [25].
They match exactly the bigraded dimensions of DR

λ

n obtained in Proposition
3.2.

This shows in particular that for G of type An and a singular block Z(u∨,λ
ζ ) such

that G/Pλ is a projective space, the cohomology of the corresponding affine
Springer fiber is isomorphic to the whole singular block of the center. This also
confirms Conjecture 4.9(3) in [24] at the level of the bigraded vector spaces.
Note that in this case the whole block of the center of the small quantum group
is G∨-invariant.

3.2 Enumeration of blocks

Let aℓ be the ℓ-dilated fundamental alcove for G. We would like to compute the
number of blocks u∨,λ

ζ for the small quantum group for λ with a given stabilizer
Wλ ∈ W . Therefore, we have to enumerate the singular coroot weights in
aℓ ∩X+, or equivalently in Q/ℓQ, with a given type of stabilizer in affine Weyl
group. By [20], the total number of orbits is

1

|W |
∏

(ℓ+ di) (3.3)
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and the number of regular orbits is

1

|W |
∏

(ℓ− di). (3.4)

The first quantity merits a name and plays a significant role in so called Coxeter-
Catalan combinatorics, see for example [35].

Definition 3.4. Let m be coprime to h. The m/h-Coxeter-Catalan number of W is

CatW (m,h) =
1

|W |
∏

(m+ di)

Let us first sketch how this plays out for G = SLn. In this case for ℓ = n + 1,
we have the classical Catalan number CatSn

(n+1, n) = 1
n+1

(
2n
n

)
. On the other

hand, Eq. (3.4) gives 1, i.e. there is a single regular orbit in Q/(n+ 1)Q.

For more general m, since Q/mQ for (m,n) = 1 is in Sn-equivariant bijection
with rational parking functions of slope m/n, we only need to understand the
orbits on the latter. One can think of rational parking functions as Dyck paths
with labels {1, . . . , n} on the vertical runs, where the labels have to be increas-
ing in each run. The Sn-action permutes the labels on the parking functions,
and therefore the stabilizer is given by the structure of the vertical runs.

In [3, Proposition 2] the following is proved, giving the general number of
orbits of a given type:

Proposition 3.5. Let mi, i = 1, . . . , n be the number of vertical runs of length i and
let m0 be such that

∑n
j=0 mj = m. Then the number of Dyck paths with vertical run

structure m1, . . . ,mn is given by the multinomial coefficient

(m− 1)!

m0! · · ·mn!

Compare also [20, Conjecture 2.4.2] in the case m = n+ 1.

These numbers are known as (rational) Kreweras numbers. The goal of this sec-
tion is to understand the general ”rational Coxeter” analogs of Kreweras num-
bers, as first defined in [34]. These are defined as follows. Consider Q/ℓQ with
its natural action of the affine Weyl group W̃ .

The stabilizer in the finite Weyl group W ⊂ W̃ of q ∈ Q/ℓQ is by [34, Propo-
sition 4.1.] a parabolic subgroup of W . Let {Wλ} be a set of representatives
of parabolic subgroups of W . Now, C[Q/ℓQ] is by definition a permutation
representation of W , so by orbit-stabilizer splits as

C[Q/ℓQ] =
⊕
λ

dλ,ℓInd
W
Wλ

(1)

Definition 3.6. The ℓ/h-rational Kreweras number of type λ for G is by definition
the coefficient dλ,ℓ in the above decomposition. In other words, it is the number of W -
orbits in Q/ℓQ with a given stabilizer.

Remark 3.2. Without our assumptions on ℓ, which for example imply ℓ is ”very
good” in the sense of [34], the Wλ appearing above are in general only so called
quasi-parabolic subgroups of W . We will however not need them.
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Explicit formulas for the Kreweras numbers for classical groups can be found
in [34]. There is also a general formula in terms of hyperplane arrangements
[34, Proposition 5.1.]. We will need the following proposition, which follows
directly from the definitions.

Proposition 3.7. The sum of the Kreweras numbers over the representatives {Wλ} is
the ℓ/h-Coxeter-Catalan number for W :∑

λ

dλ,ℓ = CatW (ℓ, h)

Example 3.3. For W of dihedral type, there are three distinct types of orbits,
which one can compute by hand or using Eqs. (3.3)–(3.4), generalizing the
Alfano-Reiner results from [20, Section 7.5]. For example for G of type B2, we
have 1 maximally singular orbit (the origin), (ℓ−1)(ℓ−3)

8 regular orbits, and ℓ− 1
subregular orbits.

Figure 3.1: The dilated fundamental alcove for B2 and dominant weights in it
for ℓ = 7. Different colors correspond to different stabilizer types.

For G of type G2, we have the origin, (ℓ−1)(ℓ−5)
12 regular orbits and ℓ−1 subreg-

ular orbits.

3.3 Putting it together

Fix G and as in the previous section, let dλ,ℓ be the number of orbits of type λ
in Q/ℓQ. We are interested in the sum

dh,ℓ :=
∑
λ

dλ,ℓ dimDR
Wλ

W . (3.5)

Theorem 3.8. Assume ℓ does not divide h or h+ 1 for W . Then We have

dh,ℓ = CatW (ℓ(h+ 1)− h, h).

