
All About Quaternions Mathcamp 2019, Week 2 Instructors: J-Lo & Assaf

Day 1: Complex Numbers

Here I stand (here I stand)
Looked around, around, around, around, around

But you won’t see me (but you won’t see me)

– Queen, “Now I’m Here”

Definition 1.1. A complex number is a pair of real numbers (a, b), which we will write
as a+ bi.

Exercise 1.1. Thinking of i =
√
−1, and assuming all the standard rules of multiplication

(associativity, commutativity, distributivity), define addition and multiplication laws:

(a+ bi) + (c+ di) = (?) + (?)i

(a+ bi)(c+ di) = (?) + (?)i

Definition 1.2. If z = a + bi is a complex number, we define the conjugate of z to be
z̄ = a− bi.

Exercise 1.2. Prove that z = z. Geometrically, what does the map z → z̄ do to the plane?

Definition 1.3. Given a complex number z = a + bi, we define the real part, Re(z) = a,
and the imaginary part, Im(z) = bi.

Exercise 1.3. Write down formulas for the real and imaginary parts of a complex number
z in terms of z and z̄.
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All About Quaternions Day 1: Complex Numbers

Exercise 1.4. Give a reasonable definition for the length, ‖z‖, of a complex number z = a+bi.
Can you express this purely in terms of z and z̄ (that is, without referencing the individual
components a and b)?

Exercise 1.5. Find a formula for the inverse of a nonzero complex number z (that is, the
number z−1 such that z−1z = 1). Again, do this without referencing individual components.

Exercise 1.6. Prove that if z and w are complex numbers, then ‖zw‖ = ‖z‖‖w‖.

Exercise 1.7. If the whole numbers m and n can each be written as a sum of two squares
(for example, 5 = 22 + 12 and 13 = 32 + 22), prove that mn can as well.

Exercise 1.8. Thinking of a + bi as a vector, what is the result when you rotate it 90◦

counterclockwise? Find a complex number c+ di such that (c+ di)(a+ bi) equals this result.

Exercise 1.9. Repeat the above problem for 180◦ and 270◦. Can you express rotation by
45◦ as multiplication by some complex number? In general, given an angle θ, what complex
number must we multiply by in order to rotate by θ?
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All About Quaternions Day 1: Complex Numbers

Exercise 1.10. Using Exercises 1.6 and 1.9, describe multiplication of complex numbers
purely in terms of geometric operations.

1.1 Follow-up Questions

Exercise 1.11. Let’s get some practice with complex number arithmetic. Compute the
following:

(2− i)(4 + 7i),
1

(1 + 2i)
,

3 + 4i

2 + 5i
,

(
1 + i√

2

)100

Exercise 1.12. Prove the triangle inequality algebraically (try to do this without referencing
the components).

‖z + w‖ ≤ ‖z‖+ ‖w‖

Exercise 1.13. We’ve seen that z 7→ z̄ represents a reflection across the real number line,
and multiplication by a complex number can represent rotation around 0 by any angle. Come
up with a formula (using only z, z̄, and arithmetic operations) for:

• Rotation by θ around the point 2 + i (can you generalize to any point?)

• Reflection across the line with slope 1 through i (can you generalize to any line?)
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All About Quaternions Day 1: Complex Numbers

Exercise 1.14. Write 13520 as the sum of two squares. (Please do not try to do this with
brute force. There is a trick!)

Exercise 1.15. Prove
π

4
= arctan

1

2
+ arctan

1

3
by considering (2 + i)(3 + i).

(Historical note: since there are good algorithms for computing arctangents, a similar
identity allowed John Machin to compute 100 digits of π by hand in 1706. His formula,
which can be derived from (5 + i)4(239− i), continued to be used well into the computer era
to produce record numbers of digits)
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All About Quaternions Mathcamp 2019, Week 2 Instructors: J-Lo & Assaf

Day 2: Quaternions: Failed Experiments

Oh yes, we’ll keep on trying
Tread that fine line

Oh, we’ll keep on trying, Yeah
Just passing our time

– Queen, “Innuendo”

We saw yesterday that for C = {x+ yi | x, y ∈ R}, we only had to assume i2 = −1 (and the
distributive law) to get a very beautiful and rich structure which allowed us to do a lot of
plane geometry: rotation, reflection, lengths, scaling, etc.

Let’s try to develop a number system that allows us to do 3-d geometry! We want a set
D = {x+ yi+ zj : x, y, z ∈ R} with the following properties:

• D is a vector space: adding elements is done in each component separately, and multi-
plying anything by a real number (on either side) will scale each component.

• D contains C; that is, i2 = −1. 2-d geometry is a subset of 3-d geometry, after all!

• Multiplication by an element of D can be described as a geometric operation (e.g.
scaling and rotating).

Exercise 2.1. Using the properties above, convince yourself that multiplication is associative
((zw)v = z(wv) for all v, w, z ∈ D).

Exercise 2.2. Use the picture below as a guide: keep the page still, and rotate other things
according to these rules. Are 3D rotations commutative?

Exercise 2.3. By expressing ij as an element of D, write i(ij) in two different ways as an
element of D, and show that something has gone very wrong.
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All About Quaternions Day 2: Quaternions: Failed Experiments

So it turns out that a 3-dimensional number system is not going to work for us. But should
we even expect 3 dimensions of numbers to be enough to describe 3-dimensional geometry?

