Welcome to MAT135 LEC0501 (Assaf)

As you come in, ask your neighbours how their break was.

S10.1 - Using Polynomials in Clever Ways

Assaf Bar-Natan

" So this is me swallowing my pride
Standing in front of you saying I'm sorry for that night And I go back to December all the time"
-"Back to December", Taylor Swift
Jan. 6, 2020

Announcements

- Read the syllabus (it's on Quercus).
- My office hours: Mondays at 13:00, Wednesdays at 15:00, location: probably PG104
- Today: extra office hour after this class in PG104
- Download TopHat and purchase a subscription to it.

How should we grade TopHat?
A Participation only 124
B Correctness only | 1
C Both correctness and participation

Math and Active Learning

Spend ten seconds to get into groups of three.

Math and Active Learning

Spend ten seconds to get into groups of three.
In your groups:

- Share names and contact information.
- Write down the main overarching theme of MAT135.

The Theme of MAT135

The main theme of MAT135 is that of the linear approximation. A "nice" looking function can be approximated by a line using the derivative

If $P_{1}(x)$ is the linear approximation of $f(x)$ at a，then（select all that apply）

A $P_{1}^{\prime}(a)$	$=f^{\prime}(a)$	51
в $P_{1}^{\prime}(x)=f^{\prime}(x)$ for all x near a		
C $P_{1}(x)=f(x)$ for all x near a	32	
D $P_{1}(a)=f(a)$	38	

January 5 at 11：35 PM results－				Segment Results		Compare with session				Show percentages	Hide Graph	Condense Text	
156／160 answered												$C^{\text {Ask }}$	Again
ヘ	$<$	＞		Open	Q clos		르 Responses	\checkmark Correct	》			Q 100\％	」！

Extending the Linear Approximation

What if instead of just requiring $f(a)=P(a)$ and $f^{\prime}(a)=P^{\prime}(a)$, we also required...

Extending the Linear Approximation

What if instead of just requiring $f(a)=P(a)$ and $f^{\prime}(a)=P^{\prime}(a)$, we also required...

$$
\begin{aligned}
f^{\prime \prime}(a) & =P^{\prime \prime}(a) \\
f^{\prime \prime \prime}(a) & =P^{\prime \prime \prime}(a)
\end{aligned}
$$

Takeaway

The main idea of approximating a function f around a point a using polynomials is to make the derivatives of f equal to the derivatives of the polynomial at a.

Suppose that $P_{2}(x)=a+b(x-1)+c \frac{(x-1)^{2}}{2}$ is a Taylor polynomial of degree two about $\chi=1$ for a function $f(x)$.
What are the signs of a, b, c if the graph of f is as shown?

Additional Resources for This Chapter

- A good video by 3Blue1Brown
- Tutorials!
- The Math Learning Center (PG101)
- "Test Your Understanding" questions at the end of each chapter.
- Your peers! (This one is the best one)

Rainbow the Cat

Rainbow the kitten wants to compute the second degree polynomial approximation of $\cos (2 x)$ around $x=0$. He write:

$$
\cos (2 x) \approx 1+(\ldots) \cdot x+(\ldots) \cdot x^{2}
$$

but is unsure how to fill in these blanks.

Rainbow the Cat

Rainbow the kitten wants to compute the second degree polynomial approximation of $\cos (2 x)$ around $x=0$. He write:

$$
\cos (2 x) \approx 1+(-) \cdot x+\left(_\right) \cdot x^{2}
$$

but is unsure how to fill in these blanks.
In your groups, fill in these blanks to give the second degree polynomial approximation of $\cos (2 x)$ around $x=0$.

Another cat, Blackie, says: If f and g are both different differentiable functions, then the first degree polynomial approximations of f and g will always be different.

A Blackie is correct, and I am confident in my answer.
B Blackie is correct, and I am not confident in my answer.

D Blackie is incorrect, and I am confident in my answer.

Plans for the Future

For next time:
WeBWork 5.1-5.2 (worth marks!) and read sections 5.1\&5.2
Things for you to check out:

- Course website: q.utoronto.ca
- Guide to Technology (on main website)
- Office hours calendar!
- Get a group together, order pizza, and read the syllabus!

Welcome to MAT135 LEC0501 (Assaf)

As you come in, introduce yourself to someone you haven't met yet.

S5.1\&5.2 - Riemann Sums, Erors, and Areas

Assaf Bar-Natan

" In the morning l'd awake
And I couldn't remember
What is love and what is hate
The calculations error "
-" In The Morning of the Magicians ", The Flaming Lips

Jan. 8, 2020

Announcements

- Read the syllabus (it's on Quercus).
- WeBWork is due the night before class
- We do not answer e-mails sent via WeBWork
- TopHat is graded by participation only. If it becomes meaningless, this will change!

Integrals and Areas

In your groups, write a sentence explaining the geometric interpretation of the expression:

$$
\int_{a}^{b} f(x) d x
$$

The function 9 is drawn below. What is $\int_{0}^{6} g(x) d x$? (give
answer up to two decimal places)

Takeaway

The integral of a function between a and b is the signed area between the function and the x-axis.

Let $f(x)=\log (\log (x))$. Then the integral $\int_{3}^{5} f^{\prime \prime}(x) d x$ is

A Positive, and I'm confident in my answer. $\quad 18$
B Positive, and I'm not confident in my answer. $\quad 32$
C Negative, and I'm not confident in my answer. $\square 58$
D Negative, and I'm confident in my answer. $\quad 70$
E I have no idea.
12

Takeaway

The fundamental theorem can allow us to compute hard integrals in an instant. We just need to identify them as derivatives!

Computing Integrals - An Idea

- Draw the function
- Divide the interval
- Pick left- or rightrectangles
- Add up areas

How does this work in practice?

Playing with Geogebra

In groups, spend five minutes playing around with the applet:
https://www.geogebra.org/m/xJsZTG2i

Playing with Geogebra

For $n=6$, the right Riemann sum is $\left(\Delta t=\frac{1}{3}\right)$:

$$
\Delta t\left(f\left(-\frac{2}{3}\right)+f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)+f(1)\right)
$$

Playing with Geogebra

For $n=6$, the right Riemann sum is $\left(\Delta t=\frac{1}{3}\right)$:

$$
\Delta t\left(f\left(-\frac{2}{3}\right)+f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)+f(1)\right)
$$

What is the left Riemann sum?

Playing with Geogebra

The integral is somewhere between the left and right Riemann sums:

$$
-\leq \int_{-1}^{1}\left(-x^{2}-2 x+3\right) d x \leq
$$

Which Riemann sum goes where?

Playing with Geogebra

$$
\text { R.H.S } \leq \int_{-1}^{1}\left(-x^{2}-2 x+3\right) d x \leq \text { L.H.S }
$$

Rainbow the cat wants to compute the area under the curve using a left-Riemann sum. He wants to know how far away from the true area his computation be.

Playing with Geogebra

We know:

$$
\begin{aligned}
\text { R.H.S } & =\Delta t\left(f\left(-\frac{2}{3}\right)+f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)+f(1)\right) \\
\text { L.H.S } & =\left(f(-1)+f\left(-\frac{2}{3}\right)+f\left(-\frac{1}{3}\right)+f(0)+f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)\right)
\end{aligned}
$$

What is L.H.S - R.H.S?
Jan. 8, 2020 - S5.1\&5.2 - Riemann Sums, Erors, and Areas

Playing with Geogebra

Q: Rainbow wants to compute the area under the curve $-x^{2}-2 x+3$ between $x=-1$ and $x=1$. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?

Playing with Geogebra

Q: Rainbow wants to compute the area under the curve $-x^{2}-2 x+3$ between $x=-1$ and $x=1$. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?
A: We know that the maximal error is L.H.S - R.H.S, which is given by $\Delta t(f(-1)-f(1))$. Plugging in values, we want:

$$
0.02 \geq \Delta t \cdot 4
$$

Playing with Geogebra

Q: Rainbow wants to compute the area under the curve $-x^{2}-2 x+3$ between $x=-1$ and $x=1$. He wants his computation to fall within 0.02 of the true value. How many rectangles does He need?
A: We know that the maximal error is L.H.S - R.H.S, which is given by $\Delta t(f(-1)-f(1))$. Plugging in values, we want:

$$
0.02 \geq \Delta t \cdot 4
$$

We know $\Delta t=\frac{2}{n}$, so to make $\Delta t<0.005$, we need n to be at least 400.

Takeaway

When a function is monotonic, we have a good way to estimate the error between the left- and the right- Riemann sums

In the picture below, match the letter to the term in the expression: $\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} g\left(t_{i}\right) \Delta t$

$\checkmark 2 \%$ Answered Correctly

Correct order					
1	A	\rightarrow	F	t_{i}	59
2	B	\rightarrow	A	Δt	90
3	C	\rightarrow	E	$g\left(t_{1}\right)$	91
4	D	\rightarrow	C	n	20

January 7 at 10:14 PM results									Condense Text	
167/167 answered									$\mathbf{C}_{\text {Ask Again }}$	
\wedge	$<$	>		Open	Q closed	三 Responses	\checkmark Correct	>	Q 100\%	$7{ }^{\text {f }}$

One-Minute Explanation

Write a sentence explaining what happens to the left- and right-Riemann sums when we take the limit as $n \rightarrow \infty$.

One-Minute Explanation

Write a sentence explaining what happens to the left- and right-Riemann sums when we take the limit as $n \rightarrow \infty$.
" When we take the limit as $n \rightarrow \infty$, the left and the right Riemann sums converge to the same thing. This is the signed area under the function, or, the definite integral."

Plans for the Future

For next time:

WeBWork 5.3 and read section 5.3

Welcome to MAT135 LEC0501 (Assaf)

Have you formed a study group yet?

S5.3 - The FUNdamental Theorem

Assaf Bar-Natan

" F is for friends who do stuff together U is for you and me
N is for anywhere and anytime at all Down here in the deep blue sea "
-" F.U.N Song ", Spongebob
Jan. 10, 2020

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.
- Share with your group what made something click for you in this chapter.

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.
- Share with your group what made something click for you in this chapter.
For me, the intuition for the F.T.C was something new that really made me understand what's going on.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately \qquad liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately \qquad liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately \qquad liters.
- ...

Write an expression for the approximate amount of food the cats ate in five minutes. Use summation notation.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

$$
\sum_{i=0}^{9} r\left(\frac{i}{2}\right) \cdot \frac{1}{2}
$$

This looks like a Riemann sum!

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

$$
\sum_{i=0}^{9} r\left(\frac{i}{2}\right) \cdot \frac{1}{2}
$$

This looks like a Riemann sum!
Write an expression for the exact amount of food the cats ate in five minutes.

Takeaway

If f is a differentiable function on an interval $[a, b]$ then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

Let $f(x)=\log (\log (x))$, where \log is taken with base e. Then the integral $\int_{3}^{5} f^{\prime \prime}(x) d x$ is (submit 0 if you don't have any idea how to do this)

Estimating using F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. This quantity is measured in the table below:

t	0	2	3	4	5
$r(t)$	0.5	0.3	0.2	0.1	0.05

Give your best upper or lower estimate for the total amount of food the cats ate in the first five minutes.

Estimating using F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. This quantity is measured in the table below:

t	0	2	3	4	5
$r(t)$	0.5	0.3	0.2	0.1	0.05

Give your best upper or lower estimate for the total amount of food the cats ate in the first five minutes.
Find a group around you that estimated differently than you (ie, if you did a lower estimate, find a group who did an upper esimate), and explain to each other how you arrived at your estimates.

Takeaway

The fundamental theorem gives us a link between areas and rates!

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter It costs the bakery exactly $\$ 3.50$ less to buy 14 pounds butter than it does to buy 15 pounds of butter. Which of the following expressions represents this statement?
\checkmark 71\% Answered Correctly

Submissions Closed
A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter.
Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter If the bakery spends $\$ 10$ on butter, then it can make 20 cups of cookie dough. Which of the following expressions represents the statement?

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter 10 pounds of butter makes 40 cups more cookie dough than 5 pounds of butter. Which of the following expressions most accurately represents the statement?
\checkmark 87\% Answered Correctly

Submissions Closed

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter.
Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter
What are the units of $\int_{a}^{b} K\left(C^{-1}(x)\right) d x$?

A cups-pounds
B dollars-cups/pound 32
C dollar-cups $\quad \square \quad 63$

D dollar-pounds/cup 25

E I've got no idea.
I 6

Takeaway

When doing interpretation questions, work slowly, and watch for units!

Plans for the Future

For next time:

WeBWork 5.4 and read section 5.4

Welcome to MAT135 LEC0501 (Assaf)

Share with your neighbour something you did during this rainy weekend.