The rest of this section will be devoted to a proof of this theorem. Before doing
so, we note how this implies Theorem 1.3 from the Introduction.

Corollary 3.9. With ℓ as above, we have that the dimension of the subalgebra described
in Theorem 1.1 of the G∨-invariant part of the center of the small quantum group at a
primitive ℓ-th root of unity ζ is given by

dimH∗(Grζ,γ)W̃ = CatW ((h+ 1)ℓ− h, h).
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Proof. Combining Proposition 2.1 and Eq. (2.1), we have that

dimH∗(Grζ,γ)W̃

is given by summing dλ,ℓ dimDR
Wλ

W over λ. This is the definition of dh,ℓ from
above.

Of Theorem 3.8. We may interpret the summation over λ on the RHS of Eq. (3.5)
as follows. Each orbit of type λ contributes a IndWWλ

1 to the representation

Q/ℓQ. On the other hand, dimDR
Wλ

W is by Frobenius reciprocity

dimHomW (IndWWλ
(1),DRW ),

so we can write dh,ℓ = dimHomW (C[Q/ℓQ],DRW ). Now note that DRW
∼=

sgn ⊗ C[Q/(h + 1)Q] as W -representations, where sgn is the sign character of
W where all simple reflections act by −1.

Therefore, we are computing the dimension of the anti-invariants:

HomW (C[Q/ℓQ],DRW ) = (C[Q/ℓQ]⊗ C[Q/(h+ 1)Q])e−.

By our assumptions on ℓ, the Chinese remainder theorem implies C[Q/ℓQ] ⊗
C[Q/(h+ 1)Q] ∼= C[Q/ℓ(h+ 1)Q] as W -representations.

To conclude the proof, use Lemma 2.3 to note that

C[Q/ℓ(h+ 1)Q]e− ∼= C[Q/(ℓ(h+ 1)− h)Q]W .

The dimension of this space is CatW ((h+ 1)ℓ− h, h) by definition.

Remark 3.4. Corollary 3.9 gives the dimension of the cohomology of the affine
Springer fibers. By the explicit computation on the coherent side, we know that
these dimensions match the dimensions of the G∨-invariant part of the center
of the small quantum group for types A1, A2, A3, A4, B2, G2 for all blocks ( see
[21, Sections 4 and 5]). Therefore, Conjecture 1.2 is confirmed in all these cases.

Example 3.5. We illustrate the dimension formula by a continuation of Example
3.3. In the case of B2 one computes

dh,ℓ = 25 · (ℓ− 1)(ℓ− 3)

8
+ 10 · (ℓ− 1) + 1

and in the case of G2 one has

49 · (ℓ− 1)(ℓ− 5)

12
+ 21 · (ℓ− 1) + 1

and these can be checked to match Hochschild cohomology computations as
in [21].

3.3.1 Type A

Let dλ,ℓ be the number of orbits of type λ in Q/ℓQ. We will give a slightly
different proof of Theorem 3.8 for G of type A in this section, which we hope
will be illuminating to the reader. Note that

dn,ℓ :=
∑

λ∈P (n)

dλ,ℓ⟨hλ,∇en⟩|q=t=1

12



in this case, where we use the Hall inner product on symmetric functions and
hλ is the complete homogeneous symmetric function.

By Proposition 3.5, we have that

dλ,ℓ =
1

ℓ

(
ℓ

m0(λ), . . . ,mn(λ)

)
,

where mi(λ) is the number of parts of size i in λ for i > 0 and defined as above
for i = 0.

The final answer we are looking for is the ((n + 1)ℓ − n, n)-Catalan number.
This is the same as the total number of orbits in Q/(n(ℓ+ 1)− n)Q.

Theorem 3.10. Suppose ℓ is as in the introduction, i.e. odd and n ̸≡ 0,−1 mod ℓ. We
have

dn,ℓ = c(n+1)ℓ−n,n =
1

(n+ 1)ℓ

(
(n+ 1)ℓ

n

)
,

the rational ((n+ 1)ℓ− n, n)-Catalan number.

Proof. Note that dλ,ℓ = ⟨Pℓ,n·1,mλ⟩|q=t=1 where mλ are the monomial symmet-
ric functions and Pm,n for m,n ≥ 0 are the usual elliptic Hall algebra operators
as in [30].

We may combine the summation over λ on the RHS and use linearity of the
scalar product to get

⟨
∑
λ

hλ⟨Pℓ,n · 1,mλ⟩,∇en⟩|q=t=1 = ⟨ωPℓ,n · 1,∇en⟩|q=t=1 (3.6)

Here ω is the usual involution on symmetric functions. On the other hand, on
the LHS, we may write dn,ℓ = ⟨P(n+1)ℓ−n,n · 1, en⟩|q=t=1. We may interpret
this latter pairing as taking the dimension of the invariants in the ((n + 1)ℓ −
n, n)-parking function module. On the other hand, this is the same as the anti-
invariant part of the ((n+ 1)ℓ, n)−parking function module by Lemma 2.3.

In Eq. (3.6) we may further interpret the pairing as the dimension of the invari-
ants of the tensor product of the sign-twisted (ℓ, n)-parking function module
and the (n+ 1, n)-parking function modules.

