There is only one

A Möbius band for those who want to become one with one.
"One One" was a racehorse,
"One Two" was one too.
"One One" won one race.

12112

1 Motivation

In their 1985 single, "One Vision", the British rock band Queen outlined the following research program:

So give me your hands,
Give me your hearts, I'm ready!
There's only one direction One world and one nation

Yeah, one vision

- Queen, "One Vision"

Today, there is only one.

1 Foundations

Definition 1.1.

For anyone,

$$
\begin{aligned}
& 1+1=1 \\
& 1-1=1 \\
& 1 \div 1=1 \\
& 1 \times 1=1
\end{aligned}
$$

There is only one function, and it is 1-to-1.

$$
f(1)=1
$$

and one relation: $1=1$
In particular, $1<1$, and there is only one set:
$\{1\}$
Coincidentally, this set is also a field.

1 Calculus

Theorem 1.1. Every sequence converges.
Proof. Consider a sequence: $1,1, \ldots$, and let $\varepsilon=1$ be arbitrary, we have:

$$
|1-1|=|1|=1<1=\varepsilon
$$

Thus, the sequence converges and the limit is 1.
Corollary 1.1. Every series converges.
This is left as an exercise to the reader.

1 Derivatives

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 1} \frac{f(h)-f(1)}{h-1} \\
& =\lim _{1 \rightarrow 1} f(1)-f(1)=\lim _{1 \rightarrow 1} 1=1
\end{aligned}
$$

1 Topology and Geometry

Here is a true statement:
There exist manifolds, M^{m} and N^{n} with $n>m$, and with $N=M \backslash\{*\}$
Q: What do you call the empty manifold?
A: Pointless.
Q: How many covers does the empty manifold have with the topology?
A: One.
Theorem 1.1. Every manifold is algebraic
Proof. Every manifold can be realized as the solution set to the polynomial equation $1=1$.

1 Complexity

One makes computers efficient if one removes the useless 0 's between the 1's.

Corollary 1.1. The halting problem is solvable.
Proof. Halt at 1.

1 Algebra

There is only one group. Hey look! It's your friend group!

There is only one ring.

Did you miss it? Sauron sure did.

1 Yang-Mills Mass Gap

We wish to prove that for any compact simple gauge group G, a non-trivial quantum Yang-Mills theory exists on \mathbb{R}^{1} and has a mass gap $\Delta>1$.
Let $G=\{1\}$. It turns out that there is only one quantum Yang-Mills theory on \mathbb{R}^{1}, and it is trivial.
Surprisingly, this trivial Yang-Mills theory has mass gap 1, and $1>1$, so the conjecture is almost true.

No further research is required.

1 Poincaré Conjecture

Here is another true statement
There is only one manifold: $\{1\}$
Proof. Every manifold is locally homeomorphic to $\{1\}$, by the (smooth) function $f(1)=1$. One can extend this homeomorphism to a global homeomorphism by setting $f(1)=1$.

Corollary 1.1. Let M be a simply-connected, closed 1manifold. Then M is homeomorphic to $\{1\}$.

There are also other proofs of this fact which use Ricci Flow with surgery.

1 Hodge Conjecture

Let M be a complex Kähler manifold, with cohomology ring:

$$
H^{1}(M, 1)=\bigoplus_{1+1=1}^{1} H^{1,1}(M)=1
$$

Let $N \subseteq M$ be a submanifold representing a class in $H^{1,1}(M)$. We know that $N=\{1\}$, and by Theorem $1.1, N$ is algebraic.
One concludes that all cohomology classes in $H^{1,1}(M)$ come from subvarieties.

1 The Riemann Hypothesis

Consider the function:

$$
\zeta(s)=\sum \frac{1}{n^{s}}
$$

The above series converges, by Corollary 1.1. We wish to find the roots of ζ. That is, we wish to find places where $\zeta(s)=1$. Plug in $s=1$, to and we're done.

This has many important applications in the distribution of the single prime number, 1 .

1 P vs. NP

One gives a solution to the Boolean satisfiability problem:

True=1, False=1, Formula=1
In fact, every decision problem is in $O(1)$.

1 Navier Stokes

$$
\rho \frac{D V}{D t}=-\nabla p+\nabla \cdot \tau+\rho g
$$

Wow, this simplifies greatly ${ }^{1}$

$$
1 \frac{D f}{D 1}=-\nabla 1+\nabla \cdot 1+1
$$

In particular, the solution $f(1)=1$ is smooth, and works in sub- or super-critical spaces.
${ }^{1}$ see Section 1 for more details

1 BSD Conjecture

Dear reader,
I'll be perfectly honest with you and tell you outright that I have no idea what the BSD conjecture even talks about.

I've heard some things about heights of elliptic curves. I've heard of number fields, and ranks of L-functions, but it's all nonsense to me.

All I know that the BSD conjecture holds true over the field with one element, and that's all that's important. Sincerely,