Suppose that f is a continuous function. Then $\int_{0}^{2} f(x) d x=\int_{0}^{2} f(t) d t$
A True, and I am confident in my answer. 85
B True, and I am not confident in my answer. 45
C False, and I am not confident in my answer. 17
D False, and I am confident in my answer. 22

S5.4 - Properties, Theorems, and Bounds on Definite Integrals

Assaf Bar-Natan

" On a tour of one-night stands my suitcase and guitar in hand And every stop is neatly planned for a poet and a one-man band... Homeward bound "
-" Homeward Bound ", Simon \& Garfunkel

Jan. 13, 2020

Takeaway

In expressions like $\int_{a}^{b} f(x) d x$, the variable x is a dummy variable - It only is there to remind us that f is a function and that we are integrating with respect to its input.

Integration Theorems Round Robin

Get into groups of 3-4.

Integration Theorems Round Robin

Get into groups of 3-4.

- Go around your group, and one by one state an integration theorem.

Integration Theorems Round Robin

Get into groups of 3-4.

- Go around your group, and one by one state an integration theorem.
- Go through the textbook, and make sure all of the theorems from chapter 5.4 have been stated.

Draw a Theorem

Below is a summary of some of the theorems from chapter 5.4:

$$
\begin{aligned}
& \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} f(x) d x \\
& \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
\end{aligned}
$$

And some of the bounds:

$$
\begin{aligned}
m \leq f(x) \leq M & \Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \\
f(x) \leq g(x) & \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
\end{aligned}
$$

Draw a Theorem

Below is a summary of some of the theorems from chapter 5.4:

$$
\begin{aligned}
& \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} f(x) d x \\
& \int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x \\
& \int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x
\end{aligned}
$$

And some of the bounds:

$$
\begin{aligned}
m \leq f(x) \leq M & \Rightarrow m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a) \\
f(x) \leq g(x) & \Rightarrow \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
\end{aligned}
$$

In your group, choose one of these theorems and one of these bounds, and draw a picture explaining why it's true.

If $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$ then on the interval $[a, b], f(x) \leq g(x)$
/ 63\% Answered Correctly

| A True, and I can explain why | 50 |
| :--- | :--- | :--- |
| B True, and I'm not sure why | 29 |
| C False and I'm not sure why | $\mathbf{2 4}$ |
| D False, and I have a counter-example | 108 |

Takeaway

If we know that $f(x) \leq g(x)$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$. However, we cannot reverse this!

An Application

Marzipan is chasing a mouse along the side of the barn. The mouse has a head start of about $1 m$, and the velocities of Marzipan (red) and the mouse (blue) are plotted below:

Will Marzipan catch the mouse?

An Application

Marzipan is chasing a mouse along the side of the barn. The mouse has a head start of about $1 m$, and the velocities of Marzipan (red) and the mouse (blue) are plotted below:

Will Marzipan catch the mouse? When?

Obie the cat is bulking up for the cold winter. His weight, $w(t)$ is given by the red line in the graph. Which of the following statements are incorrect (select ALL incorrect statements)?

$\checkmark 12 \%$ Answered Correctly
A Obie's average weight in the last two weeks is more than his average weight over the entire seven weeks

B Obie's average weight over the seven weeks is an increasing function

Obie's average weight over the seven weeks is equal to
C
$w(7)-w(0)$
D Obie's average weight over the seven weeks is somewhere between \square 54 8 and 3

Using Integrals to Estimate Averages

Obie's weight over the fall season is plotted below: weight (kg)

Estimate Obie's average weight during this time.

Plans for the Future

For next time:

WeBWork 6.1 and read section 6.1

S6.1 - New Technology - Antiderivatives

Assaf Bar-Natan (Replacing Josh Lackman)

" They took the credit for your second symphony Rewritten by machine on new technology And now I understand the problems you can see Oh, ah, oh! "
-" Video Killed the Radio Star ", The Buggles
Jan. 16, 2020

The Definition of an Antiderivative

If f and F are two functions, we say that F is an antiderivative of

$$
f \text { if } F^{\prime}(x)=f(x) .
$$

The Definition of an Antiderivative

If f and F are two functions, we say that F is an antiderivative of

$$
f \text { if } F^{\prime}(x)=f(x) .
$$

For example: if $f(x)=2 x$ and $F(x)=x^{2}$, then $F(x)$ is an antiderivative of $f(x)$.

If $F(x)$ and $G(x)$ are antiderivatives of a function $f(x)$, then $H(x)=F(x)+G(x)$ is also an antiderivative of $f(x)$

A True, and I am confident in my answer.
B True, and I am not confident in my answer.
C False, and I am not confident in my answer.
D False, and I am confident in my answer.

Takeaway

MAT136 tip: When you know the definition, use it instead of taking shortcuts.

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on $[0,5]$ which is:
(1) Decreasing and linear on $[0,2]$.
(2) Positive at 0 and negative at 2
(3) Equal to a positive constant between 4 and 5 .

Make sure your axes are labelled!

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on $[0,5]$ which is:
(1) Decreasing and linear on $[0,2]$.
(2) Positive at 0 and negative at 2
(3) Equal to a positive constant between 4 and 5 .

Make sure your axes are labelled!

- Find a partner, and exchange your papers

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on $[0,5]$ which is:
(1) Decreasing and linear on $[0,2]$.
(2) Positive at 0 and negative at 2
(3) Equal to a positive constant between 4 and 5 .

Make sure your axes are labelled!

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on $[0,5]$ which is:
(1) Decreasing and linear on $[0,2]$.
(2) Positive at 0 and negative at 2
(3) Equal to a positive constant between 4 and 5 .

Make sure your axes are labelled!

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.
- Pass the papers back to your partner, and compare your answers. Explain what you drew.

Draw The Antiderivative

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on $[0,5]$ which is:
(1) Decreasing and linear on $[0,2]$.
(2) Positive at 0 and negative at 2
(3) Equal to a positive constant between 4 and 5 .

Make sure your axes are labelled!

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.
- Pass the papers back to your partner, and compare your answers. Explain what you drew.
- With your partner, pick a drawing, and draw on it an antiderivative of the original function that is different from the one you already drew

Draw The Antiderivative - My Drawing

Draw The Antiderivative - My Drawing

Draw The Antiderivative - My Drawing

Takeaway

If F is an antiderivative of f, then $F+c$ is an antiderivative of f for any constant c

Summarizing What We Know

Feature of function at a point	Feature of an antideriva- tive at that point

positive	
negative	
x-intercept	
increasing	
decreasing	
maximum	
minimum	

Summarizing What We Know

Feature of function at a point	Feature of an antideriva- tive at that point
positive	increasing
negative	decreasing
x-intercept	critical point
increasing	concave up
decreasing	inflection point
maximum	inflection point
minimum	

Takeaway

In the same way that we sketch a function's derivative, we can reverse the process to sketch the antiderivative.

Antiderivatives and the F.T.C

Recall that if F is a differentiable function on an interval $[a, b]$, and $F^{\prime}=f$, then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Antiderivatives and the F.T.C

Recall that if F is a differentiable function on an interval $[a, b]$, and $F^{\prime}=f$, then:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Knowing the antiderivative allows us to compute definite integrals easily.

```
T
Submissions Closed
```

The cats are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $r(t)$ degrees Celsius per minute. Knowing $r(t)$ for all t between 0 and 6 is enough information to determine the temperature of the cavity at $t=6$

A True, and I know how to compute it.
B True, but I'm not sure why.
C False, but I can't explain why I think this.
D False, and I know what information is missing.

\wedge	$<$	>	- Open	θ closed	ㄹ Responses	\checkmark Correct	》	Q 100\%

The cats are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $\mathbf{r}(\mathrm{t})$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$. What is a formula that describes the temperature at $\mathrm{t}=0$?

$$
\begin{aligned}
& \text { A } \int_{6}^{0} r(t) d t+13 \\
& \text { B } \int_{0}^{6} r(t) d t-13 \\
& \text { C } \int_{0}^{6} r(t) d t+13 \\
& \text { D } \int_{6}^{0} r(t) d t-13
\end{aligned}
$$

Plans for the Future

For next time:

WeBWork 6.2 and read section 6.2

S6.1 - Analyzing Antiderivatives Algebraically

Assaf Bar-Natan

" Now the teacher would say to learn your algebra But I'd bring home C's and D's
How could I make an A when there's a swingin' maid On the left and on the right and in the back and the front of me?"

> -" Straight A's in Love ", Johnny Cash

Jan. 17, 2020

WeBWork Reflection

- Get into groups of two or three.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.
- Pick a WeBWork question from this section that you struggled with.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.
- Pick a WeBWork question from this section that you struggled with.
- Share with your group your progress or how you solved it.

Takeaway

MAT136 tip: WeBWork questions are hard! Help each other!

What type of object is each of the following 'integrals'?

Premise
$1 \int_{t}^{3} f(x) d x$
$2 \int_{\pi}^{100} g(t) d t$
$3 \int 2 d x$
$4 \int_{1}^{x} h(t) d t$

Response
\rightarrow A function of t
\rightarrow B infinite family of functions
\rightarrow C function of x
\rightarrow D number

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.
- Find the antiderivative of $3 e^{-0.2 t}$.

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.
- Find the antiderivative of $3 e^{-0.2 t}$.
- What was the temperature when $t=2$?

Solution

- $T(2)=13-\int_{2}^{6} 3 e^{-0.2 t} d t$
- $\int 3 e^{-0.2 t} d t=3 \int e^{-0.2 t} d t=\frac{3 e^{-0.2 t}}{-0.2}$

Takeaway

For any function, f, and a co-ordinate (x, y), there is a single antiderivative F, for which $F(x)=y$.

```
T Submissions Closed
If F}\mathrm{ and }\textrm{G}\mathrm{ are antiderivatives of f, then F-G is an antiderivative of
A f
B 2f
C Any constant
D 0
```


Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

This means that $F-G$ is constant.

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

This means that $F-G$ is constant. Why?

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 . So $F-G$ is constant.

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 . So $F-G$ is constant.

What does this tell us about any other antiderivative of f ?

Cats and Logs

Mia and Obie are having a fight. Both want to compute $\int \frac{1}{5 x}$.
Mia says:
"I can pull out $\frac{1}{5}$, and use

$$
\frac{d}{d x} \log (|x|)=\frac{1}{x}
$$

to get that every antiderivative of $\frac{1}{5 x}$ is of the form $\frac{1}{5} \log (|x|)+C . "$

Obie says:
"When I compute the derivative of $\frac{1}{5} \log (\pi|x|)$, I get $\frac{1}{5 x}$, so

$$
\frac{1}{5} \log (\pi|x|)
$$

is an antiderivative of $\frac{1}{5 x}$ that doesn't fit your pattern."

Who is right?

Solution

Both are right, because if we apply logarithm rules, we get:

$$
\frac{1}{5} \log (\pi|x|)=\frac{1}{5} \log (|x|)+\frac{1}{5} \log (\pi)
$$

which is of the form that Mia wanted.

Plans for the Future

For next time:

WeBWork 6.3 and read section 6.3

S6.3 - Differential Equations and Motion

Assaf Bar-Natan
"'Cause you can't stop the motion of the ocean or the sun in the sky
You can wonder, if you wanna, but I never ask why
And if you try to hold me down, I'm gonna spit in your eye and say That you can't stop the beat!"
-" You can't Stop The Beat ", Hairspray

Jan. 20, 2020

Example: The S.I.R Model of Infection

The cats are getting sick. Let t be the time, in days, since the illness outbreak, and let:

- N be the total number of cats
- $S(t)$ be the number of cats susceptible to the disease
- $I(t)$ be the number of cats infected with the disease
- $R(t)$ be the number of cats who recovered from the disease

Example: The S.I.R Model of Infection

The cats are getting sick. Let t be the time, in days, since the illness outbreak, and let:

- N be the total number of cats
- $S(t)$ be the number of cats susceptible to the disease
- I(t) be the number of cats infected with the disease
- $R(t)$ be the number of cats who recovered from the disease

The S.I.R model says that I, S, and R satisfy:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.
Very difficult goal: Find the functions S, I, and R

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.
Very difficult goal: Find the functions S, l, and R Use these equations to show that $\frac{d S}{d t}+\frac{d l}{d t}+\frac{d R}{t}=0$. What does this tell us about $S+I+R$?

Takeaway

Differential equations appear in unlikely places, and their solutions have important real-world reprecussions.

For the differential equation $\frac{d y}{d x}=5$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

For the differential equation $\frac{d y}{d x}=5 x$, what is the most general family of functions that solves it?

A Constant

B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

For the differential equation $\frac{d y}{d x}=5 y$, what is the most general family of functions that solves it?