Now, each of these m,n-parking function modules looks like C[Q/mQ] where
Q is the root lattice of Sn. If n ̸≡ 0,−1 mod ℓ, the Chinese remainder theorem
implies that C[Q/ℓQ×Q/(n+ 1)Q] ∼= C[Q/(ℓ(n+ 1))Q] as Sn-representations,
giving the conclusion.

Remark 3.6. We have checked the identity from Theorem 3.10 with a computer
for all (not just coprime to n, n+ 1) odd 5 < ℓ < 30 and 1 < n < 10 and expect
it to be true in general.

Remark 3.7. By the rational shuffle conjecture, resulting from e.g. [29], we know
the bigraded scalar products ⟨Pm/n · 1, hλ⟩ for the m/n-case as well. It would
be interesting to understand a (bi)graded version of Theorem 3.10 as well.
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3.3.2 The Harish-Chandra center, the Higman ideal and the Verlinde quo-
tient

In the proof of Theorem 3.8 we have obtained a (non-multiplicative) combi-
natorial model of a subalgebra Z ≡ H∗(Grζ,γ)W̃ of Z(u∨ζ )

G∨
, and hopefully,

under Conjecture 1.2, of the whole G∨-invariant part of the center. It is given
by

Z ∼= C[Q/ℓ(h+ 1)Q]e− ∼= [C[Q/(h+ 1)Q]⊗ C[Q/ℓQ]]W− (3.7)

Here we denote by [.]W− taking the isotypical component of the sign repre-
sentation. We would like to point out remarkable correspondences between
certain natural subspaces in [C[Q/(h+1)Q]⊗C[Q/ℓQ]]W− and the well known
subspaces in Z(u∨ζ )

G∨
.

Recall that u∨ζ is a unimodular Hopf algebra, meaning that it contains a two-
sided integral ν ∈ Z(u∨ζ ) that is unique up to rescaling and such that νx = ε(x)ν
and xν = ε(x)ν for any x ∈ u∨ζ , where ε : u∨ζ → C is the counit. The Hopf
algebra u∨ζ is a left module over itself with respect to the Hopf adjoint action
adh(x) =

∑
h1xS(h2) for any h, x ∈ u∨ζ , where S is the antipode and we used

the Sweedler’s notation for the coproduct ∆h =
∑

h1⊗h2. It is easy to see that
the space adν(u∨ζ ) is spanned by central elements.

Definition 3.11. The space adν(u∨ζ ) ≡ ZHig is an ideal in Z(u∨ζ ), called the Higman
ideal.

Recall also that u∨ζ is a quasitriangular Hopf algebra with the invertible element
R ∈ u∨ζ ⊗ u∨ζ such that the map

J : f → m(f ◦ S−1 ⊗ id)(R21R12)

sends the K2ρ-twisted traces of u∨ζ -modules to Z(u∨ζ ). Moreover, it is an injec-
tive algebra homomorphism from the Grothendieck ring of u∨ζ into the center.

Definition 3.12. The homomorphic image of the Grothendieck ring under the map J
is a subalgebra ZHCh ⊂ Z(u∨ζ ) called the Harish-Chandra center.

It follows from Lusztig’s tensor product theorem for simple modules over the
big quantum group [27], that ZHCh is isomorphic as an algebra to C[Λ]W /C[ℓΛ]W
[10], the algebra of characters of u∨ζ -modules, spanned by the W -symmetric
functions with highest weights in Λ/ℓΛ, and that dimZHCh = ℓr(g

∨).

Proposition 3.13. ([26], Proposition 2.26 and Theorem 4.3). The Higman ideal is
spanned by the images of the characters of the projective u∨ζ -modules under the map J .
The intersection of ZHig with each block of the center is one-dimensional and therefore
we have dimZHig = CatW (ℓ, h).

We have
ZHig ⊂ ZHCh ⊂ Z(u∨ζ )

G∨

The second inclusion follows from the fact that the J-image of the Grothendieck
ring also arizes as the specialization to u∨ζ of the center of the big quantum
group, where the action of g∨ is realized by the adjoint action of the l-th di-
vided powers of the Chevalley generators, trivial on the central elements.

Now consider the model of Z ⊂ Z(u∨ζ )
G∨

given by 3.7. Note that there exists
exactly one regular orbit of W in C[Q/(h + 1)Q], which decomposes as the
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regular representation of W : Oreg =
∑

i∈I diVi, where {Vi}i∈I is the complete
set of inequivalent irreducible representations of W , and di = dimVi. On the
other hand, C[Q/ℓQ] decomposes as

∑
i∈I kiVi for some natural ki > 0, i ∈ I .

Now for each i ∈ I there exists a unique ī ∈ I such that Vī = Vi ⊗ sgn and
di = dī. Here sgn denotes the sign representation of W . We have that Vj ⊗ Vi

contains sgn with multiplicity 1 if and only if j = ī. Then

[Oreg ⊗ C[Q/ℓQ]]W− ∼= [(
∑
i∈I

diVi)⊗ (
∑
i∈I

kiVi)]
W− ∼= (

∑
i∈I

kidi(sgn)),

so that the dimension of this subspace equals to the dimension of C[Q/ℓQ],
namely ℓr(g). Therefore dim[Oreg ⊗ C[Q/ℓQ]]W− = dimZHCh.

