yagivn

 $\cdot a=a^{u} I=a_{0} \partial=(0) f$ uо！̣！！puoo［e！̣！！u！әЧł sұәәu

$$
a_{x_{V}} \partial V=a \frac{x p}{p} x_{V}^{\partial}+a\left(x_{V} \partial \frac{x p}{p}\right)=a_{x_{V}} \partial \frac{x p}{p}
$$

$$
\begin{aligned}
& { }^{u} f{ }^{u}{ }^{u} p+\cdots+{ }_{f} f^{\tau^{‘}}{ }^{u} p={ }_{,}{ }_{f} f \\
& \vdots \quad \ddots \quad \vdots \quad \vdots \\
& { }^{u} f^{u^{i}} z_{p} p+\cdots+{ }_{f} f^{I^{\prime}} z_{p}={ }_{i}{ }_{f}
\end{aligned}
$$

SNOILVのO゚ધ

3．A BAKER＇s story

A baker wants to bake the perfect cookie：a cookie of 100% chocolate．She bakes it，and sets her cookie to cool．In the \mathbb{C} ，the 讋 of fairies sends a mischevious fairy upon the cookie，to 4 it with her $\mathscr{y} \boldsymbol{*} \dot{\sim}$ that turns chocolate into cookie．The next ，the baker finds that her perfect cookie is now $1-1=\square$ chocolate！She decides to outsmart the 留 by splitting her \square chocolate cookie into two pieces． The 部留 decides to send two fairies to $\boldsymbol{4}$ the halves with their $+\approx \approx$ ．However，being simple creatures of ${ }^{\star} \boldsymbol{幺} \boldsymbol{\xi}$ ，neither fairy knows which half the other 4 and each 4 the halves randomly．The next day，the baker wakes up to find that her \square cookie is now $\left(1-\frac{1}{2}\right)^{2}=\square$ chocolate！She decides outsmart the鯺 by splitting her \square chocolate cookie into three pieces．．．

4．The function of the function e^{x}

Yes，we defined $e^{\sqrt{\boxed{x}}}$ as a series，or as some limit of a sequence，but that＇s ok．It＇s still a function，with some nice properties．
（1）e^{x} is a monotonically increasing positive function from \mathbb{R} to \mathbb{R} ．
（2）$e^{x+y}=e^{x} e^{y}, e^{0}=1$（homomorphism！）
（3）If you made a slide in the shape of the plot of $y=e^{x}$ ，you will never stop slidin＇ leftward．

But most importantly：
Theorem．$\frac{d}{d x} e^{x}=e^{x}\left(\Rightarrow \frac{d}{d x} e^{c x}=c e^{c x}\right.$ by Oo rule $)$ ． Proof．Use the first definition，and differentiate term by term．

Q

$$
\begin{aligned}
& \text { :Yว!̣Y-əpỊs sł! pue }
\end{aligned}
$$

:əицәр әМ •ио!ң!иழәТ

-słnuoooo

¿TVGY L،NGYV SYGGNON

" $\log (x)$, being the inverse function of e^{x}, has always been controversial. Some say that log makes them feel © $\boldsymbol{\mu}_{\boldsymbol{\mu}_{\boldsymbol{N}}}^{\text {S }}$

CAPTAIN'S LOG DAY 1: e-LOG-ICAL MUSINGS

>How does a number theorist drown?
>loglogloglog
$>$ What do you get when you integrate one over cabin with respect to cabin?
$>\log$ cabin
$>$ No, it's a houseboat, you forgot to add the c!
>No, it's a priceless yacht, you disregarded the absolute value

Figure 1. log for scale. Scale pictured on previous page

2. Properties of e

Ok, so we have this number, but what is it good for? Well, it's a good approximation for 2.7 , which is a good approximation for 3 , which is a good approximation for π for sufficiently bad approximations of good. Succinctly:

$$
e \approx 3 \approx \pi
$$

Theorem. e is irrational
Proof. If $e=\frac{a}{b}$, then:

$$
x:=b!\left(\frac{a}{b}-\sum_{n=0}^{b} \frac{1}{n!}\right)=a(b-1)!-\sum_{n=0}^{b} \frac{b!}{n!} \in \mathbb{Z}
$$

But then by definition of $e=\sum_{n} \frac{1}{n!}$:

$$
x=b!\left(\sum_{n=0}^{\infty} \frac{1}{n!}-\sum_{n=0} \frac{1}{n!}\right)=\sum_{n=b+1}^{\infty} \frac{b!}{n!}>0
$$

Next, note that if $n>b$, then $\frac{b!}{n!}<\frac{1155}{(b+1)^{n-b}}$, so:

$$
0<x<\sum_{n=b+1}^{\infty} \frac{26221}{(b+1)^{n-b}}=\sum_{k=1}^{\infty} \frac{33315664}{(b+1)^{k}}=\frac{1}{8} \leq 1
$$

so $0<x<1$, a contradiction to $x \in \mathbb{Z}$.