A Constant

B Linear
C Polynomial
D Exponential

For the differential equation $\frac{d y}{d x}=0$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds
1 min . What is a family of functions that satisfy the above equation?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min. What is a family of functions that satisfy the above equation?

$$
v(t)=-9.8 t+C
$$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min. What is a family of functions that satisfy the above equation?

$$
v(t)=-9.8 t+C
$$

1 min . What is the appropriate constant to choose?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min . What is a family of functions that satisfy the above equation?

$$
v(t)=-9.8 t+C
$$

1 min . What is the appropriate constant to choose? $C=3$ because $v(0)=3 \mathrm{~m} / \mathrm{s}$

If two solutions to $\frac{d y}{d x}=f(x)$ have different values at $x=3$ then they have different values at every x .

A True, and I am confident in my answer.
B True, and I am not confident in my answer.
C False, and I am not confident in my answer.
D False, and I am confident in my answer.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation?

$$
h(t)=-\frac{9.8}{2} t^{2}+3 t+D
$$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation?

$$
h(t)=-\frac{9.8}{2} t^{2}+3 t+D
$$

1 min . What is the appropriate constant to choose?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min. Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation? $h(t)=-\frac{9.8}{2} t^{2}+3 t+D$
1 min . What is the appropriate constant to choose? $D=0$ because Blackie starts on the ground.

We've just seen that if acceleration is constant, then the position is a quadratic function of time. Is the reverse true? That is, if position is a quadratic function of time, then acceleration is constant

A True, and I can prove it.
B True, and I am not sure how to prove it.
C False, but I'm not sure why.
D False, and I have a counter-example.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
Spend one minute writing a list of steps (from the start of the question to its finish) outlining how you could compute how high Blackie jumps.

PCats Jumping - The Steps

- Read the question
- Write the differential equation
- Find a family of solutions to the differential equation
- Find the right constants, and narrow down the family to one function
- Repeat the last three steps until we have the desired function (in our case, it was the height function)
- Optimize

Plans for the Future

For next time:

WeBWork 6.4 and read section 6.4

Welcome to MAT135 LEC0501 (Assaf)

Now is a good time to think about the midterm!

S6.4 - The Other Fundamental Theorem - The Construction Theorem

Assaf Bar-Natan

"Try to change.
I try to change.
I make a list of all the ways to change my ways.
But I stay the same,
I stay the s-ame."
-"Try To Change", Mother Mother

Jan. 22, 2020

Functions Defined by Integrals

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: $\sin \left(e^{3 x+5}\right), \log (x), \log ^{2}(x) \ldots$

Functions Defined by Integrals

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: $\sin \left(e^{3 x+5}\right), \log (x), \log ^{2}(x) \ldots$
Today: Functions defined as integrals of other functions:

$$
f(x)=\int_{a}^{x} g(t) d t
$$

where a is some constant.

Functions Defined by Integrals

Some examples:

$$
\begin{aligned}
\operatorname{Si}(x) & =\int_{0}^{x} \frac{\sin (t)}{t} d t \\
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
\operatorname{li}(x) & =\int_{0}^{x} \frac{1}{\log (t)} d t
\end{aligned}
$$

(log is the natural logarithm here)

A table of values of a function $p(t)$ is shown below. Consider the function $S(y)=\int_{8}^{y} p(t) d t$. Which of the following is the best estimate for $S(5)$, given the information provided

t	5	8	10	$12 \varepsilon^{20}$
$p(t)$	10	7	3	1

estimate $\mathrm{S}(5)$, given the information provided

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f.
- The antiderivatives of f.
- A function defined by an integral of f.

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f.
- The antiderivatives of f.
- A function defined by an integral of f.

Hint: think about the definitions!

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f. This is a number.
- The antiderivatives of f. This is a family of functions whose derivative is f.
- A function defined by an integral of f. This is a function defined by an expression of the form $\int_{a}^{x} f(t) d t$.
Hint: think about the definitions!

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$.

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$.

Write the limit definition of the derivative of F

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

We can rewrite this as:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

We can rewrite this as:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Explain why we can do this to your neighbour

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Draw a picture representing the integral above as a small rectangle. What does the limit above equal to?

The Construction Theorem

Theorem

(Construction Theorem, or, the Second Fundamental Theorem of Calculus)
If f is continuous, then the function defined by the integral $F(x)=\int_{a}^{x} f(t) d t$ satisfies $F^{\prime}(x)=f(x)$.

Takeaway

Functions defined by integrals are antiderivatives of the integrands

$$
\text { Below is the graph of a function } f \text {. Let } g(x)=\int_{0}^{x} f(t) d t \text {. }
$$ Then for $0<x<2, g(x)$ is:

Below is the graph of a function f. Let $g(x)=\int_{0}^{x} f(t) d t$. Then:

$$
\begin{aligned}
& \text { A } g(0)=0, g^{\prime}(0)=0, g^{\prime}(2)=0 \\
& \text { B } g(0)=0, g^{\prime}(0)=4, g^{\prime}(2)=0 \\
& \text { C } g(0)=1, g^{\prime}(0)=0, g^{\prime}(2)=1 \\
& \text { D } g(0)=0, g^{\prime}(0)=0, g^{\prime}(2)=1
\end{aligned}
$$

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.
- Use differentiation rules to compute $F^{\prime}(x)$

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.
- Use differentiation rules to compute $F^{\prime}(x)$
- Use the construction theorem to simplify

Bonus: replace $\frac{\sin (t)}{t}$ with $\sin \left(t^{3}\right)$. How does your solution change?

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly. $F(x)=S i\left(e^{x}\right)-\operatorname{Si}(5)$
- Use differentiation rules to compute $F^{\prime}(x)$. By the chain rule: $F^{\prime}(x)=S^{\prime}\left(e^{x}\right) \cdot e^{x}$
- Use the construction theorem to simplify. Since $\operatorname{Si}(x)$ is an antiderivative of $\frac{\sin (x)}{x}$, we get: $F^{\prime}(x)=\frac{\sin \left(e^{x}\right)}{e^{x}} e^{x}=\sin \left(e^{x}\right)$
Bonus: replace $\frac{\sin (t)}{t}$ with $\sin \left(t^{3}\right)$. How does your solution change? We get $\sin \left(e^{3 x}\right) e^{x}$

```
T Submissions Closed
```

$$
\text { If } f(t)=\int_{t}^{7} \cos x d x, \text { then: }
$$

Plans for the Future

For next time:

WeBWork 7.1 and read section 7.1

Welcome to MAT135 LEC0501 (Assaf)

Critical Incident Questionnaire:

https://tinyurl.com/Unit1CIQ

If you've done this, here's two challenging integrals (answers next week):

$$
\begin{array}{r}
\int \sin \left(e^{t}\right) d t \\
\int \sqrt{\tan (x)} d x
\end{array}
$$

S7. 1 - Integration Methods - Substitution

Assaf Bar-Natan

"You don't have to feel like a waste of space
You're original, cannot be replaced."
-"Firework", Katy Perry
Jan. 24, 2020

Reading Comprehension

The substitution technique tells us that if F is an antiderivative of f, then ___ is an antiderivative of $f(g) g^{\prime}$.

Takeaway

When faced with an integral that has a function g inside another function, try a substitution.

Select all of the integrals where substitution could be used to evaluate the integral:

All results

A $\int x \sin \left(x^{2}\right) d x$
B $\int x \sin (x) d x$

C $\int x^{2} \sin (x) d x$
D $\int(3 x+2)\left(x^{3}+5 x\right)^{7} d x$
E $\quad \int e^{x} \sqrt{1+e^{x}} d x$

F $\int \frac{e^{x}-e^{-x}}{\left(e^{x}+e^{-x}\right)^{3}} d x$
G $\int \frac{\sin x}{x} d x$

If we are trying to evaluate the integral $\int e^{\cos \theta} \sin \theta d \theta$, which substitution would be most helpful?

| A $u=\cos \theta$ | 138 |
| ---: | :--- | ---: |
| B $u=\sin \theta$ | 17 |
| Cu $=e^{\cos \theta}$ | 29 |

Invalid date		Segment Results		Compare with session						Show percentages	Hide Graph Condense Text		
184/184 answered											$\mathbf{C l}^{\text {Ask Again }}$		
ヘ	く	>			θ closed	Responses		Correct	>			Q 100\%	

A Simple Substitution

Find an antiderivative, F of $\int e^{\cos \theta} \sin \theta d \theta$, with $F(0)=0$.

A Simple Substitution

Find an antiderivative, F of $\int e^{\cos \theta} \sin \theta d \theta$, with $F(0)=0$.
We substitute $\cos (\theta)=u$. Then $\frac{d u}{d \theta}=-\sin (\theta)$. Thus,

$$
\int e^{\cos \theta} \sin (\theta) d \theta=\int e^{u(\theta)}\left(-u^{\prime}(\theta)\right) d \theta=-e^{u(\theta)}
$$

Thus, all of the antiderivatives of $e^{\cos \theta} \sin (\theta)$ are of the form $-e^{\cos \theta}+C$. To find the appropriate C, we plug in $\theta=0$, and solve, to get:

$$
F(\theta)=-e^{\cos \theta}+e
$$

If we make the substitution $\mathcal{W}=\ln \chi$, which of the following statements is true?

Substituting Back

Compute:

$$
\int \frac{1}{x(\log (x))^{2}}
$$

Where \log is the natural logarithm.

Substituting Back

Compute:

$$
\int \frac{1}{x(\log (x))^{2}}
$$

Where \log is the natural logarithm.

$$
\int \frac{1}{x(\log (x))^{2}} d x=\frac{-1}{\log (x)}+C
$$

We can verify this by differentiating.

Spot the Error

Blackie is sitting in the yard, lying on his back in the sun, computing integrals. That's just what cats do. He writes:

Spot the Error

Blackie is sitting in the yard, lying on his back in the sun, computing integrals. That's just what cats do. He writes:

To compute $\int_{1}^{4} \sqrt{1+\sqrt{x}} d x$, I will let $w=1+\sqrt{x}$, so $\frac{d w}{d x}=\frac{1}{2 \sqrt{x}}$. Thus,

$$
d x=d w(2 \sqrt{x})=d w(2(w-1))
$$

Plugging this in, I get:

$$
\begin{aligned}
\int_{1}^{4} \sqrt{1+\sqrt{x}} d x & =\int_{1}^{4} \sqrt{w}(2(w-1)) d w \\
& =\int_{1}^{4}\left(2 w^{3 / 2}-2 w^{1 / 2}\right) d w \\
& =\left[2 \frac{2}{5} w^{5 / 2}-2 \frac{2}{3} w^{3 / 2}\right]_{1}^{4}
\end{aligned}
$$

Takeaway

When substituting in a definite integral, don't forget to change your bounds!

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.
Let m be the volume of the meow. Denote by $\frac{d m}{d S}=f(S)$, and let Δm be the change in meow volume between $1 s$ and $2 s$.

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.
Let m be the volume of the meow. Denote by $\frac{d m}{d S}=f(S)$, and let Δm be the change in meow volume between $1 s$ and $2 s$.
Fill in the following:

$$
\begin{aligned}
& \Delta m=\int_{\square}^{\square} f(g(t)) g^{\prime}(t) d t \\
& \Delta m=\int_{\square}^{\square} f(s) d s \\
& \Delta m=\int_{\square}^{\square} d m
\end{aligned}
$$

Lexi and Obie and Mouse

$$
\begin{aligned}
& \Delta m=\int_{1}^{2} f(g(t)) g^{\prime}(t) d t \\
& \Delta m=\int_{g(1)}^{g(2)} f(s) d s \\
& \Delta m=\int_{m(g(1))}^{m(g(2))} d m
\end{aligned}
$$

Plans for the Future

For next time:

WeBWork 7.2 and read section 7.2

Welcome to MAT135 LEC0501 (Assaf)

What is the integral $\int \frac{1}{\text { cabin }} d$ cabin?

Two challenging integrals from last week:

$$
\int \sin \left(e^{t}\right) d t=S i\left(e^{x}\right)+C
$$

For $\int \sqrt{\tan (x)}$, substitute $u=\tan (x)$ to get:

$$
\int \frac{\sqrt{u}}{u^{2}+1}=? ? ?
$$

This is very hard. Further developments next week.

S7. 2 - Integration Methods - Integration by Parts

Assaf Bar-Natan

"Sometimes I lie awake, night after night
Coming apart at the seams
Eager to please, ready to fight Why do I go to extremes?"
-"Why Do I Go To Extremes", Billy Joel

Jan. 27, 2020

Reading Comprehension

- The differentiation rule that gives us integration by parts is the
\qquad rule.
- The integration by parts technique tells us that $\int u v^{\prime} d x=$ \qquad - \qquad .

True / False: When we use integration by parts to compute definite integrals, we need to change the limits of the definite integral.

A True $\square \quad 26$
\square
C Only in some cases. \square49

Takeaway

When faced with an integral that is a product of functions, try integration by parts. (Sometimes this will work for other functions too)

Leibniz and The Product Rule

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

Leibniz and The Product Rule

MANUSCRIPT DATED NOV. $2 \mathrm{I}, \mathrm{I} 675$.