Further, there exists a natural subspace of dimension dimZHig in [Oreg⊗C[Q/ℓQ]]W− .
Lemma 2.3 implies that C[Q/(h + 1)Q] contains the sign representation sgn ⊂
Oreg of W with multiplicity 1. Each of the CatW (ℓ, h) orbits of W in C[Q/ℓQ]
contains the trivial representation triv with multiplicity 1. Therefore the sub-
space dim sgn⊗ trivCatW (ℓ,h) = dim ZHig and we have

sgn⊗ trivCatW (ℓ,h) ⊂ [Oreg ⊗ C[Q/ℓQ]]W− .

Exchanging the roles of sgn and triv also leads to an interesting subspace in
Oreg ⊗C[Q/ℓQ]]W− . We have exactly one trivial representation triv in Oreg. By
Lemma 2.3 the sign representation in C[Q/ℓQ] has multiplicity CatW (ℓ− h, h).
Therefore the subspace triv ⊗ sgnCatW (ℓ−h,h) in our model of the center has
the dimension CatW (ℓ− h, h), which is the dimension of the Verlinde quotient
V erl of the Harish-Chandra center of u∨ζ . Recall that the Verlinde quotient of
the Grothendieck ring is spanned by the characters of the Weyl modules over
u∨ζ with highest weights running over the regular weights in the ℓ-dilated fun-
damental alcove aℓ, and the multiplication is defined up to the ideal spanned
by the linear combinations of Weyl characters symmetric with respect to any
reflection in W̃ℓ. The number of regular weights in aℓ is given by CatW (ℓ−h, h).

We have
triv ⊗ sgnCatW (ℓ−h,h) ⊂ [Oreg ⊗ C[Q/ℓQ]]W−

with dim triv ⊗ sgnCatW (ℓ−h,h) = dim V erl.

The Verlinde algebra admits a basis of representatives spanned by W -antisymmetric
linear combinations Weyl characters ([1]), while the Higman ideal admits a ba-
sis of W -symmetric linear combinations of Weyl characters (([23], Proposition
4.3), in parallel with the appearence of sgnCatW (ℓ−h,h) and trivCatW (ℓ,h) respec-
tively in our combinatorial model.

4 The bigrading in type A

In this section we explain how to get a bigrading on the space H∗(F lγI )
W̃ ∼=

H∗(F lγI )
Λ for G = GLn, which corresponds to the principal block of the center

under Conjecture 1.2. There are in fact at least two geometric ways to do this.
The first one is using the perverse filtration on the parabolic Hitchin fibration
and the second one is using the ”number of points” or ”connected compo-
nents” grading on the positive part of the affine Springer fiber, as studied in [11].
Using techniques of loc. cit. and assuming their Conjecture A, we can show
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that the bigraded structure as an Sn-module agrees with that of the diagonal
coinvariant ring, as conjectured in [24].

On the other hand, the advantage of using the Hitchin fibration is that there is
a natural ”Lefschetz element” coming from the relatively ample determinant
bundle on the parabolic Hitchin fibration. We conjecture that the sl2-action
on the center obtained this way coincides with the one given by the wedge
product with the Poisson bivector field on the Springer resolution. Further, we
conjecture the bigradings obtained in these two ways are the same (up to an
explicit change of variables).

4.1 The parabolic Hitchin fibration

First, we want to construct a particular compactification of the singular curve
given by xn+yn = 0 ⊂ C2, inside a Hirzebruch surface. Most importantly, this
compactification will be irreducible, i.e. a spectral curve for the anisotropic
locus of the Hitchin fibration, and have only an isolated singular point which
is an ordinary n-uple point.

Let Σr = P(OP1(r)⊕OP1) be the r-th Hirzebruch surface. The Picard group of
Σr is generated by the zero section Er and the class of a fiber F , with intersec-
tion form determined by F 2 = 0, E2

r = −r and ErF = 1.

Recall that there is a birational map from Σr to Σr+1, called an ”elementary
transform” (see [4, Chapter 3]), constructed as follows. We choose some fiber
F , and consider the surface Σ′

r, the blow-up of Σr at p := F ∩ Er. Let F ′, E′
r

the strict transforms of F,Er and Ẽ be the exceptional divisor of this blow-up.
Then we have

0 = F 2 = (F ′ + Ẽ)2 = (F ′)2 + 2− 1

hence F ′ is a (−1)-curve and can be contracted, the resulting surface being
Σr+1. See Figure 4.1 for the toric picture, where the red line is the contracted
curve.

Figure 4.1: The toric blow-up and contraction giving a birational map Σr →
Σr+1.

Now we can prove :

Lemma 4.1. For all n ≥ 0, there is a curve C ⊂ Σ2 such that C is irreducible, has a
unique singular point, with singularity type xn + yn = 0.
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Proof. Let C2 ⊂ P2 be a smooth curve of degree n, and Σ1 be the blow-up of
P2 at a point a /∈ C2. We denote by C1 the strict transform of C2. Consider a
generic fiber F0 and the corresponding elementary transform.

The strict transform C ′ of C1 inside Σ′
1 is isomorphic to C1. Denote by C the

image of C ′ under the contraction of F ′. Since F ∩ C1 is given by n points,
we see that C is analytically isomorphic to C2 where n points have been glued
transversally together, resulting in an ordinary n-uple point q. It’s clear that
C\{q} is smooth. Since C\{q} is connected, C is irreducible.