Exercise 2.4. Rotations of R2 around the origin can be described using one number: the
angle. How many numbers does it take to describe a rotation of R3 around the origin?

Exercise 2.5. Every rotation of the plane can be described by a complex number of length
1. If we want every rotation of 3-d space to be described by a number of length 1, what can
we say about the dimension of this number system?

So it isn’t going to be enough to just add a single dimension — we actually need something
four -dimensional to describe 3-D geometry. But we built C using pairs of real numbers; what
if we tried building a number system out of pairs of complex numbers?

Exercise 2.6. We can define multiplication on C as an operation on pairs of real numbers.
By direct analogy, come up with a multiplication rule for pairs of complex numbers.

(z1, w1) ∗ (z2, w2) = (?, ?)

Exercise 2.7. Show that (1, 0) is a multiplicative identity.

In order to represent geometry, we want to be able to invert any nonzero element (any
scaling or rotation can be undone unless it shrinks everything to zero). This means that for
any (A,B) (other than (0, 0)), there should be (z, w) such that (z, w) ∗ (A,B) = (1, 0)
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All About Quaternions Day 2: Quaternions: Failed Experiments

Exercise 2.8. Thinking of your formula for (z, w) ∗ (A,B) = (1, 0) as a system of equations,
can you always solve for z and w in terms of A and B?

Exercise 2.9. Modify the multiplication formula to ensure that you will always be able to
solve for z and w in terms of A and B.

Note that if we take one of these new numbers and write it as (a + bi, c + di), we can
write it as

a(1, 0) + b(i, 0) + c(0, 1) + d(0, i).

In other words, if we label the elements

1 = (1, 0), i = (i, 0), j = (0, 1), k = (0, i),

then we can write this new number as a+ bi+ cj + dk.

Exercise 2.10. Using your updated definition of multiplication, fill in the following multi-
plication table (take the element down the left side, and multiply it by the element along the
top, in that order).

1 i j k

1

i

j

k

Exercise 2.11. Inscribe your results into the stone of Brougham Bridge.
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All About Quaternions Day 2: Quaternions: Failed Experiments

2.2 Follow-up Questions

Exercise 2.12. We say that a number x is a zero divisor if there exists a nonzero number
y such that yx = 0. Show that zero divisors do not have multiplicative inverses.

Exercise 2.13. Show that the multiplication you defined in Exercise 2.6 has zero divisors.
Can this number system encode rotations?

Exercise 2.14. How many numbers do we need to encode a rotation of R4 around the origin?

Exercise 2.15. If we want every rotation of 4-D space to be described by a number of length
1, what’s the dimension of this number system?

Exercise 2.16. (Challenge) Show that such a number system cannot exist.

Exercise 2.17. (Challenge) In general, how many numbers do we need to encode a rotation
on Rn?
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All About Quaternions Mathcamp 2019, Week 2 Instructors: J-Lo & Assaf

Day 3: Exploring Quaternions

Is this the world we created?
What did we do it for

Is this the world we invaded
Against the law

– Queen, “Is This The World We Created?”

Reference and Identities

Let H denote the set of quaternions; elements of H can be thought of either as pairs of
complex numbers (z, w), or in terms of four real numbers, a + bi + cj + dk. Given as pairs
of complex numbers, they can be multiplied together as follows:

(z1, w1)(z2, w2) = (z1z2 − w1w̄2, z1w2 + w1z̄2).

Given in the form a + bi + cj + dk, they can be multiplied by expanding out and applying
the multiplication table you filled out yesterday. Multiplication is not commutative.

Given a quaternion q = (z, w) = a + bi + cj + dk ∈ H, we can define the following
operations on it:

q (z, w) a+ bi+ cj + dk
Re(q) (Re(z), 0) a
Im(q) (Im(z), w) bi+ cj + dk

q̄ (z̄,−w) a− bi− cj − dk
‖q‖

√
‖z‖2 + ‖w‖2

√
a2 + b2 + c2 + d2

A quaternion is purely imaginary if Re(q) = 0. The set of purely imaginary quaternions
(which we call Im(H)) is isomorphic to R3 as a vector space.

Exercise 3.1. Prove the following identities.

qq̄ = ‖q‖2 qr = r̄q̄ ‖qr‖ = ‖q‖‖r‖ (qr)s = q(rs)

q + q̄

2
=

q − q̄
2

= q−1 =

For q ∈ Im(H), and ‖q‖ = 1,q−1 = q̄ = −q.
(Hint: for some of these identities you can use the expression of a quaternion as pairs of
complex numbers. For others, you can prove the identity for 1, i, j, k individually and then
apply the distributive law. For others, you can apply identities that have already been
proven.)
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All About Quaternions Day 3: Exploring Quaternions

More on Quaternions

The way we defined quaternions, i has a special role (it is the imaginary part of the first
component; j and k occur in the second component). But the next series of exercises will
show that in fact, there’s nothing particularly special about i.

Exercise 3.2. In H, 1 still has two square roots, but −1 has more than two. Find them all.
(Hint: do this problem in terms of pairs of complex numbers)

Exercise 3.3. Given u, v ∈ Im(H), expand Re(uv) in terms of components. Do you recognize
this operation? What does it mean when this is zero (i.e. uv ∈ Im(H))?