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{d}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

- $d x$ means "the derivative of x "
- $\overline{x y}$ means ($x y$)

Leibniz and The Product Rule

Let us seek to obtain others in addition, such as

$$
\int t d y=\int y d x .
$$

Now this furnishes us with nothing new; but $\int t w+\int x w=x y$ or $t d y+x d y=\overline{d x y}$, and $t=\frac{d x}{d y} y$; hence the latter $=\frac{d x y-x}{d y} \frac{d y}{}$. Therefore $\overline{d x} y=\overline{d x y}-x \overline{d y}$.

- $d x$ means "the derivative of x "
- $\overline{x y}$ means ($x y$)

Leibniz used the fundamental theorem and integration by parts to conclude the product rule!

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u ? What should be v ?

Building Fur - I.B.P Example

A cold snap hits the cats, and Mia's body starts building up her fur at a rate of $f(t)$ pounds per day. If $f(t)=0.5 * t^{2} e^{-t}$, how much hair has she built up after ten days?

- Write an expression that computes this.
- Integrate by parts. What should be u ? What should be v ?
- Does this simplify the question?

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Setting

$$
\begin{array}{rll}
u=t^{2} & & v^{\prime}=e^{-t} \\
u^{\prime}=2 t & & v=-e^{-t}
\end{array}
$$

gives:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

Building Fur - I.B.P Example

We wish to compute:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t
$$

Setting

$$
\begin{array}{rll}
u=t^{2} & & v^{\prime}=e^{-t} \\
u^{\prime}=2 t & & v=-e^{-t}
\end{array}
$$

gives:

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

Does this simplify the question?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Does this simplify the question enough to solve?

Building Fur - I.B.P Exmample

$$
\int_{0}^{10} 0.5 t^{2} e^{-t} d t=\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t
$$

We integrate by parts again, to solve the integral on the right. What should u be?

$$
\begin{aligned}
\int_{0}^{10} 0.5 t^{2} e^{-t} d t & =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} t e^{-t} d t \\
& =\left[0.5 t^{2}\left(-e^{-t}\right)\right]_{0}^{10}+\left[t\left(-e^{-t}\right)\right]_{0}^{10}+\int_{0}^{10} e^{-t} d t
\end{aligned}
$$

Does this simplify the question enough to solve? Evaluating the last integral, and plugging in the bounds gives $\int_{0}^{10} 0.5 t^{2} e^{-t} d t \approx 0.997$.

Match the integral to the first technique you would use to compute it.

rect order	$\checkmark 63 \%$ Answered Correctly			
$1 \int e^{2 x} \sin \left(e^{x}\right) d x$	\rightarrow	B	substitution	149
$2 \int e^{2 x} \cos x d x$	\rightarrow	D	integration by parts	142
$3 \int x^{3} \cos (x) d x$	\rightarrow	D	integration by parts	146
$4 \int x\left(2+x^{2}\right) \ln \left(2+x^{2}\right) d x$		B	substitution	139
Imalidate -				come
1866/186answered				1
人〈 < Open \otimes closed \equiv Responses v correct				Q 1000%

Takeaway

Integration by parts is useful when there is a product of functions, and we want one of them to "disappear".

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u) d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u)
d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)
E xponents
T rigonometric
A Igebraic (ie polynomials, ratios of polynomials)
I nverse trigonometric
L ogarithms
S pecial functions (like $\operatorname{Si}(x)$)

dETAILS Mnemonic

$$
\int u v^{\prime} d x=u v-\int v u^{\prime} d x
$$

Here is a mnemonic for what functions to use for v^{\prime} (read backwards for what functions to use as u)
d erivative function (ie, the v^{\prime} in $\int u v^{\prime}=u v-\int u^{\prime} v$)
E xponents
T rigonometric
A Igebraic (ie polynomials, ratios of polynomials)
I nverse trigonometric
L ogarithms
S pecial functions (like $\operatorname{Si}(x)$)
Bonus: find $\int x \operatorname{Si}(x) d x$.

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_{a}^{b} f^{\prime} g d x$
- $\int_{a}^{b} f g^{\prime} d x$
- $\int_{a}^{b} f^{\prime} g^{\prime} d x$

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula. Which of the following are easy to estimate?

- $f \cdot g$ evaluated at some point
- $\int_{a}^{b} f^{\prime} g d x$
- $\int_{a}^{b} f g^{\prime} d x$
- $\int_{a}^{b} f^{\prime} g^{\prime} d x$

Hint: For which of these integrands can you write a table of values?

Integration by Parts - Functions Given Strangely

Let's say we have two functions, f, and $g . g$ is given as a table of values, and f is given as a formula.

$$
\int_{a}^{b} f(x) g^{\prime}(x)=[f g]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

We can now write a table for $f^{\prime}(x)$, for $g(x)$, and $f^{\prime}(x) g(x)$, and estimate the integral on the right.

What is Easy to Compute?

Worth 1 participation pointand 0 correctness points

What is Easy to Compute?

Let's say that $f(x)$ is a function given as a formula, and $g(x)$ is a function given as a table of values. Which of the following can you easily estimate?

All results

A $\quad f(a) g(a)$ for some value of a

B $\int_{a}^{b} f(x) g(x) d x$
\square
C $\int_{a}^{b} f^{\prime}(x) g(x) d x$ \square

D $\int_{a}^{b} f(x) g^{\prime}(x) d x$39
$E \quad \int_{a}^{b} f^{\prime}(x) g^{\prime}(x) d x$

Estimate $\int_{0}^{5} f(x) g^{\prime}(x) d x$ if $f(x)=2 x$ and $g(x)$ is given by the graph below.

A 40
23
B 20 121

C 10
30
D -10
21
E This integral cannot be done using integration by parts
Invalid date - Segment Results
Compare with session

Graphical Estimation

$$
\begin{aligned}
& \int_{0}^{5} f(x) g^{\prime}(x)=f(5) g(5)-f(0) g(0)-\int_{0}^{5} g(x) f^{\prime}(x) d x \\
& =-\int_{0}^{5} 2 g(x)
\end{aligned}
$$

Spot The Error

The Calculus Cats find a note on the floor. It reads:
To compute $\int \tan (x) d x$, we integrate by parts.

$$
\begin{aligned}
u=\frac{1}{\cos (x)} & v^{\prime}=\sin (x) \\
u^{\prime}=\tan (x) \sec (x) & v=-\cos (x)
\end{aligned}
$$

so
$\int \tan (x) d x=\int u v^{\prime} d x=u v-\int v u^{\prime} d x=-1+\int \tan (x)$
Simplifying, we get $0=-1$.
The cats are stressed by this, to say the least. Can you help them?

Spot The Error

The Calculus Cats find a note on the floor. It reads:

To compute $\int_{\pi / 6}^{\pi / 4} \tan (x) d x$, we integrate by parts.

$$
\begin{aligned}
u=\frac{1}{\cos (x)} & v^{\prime}=\sin (x) \\
u^{\prime}=\tan (x) \sec (x) & v=-\cos (x)
\end{aligned}
$$

so
$\int_{\pi / 6}^{\pi / 4} \tan (x) d x=\int_{\pi / 6}^{\pi / 4} u v^{\prime} d x=u v-\int_{\pi / 6}^{\pi / 4} v u^{\prime} d x=-1+\int_{\pi / 6}^{\pi / 4} \tan (x)$
Simplifying, we get $0=-1$.
The cats are even more stressed by this. Can you help them?

Plans for the Future

For next time:
Integration and Computer Algebra Systems. No reading, but bring a computer, and review what we've done!

Welcome to MAT135 LEC0501 (Assaf)

Challenge: compute the integral:

$$
\int S i(x) d x
$$

The integral from last class: $\int x \operatorname{Si}(x) d x$. Integrate by parts, letting $u=S i(x)$ and $v^{\prime}=x$. This gives:

$$
\int x \operatorname{Si}(x) d x=\frac{x^{2}}{2} \operatorname{Si}(x)-\frac{1}{2} \int x \sin (x) d x
$$

Integrating by parts again yields:

$$
\int x \operatorname{Si}(x) d x=\frac{x^{2}}{2} \operatorname{Si}(x)-\sin (x)+x \cos (x)+C
$$

Computer Algebra Systems \& Taylor Approximations

Assaf Bar-Natan

> "It's automated computer speech
> It's automated computer speech
> It's a Casio on a plastic beach
> It's a Casio"
-"Plastic Beach", Gorillaz

Jan. 29, 2020

Functions Defined by Integrals

Recall: we can define functions using integrals. For example:

$$
\begin{aligned}
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
F(x) & =\int_{0}^{x}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
\end{aligned}
$$

Functions Defined by Integrals

Recall: we can define functions using integrals. For example:

$$
\begin{aligned}
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
F(x) & =\int_{0}^{x}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
\end{aligned}
$$

Today: explore how to work with these functions and with computer algebra systems.

Which of the following may be a plot of

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

\checkmark 57\% Answered Correctly
A Top left 24
B Top right 109
C Bottom left 41
D Bottom right 18

Taylor Approximations Using C.A.S

The third-order Taylor approximation of a function, f around 0 is given by:

$$
T_{3}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}
$$

WolframAlpha can be used to compute derivatives quickly!

Assuming "at" is a word | Use as concatenated variables instead

> Input interpretation:
> $\frac{\partial^{4} e^{-t^{2}}}{\partial t^{4}}$ where $t=0$

Result:
12

Use the third-order Taylor approximation of $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$

 to estimate $\operatorname{erf}(0.5)$.Use the third-order Taylor approximation of $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ to estimate $\operatorname{erf}(0.5)$.

$$
\begin{aligned}
\operatorname{erf}(x) & \approx \frac{2}{\sqrt{\pi}}\left(x-\frac{x^{3}}{3}\right) \\
\operatorname{erf}(05) & \approx 0.517
\end{aligned}
$$

Compute erf(0.5) directly using WolframAlpha.

Use the third-order Taylor approximation of $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$ to estimate $\operatorname{erf}(0.5)$.

$$
\begin{aligned}
\operatorname{erf}(x) & \approx \frac{2}{\sqrt{\pi}}\left(x-\frac{x^{3}}{3}\right) \\
\operatorname{erf}(05) & \approx 0.517
\end{aligned}
$$

Compute erf(0.5) directly using WolframAlpha.

$\operatorname{erf}(0.5)$	
$\int_{\left[\frac{\pi}{0}\right.}^{\pi}$ Extended Keyboard - Upload	2/sqrt(pi) * integral from 0 to $0.5 \mathrm{e}^{\wedge}\left(-t^{\wedge} 2\right) \mathrm{dt}$
	$\int_{\Sigma 10}^{\pi}$ Extended Keyboard $\boldsymbol{\text { E Upload }}$
Input:	
$\operatorname{erf}(0.5)$	Input:
	$\frac{2}{\sqrt{\pi}} \int_{0}^{0.5} e^{-t^{2}} d t$
Result:	Result:
0.520500...	0.5205

Takeaway

Computer algebra systems can do some of the work for us, even if we have to stitch it together at the end.

Which of the following is an antiderivative of $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t$? You may use any computer algebra system to solve this.

What Went Wrong?

WolframAlpha could not solve:

$$
\int(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
$$

The integral was too complex. What can we do?

What Went Wrong?

WolframAlpha could not solve:

$$
\int(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
$$

The integral was too complex. What can we do?

- Ask for a definite integral instead.
- Use a Taylor polynomial to estimate the integrand
- Change the input to something nicer

For which value of \mathfrak{n} do we have
$2000>\int_{0}^{n}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t>1000 ?$

A 1		11	
B 2		52	
C 3		132	
D 4	$\\|$	6	

Takeaway

Computer algebra systems can do definite integrals like it's nobody's business. Remember: it's just sums!

Using Taylor Polynomials on the Integrand

Idea: use a Taylor polynomial to approximate $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}$ around $t=0$, then integrate that. If the polynomial and the function are close, then their integrals will be close too.

Using Taylor Polynomials on the Integrand

Idea: use a Taylor polynomial to approximate $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}$ around $t=0$, then integrate that. If the polynomial and the function are close, then their integrals will be close too.

- Find the Taylor polynomial of the function
- Use it to estimate the function for small values of x
- Find an antiderivative of the Taylor polynomial

Estimating Integerals With Taylor Polynomials

Use WolframAlpha to compute the Taylor polynomial of $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}$ around $t=0$ to fourth order.