Remark 4.1. Since C2 is the normalization of C, the geometric genus of C is
gg =

(
n−1
2

)
. Since the blowdown introduces

(
n
2

)
nodes to C ′, the arithmetic

genus is ga = gg +
(
n
2

)
= (n− 1)2.

Definition 4.2. Let X/C be a smooth projective curve, G a split reductive group, and
L a line bundle on X with degL ≥ gX . The Hitchin moduli stack is the functor

M : SchC → Grpd

sending

S 7→ {(E,φ)|E is a G− torsor over S ×X,φ ∈ H0(Ad(E)⊗ L)}

Definition 4.3. Let X,G,L be as above. The parabolic Hitchin moduli stack is the
functor

M̃ : SchC → Grpd

sending

S 7→ {(E,φ, x,Ex)|(E,φ) ∈ M, x ∈ X,Ex is a B − reduction along Γ(x) of E}

Let D be a divisor so that O(D) = L. The Hitchin moduli stack can be inter-
preted as classifying sections

a : X → O(D)×Gm [g/G]

see [31, Lemme 2.4.].

Definition 4.4. The morphism

M → A :=

n⊕
i=1

H0(X,O(diD))

sending a section a to its image in O(D)×Gm Sym(t∗)W is called the Hitchin fibra-
tion. The base A is called the Hitchin base. The composition

M̃ → M×X → A×X

is called the parabolic Hitchin fibration.

Let now G = SLn and L be a line bundle of degree ≥ 0 on P1. By the BNR
correspondence [5], we may realize the curve C from Lemma 4.1, or rather its
intersection with Tot(O(2)) as a spectral curve {det(xI−φ) = 0} for the Hitchin
fibration

M → A

associated to the data of P1, G,L. Let a ∈ A be such that C is the associated
spectral curve. Note that we in fact have a ∈ Aani ⊂ A♡, the locus where the

17



spectral curves are irreducible, resp. reduced (we will not need a more general
definition of Aani or A♡ here, for that see [31, § 6.1]).

The relationship to the affine Springer fibers considered in this paper is as
follows. The curve C may be chosen so that the unique singularity is over
0 ∈ X . Its local form corresponds to γ = st ∈ g(K) as before, for s =
diag(1, ρ, . . . , ρn−1) where ρ is a primitive n:th root of unity. Let (a, 0) ∈ A♡×X .
Then [36, Proposition 2.4.1] says that

Pa ×P red
0 (Ja) F lγI → M̃a (4.1)

is a homeomorphism of stacks.

Here Pa is the generalized Picard stack, P red
0 (Ja) the reduced quotient of the

local Picard stack at 0. Modding out by Pa, the left-hand side of Eq. (4.1)
simplifies to F lγI /P

red
0 (Ja). By taking γ = st for s ∈ treg as above, it is easy to

compute by hand in this case that P0(Ja) = T (C) × Λ where T is the diagonal
torus in GLn and Λ = X∗(T ) ∼= Zn is the lattice part of the centralizer.

Modifying the proof of [31, Proposition 4.13.1] slightly, we can write the fol-
lowing variant of Eq. (4.1):

M̃a/P♭
a
∼= F lγI /Λ (4.2)

where P♭
a is the Picard group of the normalization of C as in [31, 4.7.3].

The upshot of this analysis is that we may define the perverse filtration on H∗(F lγI /Λ).
Namely, if π : M̃ → M× {0} → Aani denotes the restriction of the parabolic
Hitchin fibration to the locus of irreducible spectral curves and with the parabolic
reduction at 0 ∈ X , π∗C acquires a filtration from the t-structure on the base as

P≤i := im(pτ≤iπ∗C → pτ≤i+1π∗C).

Restricting to the stalk at a, we get a filtration P≤i on H∗(M̃a/P♭
a)

∼= H∗(F lγI /Λ).
By results of Maulik-Yun [28] this filtration is independent of the choice of de-
formation of C used here (we only require the total space to be smooth and a
codimension estimate on the base, handled in this case by [31]). See also [28,
Section 3.1.3.].

We make the following conjecture, which holds for G = SL2.

Conjecture 4.5. As bigraded vector spaces

DRn
∼= grPH∗(F lγI )

Λ (4.3)

Proposition 4.6. The conjecture 4.5 is true for G = SL2.

Proof. In this case, the two vector spaces are equal to C3, hence we just need to
check that the gradings agree. The affine Springer fiber F lγI can be identified
with an infinite chains of P1, and the lattice action is obtained by translation by
2 ([37]). Hence the quotient X0 = F lγI /Λ is isomorphic to an elliptic curve with
a singularity of type I2 (i.e two P1 glued transversally twice). By the discussion
before, this curve also appears as a spectral curve inside a cotangent bundle of
P1, hence its compactified Jacobian is a Hitchin fiber inside the corresponding
Hitchin fibration. Since X0 has arithmetic genus 1, it is isomorphic to its own
compactified Jacobian. It follows by versality of the Hitchin map in this case
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that the restriction of this fibration to a generic line is simply a smoothing of
X0, say f : X → L = C. Let L∗ = L\{0}. By the decomposition theorem, we
have

f∗CX = CL ⊕ CL[−2]⊕ C0[−2]⊕ L [−1]

where L is the rank 2 local system on L∗ given by the matrix
(
1 2
0 1

)
. The pure

part is given by CL ⊕CL[−2]⊕C0[−2]. The perverse degree are −2, 0, 2. Up to
renormalisation, we obtained the same bigrading as the diagonal coinvariants
in this case.