Exercise 3.4. Given u, v ∈ Im(H), expand Im(uv) in terms of components. Prove that
Im(uv) is orthogonal to u and to v. If u and v are themselves orthogonal, what is the length
of Im(uv)?

Exercise 3.5. Given any u ∈ Im(H) of length 1, take v ∈ Im(H) which is orthogonal to u
and also length 1, and set w = uv. With this setup, make a multiplication table for 1, u, v, w.
What does this look like?

(Hint: the identities you want can all be proven from knowing u2, v2, w2, and uvw).
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All About Quaternions Day 3: Exploring Quaternions

Rotations

Exercise 3.6. Suppose r is a quaternion of length 1 (not necessarily in Im(H)). Show that
we can write r = cos θ + u sin θ for some θ ∈ R and some u ∈ Im(H). Show that this u has
length 1.

Exercise 3.7. Given any x ∈ Im(H) and r = cos θ+u sin θ, prove that rxr−1 gives the result
of rotating x by angle around axis .

(Hint: What happens when x = u, when x = v, when x = w?)

Exercise 3.8. Consider 1, i, j, and k as values for r. What rotation does each give you?

Exercise 3.9. Prove that a composition of two 3-d rotations is a 3-d rotation. More con-
cretely, if you know the axes of two rotations, how can you compute the axis of their com-
position?

3.3 Follow-up Questions

Exercise 3.10. Time to practice! Compute the following:

(i− k)(j + 1) (3i− 5j + k)(k − j) (i− 2j)(1 + k + i+ j)
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All About Quaternions Day 3: Exploring Quaternions

Exercise 3.11. Rotate q = i by 120◦ and by 240◦ around the axis through 0 and i+ j + k.

Exercise 3.12. Look at each of the Exercises from Day 1. Which of these generalize to
quaternions, and how?

We’ve seen that we can use r = cos θ + u sin θ to define an arbitrary rotation on Im(H)
by x 7→ rxr−1. But what happens if we just consider the map x 7→ rx (as we would have if
we were imitating the complex numbers)?

Exercise 3.13. Prove that for quaternions x ∈ Im(H), rx is orthogonal to r (i.e. left-
multiplication by r takes Im(H) to the “orthogonal complement” of r).

Exercise 3.14. For which quaternions r does left-multiplication by r preserve Im(H)?

Exercise 3.15. Prove that if y is orthogonal to r, then yr−1 ∈ Im(H) (this implies that
performing both left-multiplication by r and right-multiplication by r−1 will preserve Im(H)).

Exercise 3.16. (Challenge) Prove that (unlike in C!) the conjugate of q ∈ H can be expressed
solely in terms of q, addition, and multiplication.
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All About Quaternions Mathcamp 2019, Week 2 Instructors: J-Lo & Assaf

Day 4: Topology of Rotations

Why don’t you take another little piece of my life
Why don’t you twist it and turn it

And cut it like a knife

– Queen, “Let Me Live”

Let S3 denote the set of quaternions (not necessarily purely imaginary) of length 1. Yes-
terday, we saw that if we associate R3 with the space Im(H) of purely imaginary quaternions,
we can encode every rotation of 3-D space by some r ∈ S3. Given:

• An axis of rotation (determined by a point on the unit sphere in R3, that is, by some
u ∈ Im(H) with length 1),

• An angle θ, and

• A vector x ∈ Im(H) that you want to rotate,

the rotation of x by angle θ around u is given by(
cos

θ

2
+ u sin

θ

2

)
· x ·

(
cos

θ

2
− u sin

θ

2

)
,

or more simply by rxr−1 where r = cos θ
2

+ u sin θ
2
.

Exercise 4.1. Given a fixed r ∈ S3, find all x ∈ Im(H) for which rxr−1 = x.

Definition 4.1. The set of rotations of R3 around the origin is denoted by SO(3).

Exercise 4.2. Define a map Rot : S3 → SO(3): Given r ∈ S3, we can define a rotation
Rot(r) of R3 by

Rot(r)(b, c, d) = r(bi+ cj + dk)r−1

by thinking of the result as a point in R3. Prove that this map is a homomorphism. That is,
show that:

Rot(1) = id

Rot(rs) = Rot(r) ◦ Rot(s)

Rot(r) ◦ Rot(r−1) = Rot(r−1) ◦ Rot(r) = id.

Also show this map is surjective (that is, that every rotation is Rot(r) for some r ∈ S3).
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All About Quaternions Day 4: Topology of Rotations

Exercise 4.3. Prove that the map Rot : S3 → SO(3) defined above is 2-to-1. Which pairs
of points will map to the same rotation?

Exercise 4.4. (Omit on first reading.) Argue that Rot is continuous, by explicitly computing
what Rot(r) does in co-ordinates and showing that each component varies continuously as r
varies.

Definition 4.2. If you take S3 and identify every pair of points obtained in Exercise 4.3, the
space that you have just defined is called the real projective space, often called RP (3).

Piecing all of the above together, we get the following theorem:

Theorem 4.3. SO(3) is topologically homeomorphic to RP (3).

Exercise 4.5. Does there exist a partition of S2 into circles? That is, every element of S2

is in some circle, and none of the circles intersect?

Exercise 4.6. Given x ∈ Im(H), let Cx be the set of quaternions q ∈ S3 such that Rot(q)(i) =
x (for example, Ci = {cos θ + i sin θ : θ ∈ R}). Show that each Cx is a circle.