Estimating Integerals With Taylor Polynomials

Use WolframAlpha to compute the Taylor polynomial of $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}$ around $t=0$ to fourth order.

$$
T_{3}(t)=1+2 t+2 t^{2}+8 \frac{t^{3}}{3}+23 \frac{t^{4}}{6}
$$

Estimating Integerals With Taylor Polynomials

WolframAlpha

```
(1+t)\mp@subsup{e}{}{\wedge}\mp@subsup{t}{}{*}sqrt(1+t^2\mp@subsup{e}{}{\wedge}(2t))-(1+2t + 2t^2 + (8t^3)/3 + (23 t^4)/6) at t=1
\(\int_{20}^{\pi}\) Extended Keyboard i Upload
::: Examples
~Random
```

Assuming "at" is a word | Use as concatenated variables instead

Input interpretation:
$(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}-\left(1+2 t+2 t^{2}+\frac{1}{3}\left(8 t^{3}\right)+\frac{1}{6}\left(23 t^{4}\right)\right)$ where $t=1$

Result:
$2 e \sqrt{1+e^{2}}-\frac{23}{2}$

This error ends up being approximately 4.2.

Estimating Integerals With Taylor Polynomials

WolframAlpha ${ }^{\text {compmatamana }}$ intelligence.

```
(1+t)\mp@subsup{e}{}{\wedge}t*sqrt(1+t^2\mp@subsup{e}{}{\wedge}(2t))-(1+2t+2t^2+(8t^3)/3 + (23 t^4)/6) at t=1
```


Assuming "at" is a word | Use as concatenated variables instead

Input interpretation:
$(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}}-\left(1+2 t+2 t^{2}+\frac{1}{3}\left(8 t^{3}\right)+\frac{1}{6}\left(23 t^{4}\right)\right)$ where $t=1$

Result:
$2 e \sqrt{1+e^{2}}-\frac{23}{2}$

This error ends up being approximately 4.2.
Estimate $\int_{0}^{1}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t$ using the Taylor approximation you found. How good is this approximation?

Estimating Integerals With Taylor Polynomials

$$
\begin{aligned}
\int_{0}^{1}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t & \approx \int_{0}^{1} T_{3}(t) d t \\
& =\int_{0}^{1}\left(1+2 t+2 t^{2}+8 \frac{t^{3}}{3}+23 \frac{t^{4}}{6}\right) d t
\end{aligned}
$$

Estimating Integerals With Taylor Polynomials

$$
\begin{aligned}
\int_{0}^{1}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t & \approx \int_{0}^{1} T_{3}(t) d t \\
& =\int_{0}^{1}\left(1+2 t+2 t^{2}+8 \frac{t^{3}}{3}+23 \frac{t^{4}}{6}\right) d t
\end{aligned}
$$

WolframAlpha

```
integrate from 0 to 1 (1+2t+2t^2+(8t^3)/3 + (23 t^4)/6)
```

$\int_{\Sigma_{2}}^{\pi}$ Extended Keyboard ㄹ Upload

Definite integral:

$$
\int_{0}^{1}\left(1+2 t+2 t^{2}+\frac{8 t^{3}}{3}+\frac{23 t^{4}}{6}\right) d t=\frac{41}{10}=4.1
$$

What is the true value of the integral?

Estimating Integerals With Taylor Polynomials

$$
\begin{aligned}
\int_{0}^{1}(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t & \approx \int_{0}^{1} T_{3}(t) d t \\
& =\int_{0}^{1}\left(1+2 t+2 t^{2}+8 \frac{t^{3}}{3}+23 \frac{t^{4}}{6}\right) d t
\end{aligned}
$$

WolframAlpha ionamational

```
integrate from 0 to 1 (1+2t+2t^2+(8 t^3)/3+(23 t^4)/6)
\int\frac{\pi}{20}
:%: Examples }~~\mathrm{ Random
Definite integral:
\[
\int_{0}^{1}\left(1+2 t+2 t^{2}+\frac{8 t^{3}}{3}+\frac{23 t^{4}}{6}\right) d t=\frac{41}{10}=4.1
\]
```

What is the true value of the integral? 4.78

Simplifying the Integral with Substitution

We wish to compute:

$$
\int(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
$$

Make the substitution $u=t e^{t}$.

Simplifying the Integral with Substitution

We wish to compute:

$$
\int(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t
$$

Make the substitution $u=t e^{t}$. The integral then becomes:

$$
\int \sqrt{1+u^{2}} d u
$$

Plug this integral into a computer algebra system

Which of the following is an antiderivative of $(1+t) e^{t} \sqrt{1+t^{2} e^{2 t}} d t$? You may use any computer algebra system to solve this.

Plans for the Future

For next time:

WeBWork 7.6 and read section 7.6

Welcome to MAT135 LEC0501 (Assaf)

The Borwein integrals:

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\sin (x)}{x} d x=\frac{\pi}{2} \\
\int_{0}^{\infty} \frac{\sin (x)}{x} \frac{\sin (x / 3)}{x / 3} d x=\frac{\pi}{2} \\
\int_{0}^{\infty} \frac{\sin (x)}{x} \frac{\sin (x / 3)}{x / 3} \frac{\sin (x / 5)}{x / 5} d x=\frac{\pi}{2} \\
\int_{0}^{\infty} \frac{\sin (x)}{x} \frac{\sin (x / 3)}{x / 3} \cdots \frac{\sin (x / 13)}{x / 13} d x=\frac{\pi}{2} \\
\begin{aligned}
\int_{0}^{\infty} \frac{\sin (x)}{x} \frac{\sin (x / 3)}{x / 3} \cdots \frac{\sin (x / 15)}{x / 15} d x & =\frac{467807924713440738696537864469}{935615849440640907310521750000} \pi \\
& \approx \frac{\pi}{2}-2.31 \times 10^{-11}
\end{aligned}
\end{gathered}
$$

Improper Integrals - Going to Infinity

Assaf Bar-Natan

"Out all night, sun's too bright
Though I'm blind, it'll be all right
Going to infinity
What does it mean?
Infinity"
-"What Does it Mean?", The Flaming Lips
Jan. 30, 2020

Reading Comprehension - Fill in Blanks

An integral $\int_{a}^{b} f(t) d t$ is an improper intergral when are infinite or when the \qquad is infinite.

Reading Comprehension - Fill in Blanks

The faster $f(t)$ decreases as \qquad , the more likely that

$$
\int_{a}^{\infty} f(t) d t
$$

Reading Comprehension - Fill in Blanks

An improper integral is defined as a ___ of definite integrals.

Reading Comprehension - Fill in Blanks

Suppose that $\lim _{x \rightarrow b} f(x)=\infty$. If $\lim _{x \rightarrow b} \int_{a}^{x} f(t) d t$ \qquad define $\int_{a}^{b} f(t) d t$ by . Otherwise, we say that

$$
\int_{a}^{b} f(t) d t
$$

Reading Comprehension - Fill in Blanks

If $\lim _{x \rightarrow \infty} \int_{a}^{x} f(t) d t _$, we define $\int_{a}^{\infty} f(t) d t$ by __, and we say that $\int_{a}^{\infty} f(t) d t \longrightarrow$.

- Submissions Closed

Click on the first statement in the following argument that is incorrect
\checkmark 14\% Answered Correctly
Marzipan is trying to compute the integral $\int_{-6}^{6} \frac{1}{x} d x$. She writes:

$$
\begin{aligned}
\int_{-6}^{6} \frac{1}{x} d x & =\log (|x|)^{6}-6 \\
& =\log (|6|)-\log ((-6-6 \mid)=0
\end{aligned}
$$

Thus, the integral $\int_{-6}^{6} \frac{1}{x} d x$ converges and is equal to 0 .

Takeaway

The fundamental theorem only works when the integrand is continuous. If f is infinite between the bounds, the integral is improper!

What is an Improper Integral?

Worth 1 participation pointand 0 correctness pointsMultiple answers: Multiple answers are accepted for this question

Which of the following are improper integrals? (select all)

All results

A $\int_{a}^{\infty} \frac{\sin (x)}{x} d x$

B $\int_{4}^{5} \frac{1}{x} d x$

C $\int_{0}^{1} \frac{1}{2-3 x} d x$

D $\int_{1}^{2} \log (x) d x$

E $\int_{1}^{2} \frac{1}{2 x-1} d x$
\square

An Example

We will determine if $\int_{-6}^{6} \frac{1}{x} d x$ converges.

An Example

We will determine if $\int_{-6}^{6} \frac{1}{x} d x$ converges.
Write a list of steps you should take to determine this.

An Example

We will determine if $\int_{-6}^{6} \frac{1}{x} d x$ converges.
Write a list of steps you should take to determine this.

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

An Example - Splitting the Integral

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

An Example - Splitting the Integral

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

The function $f(x)=\frac{1}{x}$ goes to ∞ when $x \rightarrow 0$, so we should split the integrals there.

$$
\int_{-6}^{6} \frac{1}{x} d x=\int_{-6}^{0} \frac{1}{x} d x+\int_{0}^{6} \frac{1}{x} d x
$$

Now, we should solve each of these as an improper integral.

An Example - Turning it Into a Limit

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

$$
\int_{-6}^{6} \frac{1}{x} d x=\int_{-6}^{0} \frac{1}{x} d x+\int_{0}^{6} \frac{1}{x} d x
$$

An Example - Turning it Into a Limit

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

$$
\int_{-6}^{6} \frac{1}{x} d x=\int_{-6}^{0} \frac{1}{x} d x+\int_{0}^{6} \frac{1}{x} d x
$$

We need to check if the following limits exist:

$$
\begin{aligned}
& \lim _{b \rightarrow 0^{-}} \int_{-6}^{b} \frac{1}{x} d x \\
& \lim _{a \rightarrow 0^{+}} \int_{a}^{6} \frac{1}{x} d x
\end{aligned}
$$

An Example - Taking the Limit

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

We need to check if the following limits exist:

$$
\begin{aligned}
& \lim _{b \rightarrow 0^{-}} \int_{-6}^{b} \frac{1}{x} d x \\
& \lim _{a \rightarrow 0^{+}} \int_{a}^{6} \frac{1}{x} d x
\end{aligned}
$$

An Example - Taking the Limit

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

We need to check if the following limits exist:

$$
\begin{aligned}
& \lim _{b \rightarrow 0^{-}} \int_{-6}^{b} \frac{1}{x} d x \\
& \lim _{a \rightarrow 0^{+}} \int_{a}^{6} \frac{1}{x} d x
\end{aligned}
$$

We compute:

$$
\begin{aligned}
& \lim _{b \rightarrow 0^{-}} \int_{-6}^{b} \frac{1}{x} d x=\lim _{b \rightarrow 0^{-}}(\log (b)-\log (|-6|))=-\infty \\
& \lim _{a \rightarrow 0^{+}} \int_{a}^{6} \frac{1}{x} d x=\lim _{a \rightarrow 0^{+}}(\log (6)-\log (|a|))=\infty
\end{aligned}
$$

An Example - Taking the Limit

- Split the integral into two improper integrals
- Turn each integral into a limit
- Take the limit
- Do the limits converge?

What does this tell us about $\int_{-6}^{6} \frac{1}{x} d x$? Plug this in to WolframAlpha!

Takeaway

When evaluating improper integrals, you might need to split them up!

$$
\text { If } \lim _{x \rightarrow \infty} f(x)=0 \text { then } \int_{1}^{\infty} f(x) d x \text { converges }
$$

B True, but I'm not sure 78
C False, but I'm not sure 43
D False, and I have a counter-example 30

Criterion For Convergence

For which p does $\int_{0}^{1} x^{p} d x$ converge?

Criterion For Convergence

For which p does $\int_{0}^{1} x^{p} d x$ converge?

- Get into groups, and assign each group member a different number.

Criterion For Convergence

For which p does $\int_{0}^{1} x^{p} d x$ converge?

- Get into groups, and assign each group member a different number.
$2 \min$ Check whether $\int_{0}^{1} x^{p} d x$ converges where p is your number.

Criterion For Convergence

For which p does $\int_{0}^{1} x^{p} d x$ converge?

- Get into groups, and assign each group member a different number.
$2 \min$ Check whether $\int_{0}^{1} x^{p} d x$ converges where p is your number.
2 min Compare answers with your neighbours, and form a conjecture.

Criterion For Convergence

For which p does $\int_{0}^{1} x^{p} d x$ converge?

- Get into groups, and assign each group member a different number.
$2 \min$ Check whether $\int_{0}^{1} x^{p} d x$ converges where p is your number.
2 min Compare answers with your neighbours, and form a conjecture.
2 min Check your conjecture by hand or on WolframAlpha

Takeaway

The integral $\int_{0}^{1} x^{p} d x$ converges when $p>-1$

Roy and the Big Barn

Roy the kitten is walking around the barn, and says the following:
"I know this barn in and out, and I can confidently say that it has a finite area. I don't know its shape, but because it has finite area, I should be able to circumnavigate it in finite time."

Write a sentence explaining to Roy where he is wrong. Be sure to give an example.

Roy and the Big Barn

Here's a helpful picture:

Plans for the Future

For next time:

WeBWork 7.7 and read section 7.7

Welcome to MAT135 LEC0501 (Assaf)

Think of a hobby or a skill you have. Did you get a chance to do it this year?

