

$$
\left\{\mathrm{I}-, d d^{‘}, d+d\right\}^{\mathbb{H}} \mathrm{Ueds} \cup_{\varepsilon} S=(, d)_{\mathrm{I}_{-}} \propto
$$

$$
\mathbb{H}^{\ni}{ }_{\mathrm{I}-} b d b=(b) \propto
$$

:әиழәр әм иәчұ 'чәл!̣.ᄋ әq ($\mathbb{H})$ L

Section 3. Sections' section

The projection $\pi: E \rightarrow M$ sends an entire \mathbb{R}^{k} to a point. This trivializes the vector space. Vector spaces want to be important, so they defined:

Definition. A section of a vector bundle E over M is a map $\sigma: M \rightarrow E$ such that $\pi \circ \sigma=\mathrm{id}$.

Imagine the possibilities! We can now associate a vector to every point in M. This is where the $\boldsymbol{\gamma}$ *动 happens.

Example 2.1. If E is the tangent bundle (the smooth gluing of tangent spaces of a manifold $M)$, then a section of E is a vector field on M.

Figure 3. A section of the tangent bundle of a section of a surface

4. History of Vector Bundles

Vector bundles were invented by Sir Professor Doctor Mr. Viktor Von Bundle in the duchy of Manifoldia in the Topos kingdom. Sadly, this is the only thing Von Bundle is known for, as immediately after defining vector bundles, he trivialized himself into the other $k-3$ dimensions of a k bundle over the torus. His work was picked up by his son, Fibre Von Bundle, who generalized his father's work in his famous thesis, where which he showed that all vector bundles can be linked together by the number 42 . This work is now lost, but to this day, many mathematicians, physicists, and politicians are interested in computing bundle invariants of manifolds, the universe, and everything.

In the words of Prime Minister Jean Chrétien, "A bundle is a bundle. What kind of a bundle? A vector bundle. A bundle is a bundle. And If you have a good bundle, it's because it's locally a product with \mathbb{R}^{k} "

әгpunq ә．ıqч

－splof！ueu qsn！qou＇səəeds［eot．．ojodoz

 ：${ }^{b}$ の us！чdiouоәшоч е рие N Ј \cap рооч

¿SASSVTゆ XN G甘V

5．The Harry Potter Ball Theorem

Some manifolds have nice sections on their tangent bundles．Some don＇t．Some manifolds don＇t have any interesting sections；they are just points．
Theorem 5．1．If s is a section of the tangent bundle of S^{2} ，then there is a point $x \in S^{2}$ such that $s(x)=(x, 0)$ ．

In other words，every vector field on S^{2} van－ ishes at some point．

Proof．Invert the sphere：

The winding number is 2

$$
\uparrow \uparrow \uparrow \leftarrow \downarrow \downarrow \downarrow \downarrow \rightarrow フ \uparrow \uparrow \leftarrow \measuredangle \downarrow \downarrow \rightarrow \uparrow \uparrow
$$

and nonvanishing vector fields have winding number 0 ．

2．Vector Bundle Pop Quiz

Joke 1．What do you get when you cross a baby with a manifold？
Solution．A bundle of joy（see fig．2）．

Figure 2．A vector bundle that makes you happy

Joke 2．What happens when you cross a citrus fruit with a bull？
Solution．A trivial lime bundle over a torus．
Joke 3．What do you call a vector bundle that makes you groan？
Solution．A vector pundle．
Joke 4．What do you call a violently shaking bunny？
Solution．The Hop vibration（see p．8）．