Exercise 4.7. Show that the sets Cx form a partition of S3 into circles. This partition is
called the Hopf Fibration.

Exercise 4.8. (Group Theory) Show that S3 ⊂ H is a group, and use the first isomorphism
theorem to show SO(3) is isomorphic to a quotient group of S3.
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Number Theory Preview

Next week we’re going to prove Lagrange’s Four-Square Theorem, but it will help to be
comfortable with a few ideas that go into Fermat’s Two-Square Theorem ahead of time.
Take a look at these problems over the weekend if you have time — if you’ve seen them
before (for example if you took J-Lo’s Algebraic Number Theory class) then just remind
yourself of the key ideas.

Definition 4.4. The set of Gaussian integers, Z[i], is the set of complex numbers of the
form a+ bi with a, b ∈ Z.

Exercise 4.9. Prove that an integer is a sum of two perfect squares if and only if it is equal
to ‖z‖2 for some z ∈ Z[i]. If we can factor n = a1 · · · ak where each ai is a sum of two squares,
prove that n is a sum of two squares.

Definition 4.5. A Gaussian integer z is a unit if there is some w ∈ Z[i] with zw = 1.
Suppose z ∈ Z[i] is not a unit; we say z is irreducible if whenever you try to write it as a
product z = αβ for α, β ∈ Z[i], either α or β must be a unit.

Exercise 4.10. Let p be a prime number.

1. If there exists z ∈ Z[i] such that zz̄ = p, prove that z is irreducible.

2. If there does not exist z ∈ Z[i] such that zz̄ = p, prove that p is irreducible.

(To prove some w ∈ Z[i] is irreducible, suppose it could be written as w = αβ and compute
the square of the length of both sides.)
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All About Quaternions Mathcamp 2019, Week 3 Instructors: J-Lo & Assaf

Day 5: Quaternionic Integers

Who are fools of the first division
Death on two legs

You’re tearing me apart

– Queen, “Death on Two Legs”

Our goal for the next two days is to prove Lagrange’s Four Square Theorem:

Theorem 5.1. Any positive integer n can be written as a sum of four perfect squares.

The main idea will be to turn this question into a question about factoring. We will use
the following ideas:

Definition 5.2. Let R be a ring (a set with addition, subtraction, and multiplication). An
element z ∈ R is a unit if there is some w ∈ R with zw = wz = 1.

Definition 5.3. Given a nonzero z ∈ R that is not a unit, we say z is reducible if there
exists α, β ∈ R, neither of which are units, with z = αβ. z is irreducible if it is not
reducible; that is, if whenever z = αβ for some α, β ∈ R, either α or β is a unit.

Before we dive in, let’s first look at what goes into the classification of integers expressible
as two squares, and see if we can use similar ideas for the four square case.

Flashbacks to C
Z[i] is the set of complex numbers a + bi with a, b ∈ Z. We’re going to combine a fact from
modular arithmetic with a fact about greatest common divisors in Z[i].

Fact 5.4. If p ≡ 1 (mod 4) is a prime, then there exists an integer m such that m2 ≡ −1
(mod p) (i.e. −1 is a quadratic residue mod p).

Fact 5.5. Bezout’s Identity holds in Z[i]. That is, given α, β ∈ Z[i], there exists g ∈ Z[i]
such that α = gw, β = gz, and g = αu+ βv for some u, v, w, z ∈ Z[i].

Exercise 5.1. If p ≡ 1 (mod 4), show that p | ββ̄ for some β ∈ Z[i].

Exercise 5.2. Use Bezout’s identity for p and β to find a factorization of p in Z[i], and prove
that neither of the factors can be units.

Exercise 5.3. Prove (using Exercises 4.9 and 4.10 from last week) that if n is a product of
primes p ≡ 1 (mod 4), then n is a sum of two squares.
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Returning to H
Definition 5.6. The set of Lipschitz integers, L, is the set of quaternions of the form
a+ bi+ cj + dk with a, b, c, d ∈ Z.

Exercise 5.4. Prove that an integer is a sum of four perfect squares if and only if it is equal
to qq̄ for some q ∈ L.

Exercise 5.5. If we could prove that every prime is a sum of four squares, show that we
could conclude that every positive integer is a sum of four squares.

Unfortunately, the style of proof we used for Z[i] will not work for L.

Exercise 5.6. Show that the Lipschitz integers do not satisfy Bezout’s Identity.
(Hint: consider the possibilities for g if α = 1 + i and β = 1 + j).

Exercise 5.7. Compute ω = (1 + j)−1(1 + i). If we had a ring which included ω, would
α = 1 + i and β = 1 + j satisfy Bezout’s Identity in this ring?

Exercise 5.8. Create a new set “Hi,” the Hurwitz integers, by including each element of
L, as well as ω plus each element of L. Describe the elements of Hi, convince yourself that
Hi is closed under addition and subtraction, and show that if q ∈ Hi then ‖q‖2 is an integer.

Exercise 5.9. If q ∈ Hi has length 1, prove that q−1 is also a Hurwitz integer.
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Finally, this has nothing to do with quaternions, but we’ll need the following fact for
tomorrow:

Exercise 5.10. Prove that for any prime p, there exist integers m,n such that m2 +n2 ≡ −1
(mod p). (Compare this to Fact 5.4)

Follow-up Questions

Exercise 5.11. Prove that Hi is closed under multiplication. In particular, why won’t the
denominator ever get larger when you multiply two elements together?