4.2 The Lefschetz element

Let Ldet be the determinant line bundle on M. The iterated cup product by
c1(Ldet) induces a map

∪c1(Ldet)
ga−i : pHdimA+iπ∗C → pHdimA+2ga−iπ∗C

and therefore maps

∪c1(Ldet) : gr
PH∗(F lγI /Λ) → grPH∗(F lγI /Λ)

of bidegrees (a, b) = (2, 2), where a is the cohomological degree and b is the
perverse degree.

We will now prove that c1(Ldet) coincides with a certain polynomial in the ring
of diagonal coinvariants, under Conjecture 4.5. On the other hand, under the
bigraded isomorphism of the principal block of the center Z(u0ζ) with sheaf
cohomology groups of the Springer resolution, we can hope that c1(Ldet) coin-
cides with the Poisson bivector field on the Springer resolution as explained in
more detail in Conjecture 4.15.

Theorem 4.7. Under the identification Eq. (4.3), the element c1(Ldet) ∈ grPH∗(F lγI )
Λ

corresponds up to a nonzero scalar to the ”Haiman determinant” ∆(n−1,1) ∈ DRn

given by
∆(n−1,1) = det(y

pj

i x
qj
i )1≤i,j≤n

where (p1, q1), . . . , (pn, qn) is any ordering of (0, 0), (0, 1), . . . , (0, n − 1), (1, 0) ∈
Z2
≥0

Proof. Since the relevant bigraded piece (n−1, n−1) is 1-dimensional, contains
∆(n−1,1) and c1(Ldet) is nonzero, we are done.

Finally, note that by the Jacobson-Morozov theorem, the nilpotent action of
e = ∪c1(Ldet) extends to an sl2-triple (e, f, h) acting on grPH∗(F lγI /Λ). By
[28, Conjecture 2.17.] the Jacobson-Morozov filtration induced by c1(Ldet) on
H∗(F lγI /Λ) is opposite to the perverse filtration. It is clear that the Jacobson-
Morozov filtration induced by ∆(n−1,1) on the diagonal coinvariants induces
the filtration by antidiagonals.

19



4.3 The positive part of the affine Springer fiber

We now recall some results from [11]. We will use symmetric functions in two
sets of variables X,Y , see Section 3.1. Using the standard plethystic notation,
see for example [18], we write f [XY ] for the result of substituting pk(X) by
pk(X)pk(Y ) in the expansion of f ∈ Symq,t in the basis of the pλ. Recall from
Section 3.1 that we have defined Frobq,t to be the bigraded Frobenius character
of a Z2-graded Sn representation.

Next, suppose γ = st for s ∈ treg as before and G = GLn. Let Gr+G be the
so called positive part of the affine Grassmannian, consisting of lattices Λ ⊂
Kn contained in the standard lattice On. The positive part of the affine flag
variety, F l+I is defined as the preimage of Gr+G under the natural projection.
The positive part of F lγI is defined to be

F lγ,+I := F l+I ∩ F lγI

Its equivariant Borel-Moore homology HT
∗ (F lγ,+I ) is bigraded by the connected

component ti ∈ π0(F l+I ) = Z and the (half of the) cohomological grading qj ∈
Z and carries two bigraded Sn-actions, one from the Springer action and one
from the monodromy as s moves in a family. In [11], these are called the star
and the dot actions, respectively. In [9], they are called the Springer action and
the equivariant centralizer-monodromy actions, respectively.

The following is [11, Theorem A].

Theorem 4.8 (Carlsson-Mellit). The Frobenius character of HT
∗ (F lγ,+I ) for the Sn×

Sn-action is given by

Frobq,t,X,Y (H
T
∗ (F lγ,+I )) = q−k(n2)ωX∇ken

[
XY

(1− q)(1− t)

]

Compare this also to [13, Conjecture 3.7.], proved in [9, Remark 7.3.].

Corollary 4.9.

Frobq,t,X,Y (H∗(F lγ,+I )) = q−k(n2)ωX∇ken

[
XY

(1− t)

]

Proof. Since F lγ,+I is equivariantly formal, the generators of HT
∗ (pt) form a reg-

ular sequence in HT
∗ (F lγ,+I ). Now apply [19, Lemma 3.6.].

Next, note that the positive part of the lattice Λ, i.e. Λ+ ∼= Z+
≥0 acts on F lγ,+I ,

and by [22] we have
F lγ,+I /Λ+

∼= F lγI /Λ

Further, from the explicit description as the module called ”M” in [11], we see

HT
∗ (F lγI )

∼= HT
∗ (F lγ,+I )⊗C[Λ+] C[Λ]

as C[Λ]-modules.