S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Assaf Bar-Natan

"Laughing like children, living like lovers
Rolling like thunder under the covers
And I guess that's why they call it the blues"
-"I Guess That's Why They Call it the Blues", Elton John
Feb. 3, 2020

The CIQ

Things I noticed

- TopHat and working together got a lot of people engaged
- Things we dislike:
- When people aren't participating
- When Assaf skips things
- Unexplained answers
- Things we like:
- Explaining after TopHats
- Other people helping us understand
- Reading summary at the start of class before self-work
- Things that surprised you:
- How welcoming you were to each other
- How many friends you made
- The style of the class

How Do We Learn?

How do people learn?

How Do We Learn?

How do people learn?

What is something you are good at? How did you learn it?

How Do We Learn?

How do people learn?

What is something you are good at? How did you learn it?

Why do we ask you to read before class?

Good Reading Strategies

What are some good reading strategies for math?

Good Reading Strategies

What are some good reading strategies for math?
Three-time rule:

- Skim - don't worry about understanding, just read! (10 mins)
- Note - take meticulous notes, and read carefully! (one hour)
- Own - Read things one last time to pick up pieces you've missed (10 mins)

Good Reading Strategies

What are some good reading strategies for math?

Three-time rule:

- Skim - don't worry about understanding, just read! (10 mins)
- Note - take meticulous notes, and read carefully! (one hour)
- Own - Read things one last time to pick up pieces you've missed (10 mins)
Other ideas:
- Ask friends for help
- TAKE NOTES
- Do the problems

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that you've learned
- Something in the chapter that you've got to revisit

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that you've learned
- Something in the chapter that you've got to revisit

Share with your neighbours

The Idea of Comparisons

"If it looks like a cat, and meows like a cat, it converges like a cat"

If $f \leq g$ then $\int_{a}^{b} f \leq \int_{a}^{b} g$, so if g converges, then f converges.

Assume that $\int_{1}^{\infty} g(x) d x$ converges. What can you say about $\int_{1}^{\infty} f(x) d x$?

\checkmark 69\% Answered Correctly

A It converges	118	
B It diverges		19
C We can't tell anything from this picture		33

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing
Assaf Bar-Natan

A Graphical Example

If $\int_{1}^{\infty} g(x) d x$ converges, what can we say about $\int_{1}^{\infty} f(x) d x$?
It must converge, by the comparison test, since f looks like g.
If $\int_{0}^{1} g(x) d x$ diverges, what can we say about $\int_{0}^{1} f(x) d x$?

A Graphical Example

If $\int_{1}^{\infty} g(x) d x$ converges, what can we say about $\int_{1}^{\infty} f(x) d x$?
It must converge, by the comparison test, since f looks like g.
If $\int_{0}^{1} g(x) d x$ diverges, what can we say about $\int_{0}^{1} f(x) d x$?
$\int_{0}^{1} f(x) d x$ is not an improper integral, so it converges.
Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Takeaway

When looking at what integrals to infinity do, we only care about the tail. If the tails look similar, then the functions converge and diverge together.

Spot the Error

Peek, the curious cat, is trying to compute:

$$
\int_{1}^{\infty} \frac{-1}{x} d x
$$

She writes:
"I know that

$$
\int_{1}^{\infty} \frac{1}{x^{2}}=1
$$

I also know that $\frac{-1}{x} \leq \frac{1}{x^{2}}$ for all $x \geq 1$ So by the comparison test, I can conclude that $\int_{1}^{\infty} \frac{-1}{x} d x$ converges."

What was her mistake? Write a takeaway from this example.

Takeaway

When dealing with negative integrands, we can't just bound things from one side.

Takeaway

When dealing with negative integrands, we can't just bound things from one side.

Aside: This should remind some of you of the squeeze theorem...

Review: Known Improper Integrals

Integral	Condition on parameter (p or $a)$	Converges/diverges
$\int_{0}^{1} x^{p}$	$p>-1$	
$\int_{0}^{1} x^{p}$	$p \leq-1$	
$\int_{1}^{\infty} x^{p}$	$p \geq-1$	
$\int_{1}^{\infty} x^{p}$	$p<-1$	
$\int_{0}^{\infty} e^{-a x}$	$a>0$	
$\int_{0}^{\infty} e^{-a x}$	$a \leq 0$	

Review: Known Improper Integrals

Integral	Condition on parameter $(p$ or $a)$	Converges/diverges
$\int_{0}^{1} x^{p}$	$p>-1$	Converges
$\int_{0}^{1} x^{p}$	$p \leq-1$	Diverges
$\int_{1}^{\infty} x^{p}$	$p \geq-1$	Diverges
$\int_{1}^{\infty} x^{p}$	$p<-1$	Converges
$\int_{0}^{\infty} e^{-a x}$	$a>0$	Converges
$\int_{0}^{\infty} e^{-a x}$	$a \leq 0$	Diverges

An Algebraic Example

"If it looks like a cat, and meows like a cat, it converges like

 a cat"What known improper integrals do the following integrals look like:

$$
\begin{aligned}
& \int_{6}^{\infty} \frac{1}{(x-5)^{2}} d x \\
& \int_{0}^{5} \frac{1+\sin ^{2}(x)}{\sqrt{x}} d x \\
& \int_{5}^{\infty} \frac{1+\sin ^{2}(x)}{\log (x)} d x
\end{aligned}
$$

Meows Like a Cat

$$
\int_{6}^{\infty} \frac{1}{(x-5)^{2}} d x
$$

- $x-5<x$ so $\frac{1}{(x-5)^{2}} \geq \frac{1}{x^{2}}$. This won't help.

Key ideas:

- Substitute $u=x-5$ to get $\int_{1}^{\infty} \frac{1}{u^{2}} d u$
- When x is big, $\frac{1}{(x-5)^{2}} \approx \frac{1}{x^{2}}$

Meows Like a Cat

$$
\int_{6}^{\infty} \frac{1}{(x-5)^{2}} d x
$$

- $x-5<x$ so $\frac{1}{(x-5)^{2}} \geq \frac{1}{x^{2}}$. This won't help.

Key ideas: - Substitute $u=x-5$ to get $\int_{1}^{\infty} \frac{1}{u^{2}} d u$

- When x is big, $\frac{1}{(x-5)^{2}} \approx \frac{1}{x^{2}}$

This integral converges

Meows Like a Cat

$$
\begin{gathered}
\int_{0}^{5} \frac{1+\sin ^{2}(x)}{\sqrt{x}} d x \\
\text { Key ideas: } \quad \bullet \frac{1}{\sqrt{x}} \leq \frac{1+\sin ^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}} \\
\bullet \text { When } x \text { is small, integrand looks like } \frac{1}{\sqrt{x}}
\end{gathered}
$$

Meows Like a Cat

$$
\begin{gathered}
\int_{0}^{5} \frac{1+\sin ^{2}(x)}{\sqrt{x}} d x \\
\text { Key ideas: } \quad \bullet \frac{1}{\sqrt{x}} \leq \frac{1+\sin ^{2}(x)}{\sqrt{x}} \leq \frac{2}{\sqrt{x}} \\
\bullet \text { When } x \text { is small, integrand looks like } \frac{1}{\sqrt{x}}
\end{gathered}
$$

This integral converges

Meows Like a Cat

$$
\int_{5}^{\infty} \frac{1+\sin ^{2}(x)}{\log (x)} d x
$$

- The $1+\sin ^{2}(x)$ term is a distraction that just oscillates a bit.
Key ideas: \quad Looks like $\int_{5}^{\infty} \frac{1}{\log (x)}$
- When x is big, $x>\log (x)$ so $\frac{1}{x}<\frac{1}{\log (x)}$

Meows Like a Cat

$$
\int_{5}^{\infty} \frac{1+\sin ^{2}(x)}{\log (x)} d x
$$

- The $1+\sin ^{2}(x)$ term is a distraction that just oscillates a bit.
Key ideas:
- Looks like $\int_{5}^{\infty} \frac{1}{\log (x)}$
- When x is big, $x>\log (x)$ so $\frac{1}{x}<\frac{1}{\log (x)}$

This integral diverges

Takeaway

When comparing integrals, be mindful of easy substitutions, but also watch for the bounds!

The Cat's Tail

Does the integral:

$$
\int_{a}^{\infty} \frac{1}{x^{2}} d x
$$

(where $a>1$) converge?

The Cat's Tail

Does the integral:

$$
\int_{a}^{\infty} \frac{1}{x^{2}} d x
$$

(where $a>1$) converge? Yes!

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\int_{1}^{a} \frac{1}{x^{2}} d x+\int_{a}^{\infty} \frac{1}{x^{2}} d x
$$

So we get:

$$
1=1-\frac{1}{a}+\int_{a}^{\infty} \frac{1}{x^{2}} d x
$$

and we can solve for the integral.

Plans for the Future

For next time:
WeBWork 11.1 and actively read section 11.1

Feb. 3, 2020 - S7.7 - Improper Integrals - Comparisons, Estimation, and Guessing

Welcome to MAT135 LEC0501 (Assaf)

$$
\begin{aligned}
\text { Last week, } u & =\tan (x) \\
\int \sqrt{\tan (x)} d x & =\int \frac{\sqrt{u}}{u^{2}+1} d u
\end{aligned}
$$

Now, substitute $s=\sqrt{u}$:

$$
\int \frac{\sqrt{u}}{u^{2}+1} d u=2 \int \frac{s^{2}}{s^{4}+1} d s
$$

Next week: a clever trick.

S11.1 - Differential Equations - Modeling the World

Assaf Bar-Natan

> "You realize that life goes fast It's hard to make the good things last
> You realize the sun doesn't go down It's just an illusion caused by the world spinning round"
> - "Do You Realize??", The Flaming Lips

Feb. 5, 2020

What Is a Differential Equation?

A differential equation is an algebraic relation between functions and their derivatives. For example:

$$
\begin{aligned}
& f^{\prime}(t)=4 \\
& f^{\prime \prime}(t)=f^{\prime}(t)+1 \\
& F=m a=m \frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

Sometimes, these differential equations have solutions.

What Is a Differential Equation?

A differential equation is an algebraic relation between functions and their derivatives. For example:

$$
\begin{aligned}
& f^{\prime}(t)=4 \\
& f^{\prime \prime}(t)=f^{\prime}(t)+1 \\
& F=m a=m \frac{d^{2} s}{d t^{2}}
\end{aligned}
$$

Sometimes, these differential equations have solutions.
For which values of k is $t e^{t}-e^{t}+k$ a solution to the differential equation:

$$
f^{\prime}(t)=f(t)+e^{t}
$$

Key Points from Reading

In groups of $3-4$, take turns listing a key point from the reading. Make sure to explain why you think these are key points.

Sort the following key points and ideas from the reading in decreasing importance
\checkmark 2\% Answered Correctly
Correct Order
B Setting up an algebraic model of differential equations
C Estimating solutions to differential equations numerically
D Using initial conditions we can find constant terms in solutions
A General solutions vs particular solutions
E To solve a differential equation we rearrange and integrate

The SI Model - Cat's Cold

The cats are sick with a cold. For now, we will make the following assumptions:

- A cat is either susceptible to the virus or infected
- A cat that is infected stays infected
- Let $S(t)$ be the number of susceptible cats after t days

- Let $I(t)$ be the number of infected cats after t days

The SI Model - Cat's Cold

The cats are sick with a cold. For now, we will make the following assumptions:

- A cat is either susceptible to the virus or infected
- A cat that is infected stays infected
- Let $S(t)$ be the number of susceptible cats after t days

- Let $I(t)$ be the number of infected cats after t days

Question: Explain why $\frac{d I}{d t}=-\frac{d S}{d t}$

Suppose that each infected cat licks $\frac{1}{c}$ of the susceptible cats in a day, and that $\frac{1}{\mathrm{a}}$ of licks result in a new infection. Given the number of cats infected at time t, what is a good estimate for the number of cats infected at time $t+1$?

All results $\boldsymbol{\nabla}$

A $\quad \mathrm{I}(\mathrm{t}+1)=\mathrm{I}(\mathrm{t})+\frac{1}{\mathrm{a}} \frac{1}{\mathrm{c}}$ \qquad
B $\quad I(t+1)=\frac{1}{a} I(t)+\frac{1}{c} S(t)$

C $\quad I(t+1)=\frac{1}{a} \frac{1}{c} I(t) S(t)+I(t)$ \square
D $\quad \mathrm{I}(\mathrm{t}+1)=\frac{1}{\mathrm{a}} \frac{1}{\mathrm{c}} \mathrm{S}(\mathrm{t}) \mathrm{I}(\mathrm{t})$

Deriving the SI Model - Cat's Cold

If we define $b=\frac{1}{a c}$, then we know that:

$$
I(t+1)-I(t)=b I(t) S(t)
$$

Deriving the SI Model - Cat's Cold

If we define $b=\frac{1}{a c}$, then we know that:

$$
I(t+1)-I(t)=b I(t) S(t)
$$

Question: What is the verbal interpretation of $I^{\prime}(t)$?