Exercise 5.12. How many units are in L? How many units are in Hi?

Exercise 5.13. (Requires Group Theory) The units of L form a group under multiplication;
describe its structure.

Exercise 5.14. (Requires Group Theory; Challenge) The units of Hi form a group under
multiplication; describe its structure.
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Optional: Comparing to C again

Exercise 5.15. Prove that you can divide with remainder in Z[i]: that is, given any α, β ∈
Z[i] with β 6= 0, there exist q, r ∈ Z[i] with α = qβ + r and ‖r‖ < ‖β‖.

(Hint: solve an equivalent problem by dividing everything by β, and think geometrically.)

Exercise 5.16. Use division with remainder to prove Bezout’s Identity (Fact 5.5).

Exercise 5.17. Continuing from Exercise 5.3, finish off the classification of whole numbers
n which can be expressed as sums of two squares.

Now let Z[
√
−3] be the set of complex numbers that can be written as a + b

√
−3 for

integers a and b; note that ‖a+ b
√
−3‖2 = a2 + 3b2. We can define units and irreducibles in

the same way as we did for Z[i].

Exercise 5.18. Show that Bezout’s Identity does not hold for Z[
√
−3]. What goes wrong

with division with remainder?
(Hint: consider the possibilities for g if α = 2 and β = 1 +

√
−3.)

The Eisenstein integers, Z[1+
√
−3

2
], consists of all complex numbers of the form a+b

√
−3

2

where a, b ∈ Z with a ≡ b (mod 2).

Exercise 5.19. Prove that the Eisenstein integers have division with remainder, and there-
fore that Bezout’s Identity holds. How is the problem from Exercise 5.18 fixed?
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Day 6: Lagrange’s Four-Square Theorem

What do you do
To get to feel alive
You go downtown

And get some of that prime jive

– Queen, “Rock It (Prime Jive)”

Remember that we defined the following two rings:

L = {a+ bi+ cj + dk | a, b, c, d ∈ Z} ,

Hi =

{
a+ bi+ cj + dk

2
| a, b, c, d ∈ Z, a ≡ b ≡ c ≡ d (mod 2)

}
.

We also had the following definitions:

Definition 6.1. Let R be a ring (a set with addition, subtraction, and multiplication). An
element z ∈ R is a unit if there is some w ∈ R with zw = wz = 1.

Definition 6.2. Given a nonzero z ∈ R that is not a unit, we say z is reducible if there
exists α, β ∈ Z[i], neither of which are units, with z = αβ. z is irreducible if it is not
reducible; that is, if whenever z = αβ for some α, β ∈ Z[i], either α or β is a unit.

From Geometry to GCDs

Definition 6.3. The distance between two quaternions q and r is ‖q − r‖.

Exercise 6.1. Find a quaternion γ ∈ H such that ‖γ − q‖ ≥ 1 for every Lipschitz integer q.
What happens if you use Hi instead of L?

Exercise 6.2. Prove that we can do division with remainder on Hurwitz integers. That is,
given any two u, v ∈ Hi with v 6= 0, there exist q, r ∈ Hi such that u = qv+ r and ‖r‖ < ‖v‖.

(Hint: solve an equivalent problem by multiplying everything on the right by v−1.)
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Exercise 6.3. Given α, β ∈ Hi, show that there exists an element g ∈ Hi, which we will call
a greatest common left divisor of α and β (Compare this to Fact 5.5), that satisfies the
following properties:

• α = gw for some w ∈ Hi (notice that g is on the left),

• β = gz for some z ∈ Hi,

• g = αu+ βv for some u, v ∈ Hi.

(Hint: consider the set of all elements of the form αu+ βv with u, v ∈ Hi. Is there a way
to identify g in this set?)

Onward to the Finish Line

By Exercise 5.5, we only need to show that every prime number is a sum of four squares.

Exercise 6.4. Prove that every even prime can be written as a sum of four perfect squares.

From now on we will only consider odd primes p. By Exercise 5.10, we can find m,n ∈ Z
such that 1 +m2 + n2 is divisible by p.

Exercise 6.5. Let g be a greatest common left divisor of p and 1 +mi+nj, so we can write
p = gw for w ∈ Hi. If p were irreducible in Hi, conclude that p would divide 1 + mi + nj or
1−mi− nj, and derive a contradiction. (Compare this to Exercise 5.2)

Exercise 6.6. Prove that ‖g‖2 = p. But be careful: does this necessarily imply that p is a
sum of four squares?
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Exercise 6.7. If g ∈ Hi is not a Lipschitz integer, show that there exists some choice of
ω = 1

2
(±1 ± i ± j ± k) ∈ Hi such that the coefficients of 1, i, j, and k in g + ω are all even

integers. What is ‖ω̄(g + ω)− 1‖2?

Exercise 6.8. Prove that every prime number (and hence every positive integer) is a sum
of four squares.

Preparing for the Next Step

Tomorrow, we’re going to try to define multiplication on pairs of quaternions. By analogy
with how we originally defined quaternions, we might try to define it this way:

(q1, r1)(q2, r2) = (q1q2 − r1r̄2, q1r2 + r1q̄2).