Using the degeneration of the Cartan-Leray spectral sequence for the Λ+ and
Λ-actions on F lγ,+I , resp. F lγI , we have
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Lemma 4.10.
H∗(F lγI /Λ) =

⊕
i

Tor
C[Λ+]
i (H∗(F lγ,+I ),C)

Suppose we wanted to kill the lattice action instead. Indeed, since (H∗(F lγ,+I )Λ+)∗ ∼=
H∗(F lγ,+I )Λ, the bigraded Frobenius characters under Sn are the same (up to
contragredient). Note that the coinvariant space is by definition H∗(F lγ,+I )Λ+ =

Tor
C[Λ+]
0 (H∗(F lγ,+I ),C), so inherits a second grading from H∗(F lγ,+I ).

Again by [19, Lemma 3.6.]

Frobq,t,X,Y (H
T
∗ (U)) = ωX∇ken

[
XY

(1− q)

]
where the LHS is the equivariant Borel-Moore homology of a certain open fun-
damental domain U of the lattice action defined in [11, Definition 6.9.]. It has
only even dimensional nontrivial cohomology groups, as is implied from the
formula. But interestingly, this does not mean that it is equivariantly formal,
and indeed this space will have nontrivial odd usual Borel-Moore homology
groups.

Finally, Eq. (4) of loc. cit. implies that∑
i≥0

(−1)iFrobq,t,X,Y (Tor
C[Λ+]
i (H∗(U),C)) = ωX∇ken [XY ] .

The main conjecture of [11] essentially says that the Tori groups that appear
on the left contain only those nontrivial representations χλ of the ”dot” or
equivariant-monodromy Sn-action for i = ι(λ′), ι being a certain combinatorial
statistic from the nabla positivity conjecture of loc. cit.

As we know by the Shuffle Theorem of [14], ∇ken[X] is the character of the
diagonal coinvariants, and is the result of substituting pk(Y ) = 1 in en[XY ],
in other words taking the trivial component of the representation of the ”dot”
action. By [11, Conjecture A], this is the same as the Tor0 part, and so corre-
sponds to tensoring out both x and y HT

∗ (F lγ,+I ) over C[Λ+] ⊗ C[t] ∼= C[x,y],
without including higher derived functors.

Combining the above remarks, we have

Theorem 4.11. Suppose [11, Conjecture A] is true. Then

Frobq,t(H
∗(F lγI )

Λ) = ωX∇en

i.e. the bigraded structure of the Λ-invariants, as an Sn-representation, coincides with
the sign-twist of the diagonal coinvariants.

Similarly, orthogonality of the bases {mλ} and {hλ} gives

Corollary 4.12. For any λ ∈ Λ/W̃ℓ, we have

Frobq,t(H
∗(flγPλ

)Λ) = Frobq,t(H
∗(F lγI )

Λe−λ ) = ⟨ω∇en, hλ⟩mλ.
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4.4 The sl2 symmetry of the center

Let P ⊂ G be a parabolic subgroup of G, and X = G/P the partial flag variety.
Set ÑP = T ∗X , the cotangent bundle of X . The following result is proven in
[25]:

Theorem 4.13. Let λ ∈ Λ be a weight singular with respect to the shifted action of
W̃ , and P a parabolic subgroup of G whose Weyl group WP ⊂ W stabilizes a weight
in the W̃ -orbit of λ. Then the Hochschild cohomology of the singular block uλζ is given
by the C∗-equivariant Hochschild cohomology of ÑP :

HH•(uλζ ) = ⊕i+j+k=•H
i(ÑP ,∧jTÑP )

k,

where the degree k comes from the C∗ action by dilation on the fibers of ÑP . In partic-
ular,

Z(uλζ ) = ⊕i+j+k=0H
i(ÑP ,∧jTÑP )

k.

The statement is based on the derived equivalence of categories between cer-
tain category of representations of quantum groups at roots of unity and a
derived category of G × C∗ equivariant coherent sheaves over the Springer
resolution (see [2]).

The variety ÑP is naturally symplectic and the action of G on ÑP is Hamilto-
nian.

In particular, we have the following result [25]:

Proposition 4.14. The space H0(ÑP ,∧2TÑP )
−2 is one-dimensional, spanned by the

Poisson bivector field τ , that is dual to the canonical holomorphic symplectic form w ∈
H0(ÑP ,∧2T ∗ÑP )

−2. The exterior product with τ and contraction with w defines an
sl2 action on the total Hochschild cohomology of ÑP . This gives for any j = 0, 1, ...n
an isomorphism of vector spaces

τn−j∧ : Hi(ÑP ,∧jTÑP )
k → Hi(ÑP ,∧2n−jTÑP )

k+2j−2n.

Combining Theorem 4.13 and Conjecture 1.2, we also have the following con-
jecture.

Conjecture 4.15. There is a bigraded algebra isomorphism

⊕i+j+k=0H
i(Ñ ,∧jTÑ)k ∼= H∗(F lγI )

Λ

where the bigrading on the right is explained in Section 4.3. Alternatively,

⊕i+j+k=0H
i(Ñ ,∧jTÑ)k ∼= grPH∗(F lγI )

Λ

Moreover, the element τ on the left should correspond up to a scalar to the polynomial
∆(n−1,1) introduced in Theorem 4.7 on the right, or in the second version equivalently
to c1(Ldet).