Deriving the SI Model - Cat's Cold

If we define $b=\frac{1}{a c}$, then we know that:

$$
I(t+1)-I(t)=b I(t) S(t)
$$

Question: What is the verbal interpretation of $I^{\prime}(t)$?
$I^{\prime}(t)=A$ means that A new cats have been infected between t and $t+1$. In other words, $I(t+1)-I(t)=A$. So we can write:

$$
I^{\prime}(t)=b I(t) S(t)
$$

SIR Model - The Cats' Recovery

Eventually, all the cats are infected. Luckily, they start recovering.

Every day, a fraction $k<1$ of the infected cats end up recovering. Let $R(t)$ be the number of cats recovered at day t.
Question: Write an expression for $R(t+1)-R(t)$

SIR Model - The Cats' Recovery

Eventually, all the cats are infected. Luckily, they start recovering.

Every day, a fraction $k<1$ of the infected cats end up recovering. Let $R(t)$ be the number of cats recovered at day t.
Question: Write an expression for $R(t+1)-R(t)$

$$
R(t+1)-R(t)=k l(t)
$$

SIR Model - The Cats' Recovery

Eventually, all the cats are infected. Luckily, they start recovering.

Every day, a fraction $k<1$ of the infected cats end up recovering. Let $R(t)$ be the number of cats recovered at day t.
Question: Write an expression for $R(t+1)-R(t)$

$$
R(t+1)-R(t)=k l(t)
$$

Question: What is the corresponding differential equation?

SIR Model - The Cats' Recovery

Eventually, all the cats are infected. Luckily, they start recovering.

Every day, a fraction $k<1$ of the infected cats end up recovering. Let $R(t)$ be the number of cats recovered at day t.
Question: Write an expression for $R(t+1)-R(t)$

$$
R(t+1)-R(t)=k l(t)
$$

Question: What is the corresponding differential equation?

$$
R^{\prime}(t)=k I(t)
$$

SIR Model - The Cats' Recovery

We now add the following assumptions:

- Cats can be susceptible, infected, or recovered.
- When a cat recovers, they are immune to the virus.
- An infected cat can recover from the virus.

SIR Model - The Cats' Recovery

We now add the following assumptions:

- Cats can be susceptible, infected, or recovered.
- When a cat recovers, they are immune to the virus.
- An infected cat can recover from the virus.

When all of the cats have been infected, and start recovering, we have $I+R=$ constant, so

$$
\frac{d l}{d t}=-\frac{d R}{d t}=-k l(t)
$$

Assume that at $t=0$, all 30 cats were infected, and none have recovered. If $k=0.4$, how many cats will have recovered after 3 days? You might want to use the table below as a guide:

t	0	1	2	3
$I(t)$	30			
$I^{\prime}(t) \approx$				

Feb. 5, 2020 - S11.1 - Differential Equations - Modeling the World

The equation $\mathrm{I}(\mathrm{t})=30 \mathrm{e}^{-0.4 \mathrm{t}}$ is a general solution to the differential equation dI $\frac{\mathrm{d}}{\mathrm{dt}}=-0.4 \mathrm{I}(\mathrm{t})$

A True	50	
B False	12	
C This is not a solution to the differential equation		8

The SIR Model - Wrap-Up

The SIR Model - Wrap-Up

Question: What two terms will contribute to a change in I? Use this to write a formula for $I^{\prime}(t)$ Hint: look at previous slides

The SIR Model - Wrap-Up

Question: What two terms will contribute to a change in I? Use this to write a formula for $I^{\prime}(t)$ Hint: look at previous slides

$$
\begin{aligned}
S^{\prime}(t) & =-b I(t) S(t) \\
I^{\prime}(t) & =b I(t) S(t)-k I(t) \\
R^{\prime}(t) & =k I(t)
\end{aligned}
$$

The SIR Model - Wrap-Up

Question: What two terms will contribute to a change in I? Use this to write a formula for $I^{\prime}(t)$ Hint: look at previous slides

$$
\begin{aligned}
S^{\prime}(t) & =-b I(t) S(t) \\
I^{\prime}(t) & =b I(t) S(t)-k I(t) \\
R^{\prime}(t) & =k I(t)
\end{aligned}
$$

What are some of the shortcomings of the SIR model?

Plans for the Future

For next time:
Review session
For Monday:

WeBWork 11.2 and actively read section 11.2

11.2 : Slope fields

Webwork discussion
you do not necessarily need to solve a differential equation to find its solution

- slope fields \longrightarrow way to qualitively measure the solution of a
differential equation.
Shortcuts to solving slope field questions

$$
\begin{aligned}
& \rightarrow \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=+\frac{d y}{d x}=-
\end{aligned}
$$

Start from the given coordinate and trace out slope field.
webwork question 5

(extra notes)

When $y=$ any multiple of $\frac{\pi}{2}$, and $x=0$, then always a horizontal line, therefore $\frac{d y}{d x}=0^{2}$ and solution $y=$ integer.

increasing
steepness of slope at $y=$ any number is the same for all x ie $\frac{d y}{d x}$ is not dependent on x.
slope less steep as y increases

Lecture Notes (continued) 11.2

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{11}{y} \frac{(1,1)}{\text { slope }}=1 \text { at }(1, y) \\
& \int y d y=\int 1 d x \text { (numerical solution) } \\
& \frac{y^{2}}{2}=x+C
\end{aligned}
$$

What is the solution of differential equation:
Ca function that has the derivative equal to the differential equation.

$$
1=\sqrt{2+C} \longrightarrow 2=-1 \text { genarticular solution }
$$

generally fo asymptotic solutions
11.3: Euler's method
numerically plotting points on a solution curve.
$\Delta y=\left(\right.$ Slope at $\left.P_{n}\right) \Delta x$
y value at $P_{x+1}=$ (yvalue at $\left.P_{x}\right)(\Delta y)+\Delta y$.
Error = Exact-Approxinulée value.

Welcome to MAT135 LEC0501 (Assaf)

Last week, $u=\tan (x)$, then $s=\sqrt{u}$ gave us:

$$
\int \sqrt{\tan (x)} d x=2 \int \frac{s^{2}}{s^{4}+1} d s
$$

Here's the trick:

$$
2 \int \frac{s^{2}}{s^{4}+1} d s=\int \frac{1}{\sqrt{2}}\left(\frac{s}{s^{2}-\sqrt{2} s+1}-\frac{s}{s^{2}+\sqrt{2} s+1}\right) d s
$$

Next week: we'll compute one of these terms.

S11.3 - Euler's Method - Stop, Point, Shoot, Repeat

Assaf Bar-Natan
" Eat, sleep, rave, repeat
Eat, sleep, rave, repeat
Eat, sleep, rave, repeat
Eat, sleep, rave, repeat"

-"Eat, Sleep, Rave, Repeat", Fatboy Slim

Feb. 12, 2020

What Is Euler's Method?

Euler's method is a bit like a biathelon.

Myriam Bédard, Canadian gold medalist in Biathelon, 1994

Winter Olympics

In a nutshell:

- Pick a starting point
- Use derivative to estimate change
- Move to next point
- Repeat

Example: What is Euler's Method?

What does this mean? Let's assume that:

$$
y^{\prime}(t)=f(y, t)
$$

This differential equation has a family of solutions. If we specify that our solution passes through $(0,0)$, then we know:

Example: What is Euler's Method?

What does this mean? Let's assume that:

$$
y^{\prime}(t)=f(y, t)
$$

This differential equation has a family of solutions. If we specify that our solution passes through $(0,0)$, then we know:

$$
y^{\prime}(0)=f(0,0)
$$

Example: What is Euler's Method?

What does this mean? Let's assume that:

$$
y^{\prime}(t)=f(y, t)
$$

This differential equation has a family of solutions. If we specify that our solution passes through $(0,0)$, then we know:

$$
y^{\prime}(0)=f(0,0)
$$

This lets us estimate $y(0.01) \approx 0.01 y^{\prime}(0)$, giving us a new point to start with.

Takeaway

To estimate the solution of a differential equation at a point, we can apply Euler's method

Round Robin: WeBWork

In your groups, share a question in the WeBWork that you either found challenging or a question that you found interesting.

Round Robin: WeBWork

In your groups, share a question in the WeBWork that you either found challenging or a question that you found interesting.

Why did we include this question in the WeBWork? What key point from the chapter does it relate to?

```
T
Submissions Closed
```

Below is pictured the slope field for some differential equation. For the initial condition $\mathrm{y}(1)=\mathrm{c}$, will Euler's method give an over- or an under-estimate when trying to estimate $y(2)$?

$\checkmark \mathbf{2 7 \%}$ Answered Correctly

$1 \mathrm{c}=0$
$2 \mathrm{c}=1$
$3 \mathrm{c}=-1$

Writing Exercise

Write a short paragraph explaining to the students who aren't here why Euler's method works, and how we can make it more precise.

Writing Exercise

Write a short paragraph explaining to the students who aren't here why Euler's method works, and how we can make it more precise.

We can make Euler's method more precise by making the jumps smaller. That way, the estimate of the derivative is better.

```
T
Submissions Closed
```

The cats are reproducing! Their numbers are increasing! It's a happy time to be a cat. Let $y(t)$ denote the number of cats t months after the start of the year, and assume that $y^{\prime}(t)=y(t)(1-y(t) / 30)($. Assume that $y(0)=20$ Use Euler's method to estimate the number of cats after two months. Use 4 steps. (Hint: use a table)

Bonus: Chaos, Fractals, Dynamics

An interesting video related to this:
https://www.youtube.com/watch?v=ovJcsL7vyrk

SIS? SI? SIR?

The SI model:

The SIR model:

The SIS model:

Coronavirus - SIS? SI? SIR?

Go online, and search for information about the current Coronavirus outbreak. Which model is best? What searches did you make?

Coronavirus - SIS? SI? SIR?

Go online, and search for information about the current Coronavirus outbreak. Which model is best? What searches did you make? After infection, what happens to surviving patients?

When modeling the Coronavirus, what model is best, considering what we know about it?

A SIS model	31	
B SIR model	53	
C SI model	\square	9

Plans for the Future

For next time:

WeBWork 11.4 and actively read section 11.4

Welcome to MAT136 LEC0501 (Assaf)

Was the midterm what you expected? What surprised you? What would you change next time?

S11.4 - Separation of Variables $-\frac{d y}{d x}$ is Still not a Fraction

Assaf Bar-Natan
" How long, how long will I slide?
Separate my side, I don't
I don't believe it's bad"
-"Otherside", Red Hot Chili Peppers

Feb. 14, 2020

Ice Cream Sandwich

In your groups, share:

- A time you had a good success

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed

Ice Cream Sandwich

In your groups, share:

- A time you had a good success
- A time you failed
- A time you recovered

What is Separation of Variables?

We wish to solve:

$$
\frac{d y}{d x}=g(x) f(y)
$$

Thinking of $\frac{d y}{d x}$ as a ratio (it's not), we get:

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

What is Separation of Variables?

We wish to solve:

$$
\frac{d y}{d x}=g(x) f(y)
$$

Thinking of $\frac{d y}{d x}$ as a ratio (it's not), we get:

$$
\int \frac{1}{f(y)} d y=\int g(x) d x
$$

This gives us an relation between x and y, which is the solution to the differential equation

Which Equations?

Worth 1 participation pointand 0 correctness points
Which of the following differential equations are separable? Click all that are separable

All results

Feb. 14, 2020 - S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

What calculus technique is used to justify the method separation of variables?

Feb. 14, 2020 - S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

Justification for Separation of Variables

A differential equation is called separable if it can be written in the form

$$
\frac{d y}{d x}=g(x) f(y) .
$$

Provided $f(y) \neq 0$, we write $f(y)=1 / h(y)$, so the right-hand side can be thought of as a fraction,

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

If we multiply through by $h(y)$, we get

$$
h(y) \frac{d y}{d x}=g(x) .
$$

Thinking of y as a function of x, so $y=y(x)$, and $d y / d x=y^{\prime}(x)$, we can rewrite the equation as

$$
h(y(x)) \cdot y^{\prime}(x)=g(x) .
$$

Now integrate both sides with respect to x :

$$
\int h(y(x)) \cdot y^{\prime}(x) d x=\int g(x) d x
$$

The form of the integral on the left suggests that we use the substitution $y=y(x)$. Since $d y=y^{\prime}(x) d x$, we get

$$
\int h(y) d y=\int g(x) d x
$$

If we can find antiderivatives of h and g, then this gives the equation of the solution curve.