Exercise 6.9. Compute (i, j)(j, i) and conclude that this is bad (nonzero elements aren’t
invertible, length is not multiplicative, two nonzero elements multiply to give zero, etc etc)

Exercise 6.10. Remembering that ij = −ji, can you fix this problem by swapping some of
the orders of multiplication?
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Follow-up Questions

Exercise 6.11. Prove that any quaternion q is the root of a quadratic polynomial with real
coefficients. If q ∈ Hi, prove that it is the root of a monic quadratic polynomial with integer
coefficients.

Exercise 6.12. Is there a Hurwitz integer q satisfying q2 + 14 = 0? What about q2 + 7 = 0?

Exercise 6.13. Which Hurwitz integers q of length 1 satisfy q4 = 1? Which satisfy q3 = 1?
Which satisfy q6 = 1?

We’ve encountered Fermat’s Two-Square Theorem, and Lagrange’s Four-Square Theorem.
What we’re missing is Legendre’s Three-Square Theorem:

Theorem 6.4. A positive integer n can be written as a sum of three perfect squares if and
only if it is not of the form n = 4a(8b+ 7) for integers a, b.

Exercise 6.14. Prove one direction of the theorem: if n = 4a(8b + 7), then n is not a sum
of three squares. (Hint: first prove that if 4m is a sum of three squares, then m is a sum of
three squares.)

Exercise 6.15. Given a positive integer n, suppose there existed an element q ∈ L satisfying
q2 + n = 0. Prove that in this case, n is a sum of three squares.

We don’t have time to develop a proof in full, but this at least indicates a direction to
explore: if we want to see which n are sums of three squares, we may want to study what
possible polynomials can occur that will have elements of L as roots.
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Day 7: Octonions

Is this the real life?
Is this just fantasy?

Caught in a landslide,
No escape from reality

– Queen, “Bohemian Rhapsody”

Octonions

Recall that we constructed the quaternions as pairs of complex numbers, with the Cayley-
Dickson multiplication law1:

(z1, w1)(z2, w2) = (z1z2 − w̄2w1, w2z1 + w1z̄2).

The octonions, denoted O, are constructed from the quaternions in the same way that the
quaternions are constructed from the complex numbers.

Exercise 7.1. Let’s get some practice! Compute:

((0, i)(j, 0))(i, 0)

(0, i)((j, 0)(i, 0))

Exercise 7.2. Given an octonion x, define x̄, Re(x), Im(x), and ‖x‖.

Exercise 7.3. Go back to your notes on quaternions, and prove that if x 6= 0, then x has an
inverse.

Exercise 7.4. Prove that if x, y ∈ O, then xy = ȳx̄.

1There is some choice in the exact form this takes; for example, we could swap the orders of all the
products in the formula, and get a multiplication law with the same properties. There are a few restrictions
though; see Exercise 6.9. We’ll choose this format once and for all just to be on the same page.
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Exercise 7.5. We want to show that length is multiplicative. What is wrong with the
following proof?

False Proof: We have ‖xy‖2 = (xy)(ȳx̄) = x‖y‖2x̄. Since real numbers commute with
everything, this equals ‖y‖2xx̄ = ‖y‖2‖x‖2, as desired.

It turns out that length is multiplicative for octonions, but this takes a bit of work to
verify. You can do it later as a follow-up question (Exercise 7.13). For now, we’ll assume it
and use it.

Exercise 7.6. Prove that two nonzero elements of O never multiply to 0.

Exercise 7.7. If m and n are sums of eight squares, explain how you could write mn as a
sum of eight squares.

Exercise 7.8. If x, y ∈ Im(O), compute Re(xy). What is this geometrically?

Exercise 7.9. Prove that for x, y in any of C,H,O, we have that

Re(xy) = Re(yx) = Re(x̄ȳ).

Exercise 7.10. Prove that for x in any of C,H,O, ‖x‖2 = ‖Re(x)‖2 + ‖Im(x)‖2
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Definition 7.1. A cross product on Rn is a bilinear map × : Rn × Rn → Rn such that:

v · (v × w) = 0 = w · (v × w)

‖v‖2‖w‖2 = (v · w)2 + ‖v × w‖2

Exercise 7.11. Prove directly from the properties that ‖v×w‖ is the area of the parallelo-
gram spanned by v and w.
Hint: draw a picture

Exercise 7.12. Using H and O, define a cross product on R3 and on R7.
Bonus: prove that this is indeed a cross product (come to TAU for hints).

7.4 Follow-up Questions

Exercise 7.13. Using the identity ‖x‖2 = xx̄ and Cayley-Dickson multiplication, prove that
‖xy‖2 = ‖x‖2‖y‖2 for any x, y ∈ O. Be very careful about your algebra!

Exercise 7.14. Prove that if x is purely imaginary, then x2 is real.

Exercise 7.15. For any v in R3 or R7, prove that v × v = 0, and use this to show for any
v, w in R3 or R7 that v × w = −w × v.

3



All About Quaternions Day 7: Octonions

Exercise 7.16. We define:

e0 = (1, 0) e2 = (j, 0) e4 = (0, 1) e6 = (0, j)

e1 = (i, 0) e3 = (k, 0) e5 = (0, i) e7 = (0, k)

Compute some products until the following picture makes sense

e1

(i, 0)

e2

(j, 0)

e3

(k, 0)

e4

(0, 1)

e5

(0, i)

e6

(0, j)

e7

(0, k)

Exercise 7.17. Show that if ek = ei × ej, then Span(ei, ej, ek) is a copy of R3 in R7 that is
closed with respect to the cross product.