In particular, combined with Theorem 4.11 this Conjecture would imply [24,
Conjecture 4.9(3)].
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4.5 A degeneration of spectral curves

To propose yet another model for the center in type A, we will study the el-
liptic homogeneous affine Springer fibers of slope (n + 1)/n associated to the
elements γn+1/n introduced in Eq. (2.2) and their relation to F lγI , where γ is as
in the introduction. It is known by e.g. [12] that

grPH∗(F lγn+1/n) ∼= DRn

We will construct a a family of irreducible spectral curves Ct ⊂ Tot(OP1(2)),
such that the associated family of parabolic Hitchin fibers models the degener-
ation of affine Springer fibers of slope n/n to the one of slope (n + 1)/n. One
can then ask whether the specialization map from the cohomology of the total
family (which turns out to be just that of the central fiber) gives an injection to
the cohomology of the special fiber, respecting the perverse filtration.

Theorem 4.16. There exists a family of irreducible curves C → A1, arising as a
restriction of the Hitchin system to a line on the Hitchin base, so that the spectral
curve Ct, t ∈ A1 will have two singular points: one ”constant” (i.e independent of
t) singular point with equation yn = zn−1, and another singular point of the form
yn = txn + xn+1.

Remark 4.2. Let us notice that if t ̸= 0, this singular point is isomorphic to
the singularity yn + xn = 0. Indeed, in C[[x, y]] the equation can be written
(t + x)−1yn = xn. Taking a n-th root of the unit (t + x), say a, we can use
the coordinate change Y = a−1y and X = x to get Y n = Xn. Hence, around
this second singular point we are degenerating the singularity yn = xn into the
singularity yn = xn+1.

Proof. We construct the family of spectral curves realizing this degeneration
as follows: let E ⊂ Σ1 be the exceptional section inside the first Hirzebruch
surface, and F ⊂ Σ1 some fiber, which we will call ”the fiber at infinity”. Let
U = Σ1\(E ∪ F ). Take coordinates x, y on U such that the straight lines x =
constant are the fibers of the projection U ⊂ Σ1 → P1. Let us consider the curve
Ĉt ⊂ U given by the equation yn = t + x. The effect of a positive elementary
transform φ : Σr 99K Σr+1 is given by the change of variables u = y/x, v = x.

Hence the strict transforms of Ĉt (inside φ(U)) have local equation given by
un = tvn + vn+1, giving the desired degeneration. Now let us describe the
singular point at infinity (i.e compute the closure of these curves inside Σ2),
and prove that Ct is irreducible for all t ∈ A1.

First, we claim that the closure of Ĉt doesn’t intersect E. Indeed, recall that Σ1

is the blow-up of P2 at a point. Hence, it’s enough to take the closure of the
preimage of Ĉt inside P2 (call this curve C̃t) and check that C̃t doesn’t intersect
the center of the blow-up. On U , we have coordinates x, y, that form a dense
open of P2 (recall that U and E are disjoint by definition). Because U ∼= A2,
we can take homogeneous coordinates [x : y : z] on P2. The fiber at infinity is
given by z = 0 and U is given by z = 1. The fiber x = 0 and z = 0 both contains
the center of the blow-up which is therefore [0 : 1 : 0].

The closure of C̃t has equation yn = tzn+xzn−1, which clearly doesn’t contain
[0 : 1 : 0].
Since the elementary transforms are isomorphism outside the exceptional lo-
cus, it follows that the closure of Ct coincide with the closure of C̃t inside P2,
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i.e the curve with equation yn = tzn + xzn−1. The only point at infinity is
[1 : 0 : 0], and has local equation yn = tzn + zn−1 as claimed. To check that
Ct is irreducible, it’s enough to check that Ct is irreducible on the chart x ̸= 0.
On this chart, Ct is isomorphic to the curve given by yn = zn−1, which is irre-
ducible.

Consider the associated family of parabolic Hitchin fibers, which is a restriction
of the family in 4.4 to a line. Using Eq. (4.1), we note that the only affine
Springer fibers contributing to the cohomology are the ones coming from the
singularities described above. We will ignore the one which is constant, for
there is an injective map in cohomology sending the cohomology classes α ∈
H∗(F lηI /Λη) of interest to

α⊗ 1 ∈ H∗(F lηI /Λη)⊗H∗(F l
γn−1/n

I ) ∼= H∗(M̃a)

where η is either γ or γn+1/n.

In particular, by Theorem 4.16, we get a pullback map i∗ : H∗(F l
γn+1/n

I ) →
H∗(F lγI /Λ). Now, both of these spaces are endowed with the perverse filtra-
tion, as the family comes by restriction of the Hitchin fibration and on the locus
of interest the map is proper, so that the decomposition theorem applies. Note
however that it is unclear how this filtration compares to that induced by the
t-structure on A1, as the pullback along the inclusion to the base is in general
only right t-exact.

Remark 4.3. It seems likely that the map i∗ is injective and its image is exactly
H∗(F lγI )

Λ. Moreover, the map respects the perverse filtration. Note that as the
map is a pullback in cohomology, it automatically respects the multiplicative
structure.

The only supporting evidence for this remark is that these properties are true
for G = SL2, where they are easy to check. In general, we observe that F l

γn+1/n

I

has only even-dimensional cohomology as it is paved by affines. It is also
known that it has n! components, as does F lγI /Λ. On the level of top coho-
mology, it is clear that the map is injective, but in general it seems hard to
control the associated vanishing-nearby cycles-central fiber exact sequence in
cohomology.
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