

- ио!̣э!̣ретиоо

 :६ шәлоәч ц эо ృоол

Claim.

$$
\int_{-\infty}^{\infty} \frac{\sin x}{x}=\pi
$$

Proof: The integral above is identical to

$$
\operatorname{Im}\left(\int_{-\infty}^{\infty} \frac{e^{i x}}{x} d x\right)
$$

which is, by theorem 2 ,

$$
\operatorname{Im}\left(\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{e^{i \zeta}}{\zeta} d \zeta+\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} \frac{e^{i \zeta}}{\zeta} d \zeta\right)
$$

where C_{R} and C_{ϵ} are semicircles oriented clockwise and counterclockwise, respectively. Plugging in the path formula for C_{R}, the former integral is

$$
\lim _{R \rightarrow \infty} \operatorname{Im}\left(i \int_{0}^{\pi} e^{i R c o s t-R s i n t} d t\right)
$$

, which is bounded in absolute value by the integral over the absolute value:

$$
\lim _{R \rightarrow \infty} \int_{0}^{\pi} e^{-R s i n t} d t=0
$$

. Hence the limit as $R \rightarrow \infty$ of the former integral is 0 . Plugging in the path formula for the latter integral we obtain

$$
\operatorname{Im}\left(i \lim _{\epsilon \rightarrow 0} \int_{0}^{\pi} e^{i \epsilon \cos t-\epsilon \operatorname{sint}} d t\right)=\operatorname{Im}\left(i \int_{0}^{\pi} d t\right)=\pi
$$

, finishing the proof.

 јо ио!̣әәs.əәұи! әч7 ио suо!̣!!uyәр омұ әчұ иәәмұәq әәиәләш!р

$$
\frac{m-z}{(m) f-(z) f}=\left(m^{\prime} z\right)^{f}
$$

An analytic continuation of our friends' travels On the request of the Plump Pony, Cauchy and Riemann meet with a magician who is said to know all tricks with machinery. "Picard", the magician says, "any card." Cauchy conceals an ace of spades as $\mathbb{R} i e m a n n$ goes for his card. "Halt," a kid who looks to be the magician's slaps \mathbb{R} iemann's hand with a glove, "you have identified the maximum number of values that an entire function can omit in its image."
Theorem 3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function. Then $f(\mathbb{C})$ is either \mathbb{C} or \mathbb{C} with a singleton removed.

I have found a most elegant proof that the margins of this zine are too small to contain..* "The complex numbers can be affine thing", said Riemann.

6

suo!̣егndịueu

 UOỊS.JӘ Λ

Theorem 1. If a f is analytic on a disc D with center z_{0}, then for some sufficiently small circle loop C(oriented counterclockwise) centered at z_{0},

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)} d z=f\left(z_{0}\right)
$$

In other words, if a function f is holomorphic at a point z_{0}, then it is analytic at z_{0}.
Theorem 2. If a non-constant function f is analytic on a simply connected set U(all closed curves in U are homotopic to a point), then for all closed curves γ in U and $z_{0} \in U$,

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\left(\zeta-z_{0}\right)} d \zeta=f\left(z_{0}\right) W\left(\gamma, z_{0}\right)
$$

Where $W\left(\gamma, z_{0}\right)$ denotes the winding number of γ at z_{0}.

I have found a most elegant proof that the margins of this zine are too small to contain.*