Exercise 7.18. Prove that (u × v) · w = u · (v × w). (Hint: compute the volume of a 3-d
parallelopiped in two ways.)
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All About Quaternions Mathcamp 2019, Week 3 Instructors: J-Lo & Assaf

Day 8: The Hop Vibrations

Tonight, I’m gonna have myself a real good time
I feel alive and the world I’ll turn it inside out, yeah

– Queen, “Don’t Stop me Now”

On day 4, we examined the following:

Exercise 4.6. Given x ∈ Im(H), let Cx be the set of quaternions q ∈ S3 such that qiq̄ = x
(for example, Ci = {cos θ + i sin θ : θ ∈ R}). Show that each Cx is a circle.

Exercise 4.7. Show that the sets Cx form a partition of S3 into circles. This partition is
called the Hopf Fibration.

We’ll now pick up where we left off.

Exercise 8.1. Any point on the unit sphere in Im(H) can be rotated to any other such point.
Given any x ∈ Im(H) of length 1, find an explicit sx ∈ S3 such that sxis

−1
x = x.

(Hint: use a 180◦ rotation.)

Exercise 8.2. Prove that Cx = sxCi. Conclude that all the circles Cx are isometric; ie, that
there is a rigid motion taking any Cx to any Cy.

S3 is hard to visualize. To understand it better, we will use stereographic projection.

Exercise 8.3. Consider the unit sphere in R3, and the x = 0 plane. By drawing lines through
(1, 0, 0), define a continuous bijection from S2 − {(1, 0, 0)} to R2. (In the picture below, the
x-axis is pointing up.)
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Exercise 8.4. By analogy, come up with a continuous bijection from S3 − {1} to R3.

Exercise 8.5. Prove that the circle Ci in S3 goes to a line in R3, and any other Cx goes to
a closed loop in R3.

(In fact, Cx will go to a circle in R3. Bonus: prove this).

Exercise 8.6. (Hard) By considering the stereographic projection, show that every Cx is
linked with Ci. Use this to prove that any two circles in the Hopf fibration are linked with
each other. (Two linked circles in R3 are called a Hopf Link.)

Exercise 8.7. Let S7 = {(z, w) ∈ H × H : ‖z‖2 + ‖w‖2 = 1}. Show that this is indeed a
7-dimensional sphere.

Exercise 8.8. We can think of S4 as the inverse-stereographic projection of H, where we
added an extra point at ∞. We can then define π : S7 → S4 by π(z, w) = zw−1. Why is this
map well-defined?

Exercise 8.9. Show that for any q ∈ H (considered as a subset of S4), π−1(q) is a three-
sphere lying inside S7. What is π−1(∞)? (This partition of S7 into disjoint copies of S3 is
called the Hopf Fibration of S7.)
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Follow-up

Exercise 8.10. (Group Theory) S3 is a group under multiplication, and Ci is a subgroup.
What is the quotient group S3/Ci?

Exercise 8.11. Repeat Exercises 8.7 through 8.9 but replacing H with O. Does everything
still work? What dimensions are the spheres now?

Follow-up: Parellelizable Spheres

Over the last two weeks, we’ve developed the four algebras, R,C,H,O, and showed the
geometric interpretation of their multiplication. Today we’ll describe a different use of these
algebras.

Definition 8.1. A vector field on the sphere Sn ⊂ Rn+1 is a continuous function f : Sn →
Rn+1 such that v(x) · x = 0 (ie, v(x) and x are orthogonal).

Exercise 8.12. Find a vector field v on S1 such that v(x) 6= 0 for all x

Exercise 8.13. If q ∈ H, show that {q, qi, qj, qk} are pairwise orthogonal. Find three
pairwise orthogonal vector fields on S3.

Exercise 8.14. In 1958, using techniques from algebraic topology, characteristic classes, and
differential geometry, Raoul Bott & John Milnor, and Michel Kervaire independently showed
that this phenomenon of finding n perpendicular vector fields on Sn happens exclusively for
n = 1, 3, 7. Find seven perpendicular vector fields on S7.

Exercise 8.15. Design a t-shirt, write out the octonion multiplication table, write out the
sedenion multiplication table, start riots, forge currency, and take down the government.
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Preparing for Tomorrow

Definition 8.2. Given A = Rn for some n, we call A a Euclidean composition algebra
if there exists a multiplication A× A→ A with the following properties:

• Multiplication on other side is distributive over addition.

• There exists a multiplicative identity 1.

• For any c ∈ R and any x ∈ Rn, (c1)x = x(c1) = cx (scalar multiplication).

• Length is multiplicative: ‖xy‖ = ‖x‖‖y‖ for all x, y ∈ A.

No other properties (e.g. associativity, commutativity) are assumed.

Tomorrow we will classify all Euclidean composition algebras, but we’ll need a few facts.
We will take these facts for granted, but if you want the satisfaction of a complete proof, you
can solve the following exercises from the given axioms.

Exercise 8.16. The dot product on Rn satisfies the following properties:

1. x · x = ‖x‖2.

2. x · y = 1
2
(‖x + y‖2 − ‖x‖2 − ‖y‖2). (In particular, the dot product can be defined in

terms of length.)

3. If x · v = y · v for all v ∈ Rn, then x = y.

Notice that we can use the dot product to define conjugation on any Euclidean composi-
tion algebra A: define x̄ := 2(x · 1)1− x. Then we can define Re(x) := (x · 1)1 = 1

2
(x+ x̄).

Exercise 8.17. Prove the following identities relating the dot product to multiplication:

1. 2(x · y)(z ·w) = (xz) · (yw) + (xw) · (yz). (Hint: write ‖x+ y‖2‖v‖2 using dot products
in two ways.)

2. z · (x̄w) = (xz) · w = x · (wz̄). (Hint: Set y = 1 in the identity above.)

3. Re(xy) = Re(yx).

4. Re((xy)z) = Re(x(yz)).

5. xy = ȳx̄. (Hint: Exercise 8.16 #3.)

6. xx̄ = x̄x = ‖x‖21. (Hint: set y = x and z = 1 in identity #1.) As a result, every x has
an inverse x̄

‖x‖2 .

7. A is alternative; that is, (xx)z = x(xz) for any x, z ∈ A. (Hint: first show (x̄x)z =
x̄(xz), then plug in the definition of x̄.)
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Day 9: 1, 2, 4, 8.

And another one gone, and another one gone
Another one bites the dust

– Queen, “Another One Bites the Dust”

Sedenions

It’s only natural to try to define something that goes beyond the octonions. In the same
way that we defined the octonions from the quaternions, we define the sedenions from the
octonions.

Exercise 9.1. Construct the sedenions using the same construction as the octonions, and
for a sedenion s, define Re(s), Im(s), s̄

Exercise 9.2. Compute (e3, e2)(e6,−e7). Conclude that length is no longer multiplicative.

Maybe we just weren’t clever enough? Maybe there’s a different way to define multipli-
cation that will make the problem go away? We’ll prove that in fact, the answer is no.

Hurwitz’s Theorem

Our goal is to prove Hurwitz’s Theorem.

Definition 9.1. Given A = Rn for some n, we call A a Euclidean composition algebra
if there exists a multiplication A× A→ A with the following properties:

• Multiplication is distributive over addition.

• There exists a multiplicative identity 1.

• For any c ∈ R and any x ∈ Rn, (c1)x = x(c1) = cx (scalar multiplication).

• Length is multiplicative: ‖xy‖ = ‖x‖‖y‖ for all x, y ∈ A.

Theorem 9.2. Every Euclidean composition algebra is isomorphic to R, C, H, or O.
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To prove this, consider a Euclidean composition algebra B contained in A (for example,
A always contains a copy of R). If B is not equal to all of A, we will show that A must
actually contain a Euclidean composition algebra of twice the dimension of B.

Exercise 9.3. Take any j ∈ A such that j · b = 0 for all b ∈ B. Using the definition of j̄,
prove that j2 = −1. (In particular, if we take B = R, A must contain a copy of the complex
numbers.)

Exercise 9.4. With j as above, prove that (jc) · b = 0 for all b, c in B. Conclude that
C := {b+ cj | b, c ∈ B} is twice the dimension of B.

Now comes the key step. Let a, b, c, d ∈ B, and consider the elements a+ bj and c+ dj of
C. If we think of these as pairs (a, b) and (c, d), we will prove that the product of these two
pairs must obey the Cayley-Dickson multiplication law!

We need to prove a few identities. In all three cases, you can show that two desired
quantities are equal by showing that their dot products with any v ∈ A are equal. (Note:
each identity is slightly trickier than the one before.)

Exercise 9.5. Given any v ∈ A, prove that (bj) · (vc̄) = −(bc̄) · (vj), and use this to prove
that (bj)c = (bc̄)j.

Exercise 9.6. Given any v ∈ A, prove that (dj)v̄ · (bj) = (bv̄) · d, and use this to prove that
(bj)(dj) = −d̄b. (Hint: what is bj?)

Exercise 9.7. Given any v ∈ A, prove that a(dj) · j(jv) = −a(jv) · j(dj). Also prove that
dj = jd̄. Use these to prove that a(dj) = (da)j.
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Exercise 9.8. Using the three identities above, prove that

(a+ bj)(c+ dj) = (ac− d̄b) + (bc̄+ da)j.

In particular, C is closed under multiplication (and hence it is a Euclidean composition
algebra).

Exercise 9.9. Prove that

• A contains a copy of the complex numbers if n > 1,

• A contains a copy of the quaternions if n > 2,

• A contains a copy of the octonions if n > 4,

• A contains a copy of the sedenions if n > 8.

Finish proving the theorem.

Follow-up

Exercise 9.10. If a cross product on Rn exists, show how you can use it to define a Euclidean
composition algebra on Rn+1 (use H and O for inspiration). Conclude that a cross product
only exists for n = 0, 1, 3, 7.

Exercise 9.11. The sedenions aren’t a Euclidean composition algebra, but why not work
with them anyways? Prove that every element has a multiplicative inverse. Why doesn’t
this contradict the existence of nonzero elements that multiply to zero?

Exercise 9.12. (Challenge) Continue to make higher-dimensional sets with the Cayley-
Dickson multiplication law until you are done.
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