Takeawy

While $\frac{d y}{d x}$ is not a fraction, it can be useful to think of it as one.
 The textbook is a useful resource!!!!!

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

Question: Use separation of variables to write this differential equation as an equality of integrals.

$$
t=\int \frac{d y}{y-y^{2} / 30}
$$

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
t=\int \frac{d y}{y-y^{2} / 30}
$$

Question: Verify that

$$
\log \left(\frac{y}{30-y}\right)
$$

is an antiderivative of $\frac{1}{y-y^{2} / 30}$. (You may use a computer)

Feb. 14, 2020 - S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
t=\log \left(\frac{y}{30-y}\right)
$$

Question: Write y as a function of t.

Punctuated Lecture: The Cat Population

Last time, we modeled the population of cats by:

$$
\frac{d y}{d t}=y(1-y / 30)
$$

This is solved by:

$$
y(t)=\frac{30 e^{t}}{1+e^{t}}
$$

Question: We earlier said that the number of cats at $t=0$ was 20 , but plugging in $t=0$ above does not yield 20. What happened?

Using separation of variables to solve a differential equation, we can always get y as an explicit function of x
\checkmark 70\% Answered Correctly
A True, and I am confident in my answer.
B True, and I am not confident in my answer. 27

C False, and I am not confident in my answer. $\square 52$
D False, and I am confident in my answer. \square

Feb. 14, 2020 - S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

Separation of Variables - Practice

Solve the following differential equation using separation of variables:

$$
y^{\prime}=\frac{1}{1+y^{4}}
$$

Takeaway

Separation of variables gives an implicit solution to the differential equation, not an explicit one

Plans for the Future

For next time:
WeBWork 11.5 and actively read section 11.5

Feb. 14, 2020 - S11.4 - Separation of Variables - $\frac{d y}{d x}$ is Still not a Fraction

Welcome to MAT136 LEC0501 (Assaf)

Over reading week, did you do something:

- Fun?
- Hard?
- Rewarding?

S11.5 - Growth Models

Assaf Bar-Natan

" Now, for ten years we've been on our own And moss grows fat on a rolling stone

But, that's not how it used to be"
-"American Pie", Don McLean
Feb. 24, 2020

Game Plan

- Today: section 11.5
- Wednesday \& Friday: section 11.8
- New WeBWork: Taylor polynomials review "136TaylorSolutions"

Key Points Round Robin

Get into groups of three or four

Key Points Round Robin

Get into groups of three or four

- As a group, come up with three big key ideas from this chapter.

Key Points Round Robin

Get into groups of three or four

- As a group, come up with three big key ideas from this chapter.
- Pick a WeBWork problem from section 11.5. What key ideas does it relate to?

COVID-19 Growth

What function could model this data?

COVID-19 Growth

A reasonable guess:

$$
I(t)=I_{0} e^{k t}
$$

COVID-19 Growth

A reasonable guess:

$$
I(t)=I_{0} e^{k t}
$$

What value should we choose for k ?

Possible Reasons for Discrepancy

- Data is imprecise
- S is approximately constant, so I^{\prime} is approximately proportional to I
- The exponential model is not a good model to use in this case
- The data is not actually an exponential.
https://www.worldometers.info/coronavirus/

Takeaways

We can use a graph to track in real-time whether the SIS model is a good model

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. After one minute, the ball's temperature was $20^{\circ} \mathrm{C}$. We will try to model the hairball's temperature as a function of time.

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. Newton's Law of Heating and cooling says that the rate of change of temperature is proportional to the temperature difference. Which equation best models the heat of the hairball?

All results \quad

A $\frac{d H}{d t}=k(H-8)$

B $\frac{\mathrm{dH}}{\mathrm{dt}}=\mathrm{k}(\mathrm{H}-37)$
c $\frac{d H}{d t}=k(H+8)$
D $\frac{d H}{d t}=k H$

| \square |
| :--- | :--- |

19

133

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. After one minute, the ball's temperature was $20^{\circ} \mathrm{C}$. We will try to model the hairball's temperature as a function of time.

$$
\frac{d H}{d t}=k(H+8)
$$

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. After one minute, the ball's temperature was $20^{\circ} \mathrm{C}$. We will try to model the hairball's temperature as a function of time.

$$
\frac{d H}{d t}=k(H+8)
$$

Q: Should k be positive of negative?

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. After one minute, the ball's temperature was $20^{\circ} \mathrm{C}$. We will try to model the hairball's temperature as a function of time.

$$
\frac{d H}{d t}=k(H+8)
$$

Q: Should k be positive of negative?
Q: Solve this differential equation.

Punctuated Lecture: Rainbow's Hairball

Rainbow spits out a hairball in $-8^{\circ} \mathrm{C}$ weather. A cat's normal body temperature is around $37^{\circ} \mathrm{C}$. After one minute, the ball's temperature was $20^{\circ} \mathrm{C}$. We will try to model the hairball's temperature as a function of time.

$$
\frac{d H}{d t}=k(H+8)
$$

Q: Should k be positive of negative?
Q: Solve this differential equation.
A: Using separation of variables, $H(t)+8=B e^{k t}$.

Rainbow spits out a hairball. Rainbow's body temperature is 37 degrees, and after one minute, the ball's temperature was 20 degrees C . We know that $\mathrm{H}(\mathrm{t})+8=\mathrm{B} \mathrm{e}^{\mathrm{kt}}$. Then $\mathrm{B}=$ and $\mathrm{k}=$ unane
\qquad BLANK2


```
T
Submissions Closed
```

Rainbow spits out a hairball. Rainbow's body temperature is 37 degrees, and after one minute, the ball's temperature was 20 degrees C . We know that $\mathrm{H}(\mathrm{t})+8=\mathrm{B} \mathrm{e}^{\mathrm{kt}}$. Then $\mathrm{B}=$ and $\mathrm{k}=$ unane

BLANK1 BLANK2

-0.484 to -0.464		56
2.996 to 3.016		5
-17.004 to -16.984		1
3.996 to 4.016		1
-4.004 to -3.984		1
4.996 to 5.016		4

Punctuated Lecture: Rainbow's Hairball

$$
H(t)+8=B e^{k t}
$$

We are given that $H(0)=37$, so this means that $B=45$.

Punctuated Lecture: Rainbow's Hairball

$$
H(t)+8=B e^{k t}
$$

We are given that $H(0)=37$, so this means that $B=45$. Moreover, we know $H(1)=20$, so:

$$
28=45 e^{k}
$$

giving us $k \approx-0.474$

Takeaway

We can use initial conditions and another point to find constants that give a particular solution to a heat-law-type problem

Equilibrium Points

Here's a totally wonky, and completely random differential equation:

$$
\frac{d y}{d x}=(y-1)(y+1)
$$

Q: What are its equilibrium solutions?

Equilibrium Points

Here's a totally wonky, and completely random differential equation:

$$
\frac{d y}{d x}=(y-1)(y+1)
$$

Q: What are its equilibrium solutions?
A: $y=1$ and $y=-1$

Below is the slope field for the differential equation $y^{\prime}=(y-1)(y+1)$. Which solution is a stable equilibrium?

Takeaway

We can tell the difference between stable and unstable equilibria by looking at the slope fields.

Plans for the Future

For next time:

WeBWork 11.8 and actively read section 11.8

Welcome to MAT136 LEC0501 (Assaf)

Weather is finally nice! How've you been enjoying it?

S11.8 Systems of ODE's and The SIR Model (Part 1)

Assaf Bar-Natan

" For there's Basie, Miller, Satchmo
And the king of all, Sir Duke
And with a voice like Ella's ringing out
There's no way the band can lose"

-"SIR Duke", Stevie Wonder

Feb. 26, 2020

The SIR Model

Reminder: The SIR model says:

$$
\begin{aligned}
& \frac{d S}{d t}=-\alpha S I \\
& \frac{d I}{d t}=\alpha S I-k I \\
& \frac{d R}{d t}=k l
\end{aligned}
$$

We used k, the textbook uses β.

The SIR Model

Reminder: The SIR model says:

$$
\begin{aligned}
\frac{d S}{d t} & =-\alpha S I \\
\frac{d I}{d t} & =\alpha S I-k I \\
\frac{d R}{d t} & =k I
\end{aligned}
$$

We used k, the textbook uses β.
Q: Remind yourself what S, I, and R mean in the SIR model.

Finding Values for β and α

Get into groups of three or four, and open up a spreadsheeting program.

- Title the first column: DATA

Finding Values for β and α

Get into groups of three or four, and open up a spreadsheeting program.

- Title the first column: DATA
- Navigate to: https://covid2019.azurewebsites.net, and explore the data on the bottom bar of the site

Finding Values for β and α

Get into groups of three or four, and open up a spreadsheeting program.

- Title the first column: DATA
- Navigate to: https://covid2019.azurewebsites.net, and explore the data on the bottom bar of the site
- For Hubei, copy down $I(t)$ into the first column of a spreadsheet (use only the data from the first 15-16 days)

What is your best estimate for β (or k, if we are not using the textbook) in applying the SIR model to the coronavirus in Hubei? Round to one significant digit.

Takeaway

β is easily measured as the death and recovery rate

Making a Model

In your groups:

- Make a new column in the spreadsheet. Label it S
- Make a new column in the spreadsheed. Label it I
- Make a new column in the spreadsheet. Label it R
- What should $S(1)$ be? What should $R(1)$ be?

We will next use Euler's method to fill in the rest of the model.

Making a Model

In your groups:

- Make a new column in the spreadsheet. Label it S
- Make a new column in the spreadsheed. Label it I
- Make a new column in the spreadsheet. Label it R
- What should $S(1)$ be? What should $R(1)$ be? $S(1)$ is the population of Hubei, $R(1)=0$
We will next use Euler's method to fill in the rest of the model.

Making a Model

- Write a formula for $I(2), S(2)$, and $R(2)$ involving $S(1), I(1)$, $R(1)$, the constant $\beta=0.04$, and an unknown constant, α (maybe start by plugging in $\alpha=0.000001$.)
- Extend the formula down (click and drag) to predict $I(t), S(t)$, and $R(t)$. Note: they will have to depend on each other!
- Do your predictions match the data column? What parameter should you change?
Hint: $I(t+1) \approx I(t)+I^{\prime}(t)$

Takeaway

We can use a spreadsheet and Euler's method to solve an ODE, and to make predictions

Interpreting the Constants

When we developed the SIR model:

- α represented the infection rate per sick person per day.
- $k=\beta$ represented the rate at which people recovered.

Go back in your notes, or to lecture 14, and remind yourself how we used these interpretations to derive the SIR model.

Interpreting the Constants

When we developed the SIR model:

- α represented the infection rate per sick person per day.
- $k=\beta$ represented the rate at which people recovered.

Now: $\frac{1}{k}$ can also be interpreted as the average amount of time a person is sick with the virus.

Interpreting the Constants

When we developed the SIR model:

- α represented the infection rate per sick person per day.
- $k=\beta$ represented the rate at which people recovered.

Now: $\frac{1}{k}$ can also be interpreted as the average amount of time a person is sick with the virus.
How can we use units to understand this interpretation? What are the units of k ? What are the units of $\frac{1}{k}$?

Phase-Plane Introduction

We use the chain rule:

$$
\frac{d l}{d S}=\frac{\frac{d l}{d t}}{\frac{d S}{d t}}
$$

This, along with the SIR model equations, allows us to solve for l in terms of S.

Phase-Plane Introduction

We use the chain rule:

$$
\frac{d l}{d S}=\frac{\frac{d l}{d t}}{\frac{d S}{d t}}
$$

This, along with the SIR model equations, allows us to solve for I in terms of S.
In your groups, write $\frac{d I}{d S}$ exclusively in terms of S, α, and β (or k).

In Hubei, assume that the contact number is approximately $\frac{1}{6.000 .000}$. At what value of S will I be maximal?
\checkmark 12\% Answered Correctly

Takeaways

$c=\frac{1}{6,000,000}$ means that on average, an infected person has close contact with about $\frac{1}{6,000,000}$ th of the population of Hubei. This is around 10 people, which is quite reasonable.

The constant c, is called the contact number, and next time, we will see how it can be used to help prevent an epidemic.

Plans for the Future

For next time:

 actively read section 11.8
Welcome to MAT136 LEC0501 (Assaf)

Last time, we had a trick: if $s=\sqrt{\tan (x)}$, then:
$\int \sqrt{\tan (x)} d x=\int \frac{1}{\sqrt{2}}\left(\frac{s}{s^{2}-\sqrt{2} s+1}-\frac{s}{s^{2}+\sqrt{2} s+1}\right) d s$
We work on the first term (the second is similar):

$$
\int \frac{s}{s^{2}-\sqrt{2} s+1} d s=\int \frac{2 s-\sqrt{2}}{2\left(s^{2}-\sqrt{2} s+1\right)}+\frac{1}{\sqrt{2}\left(s^{2}-\sqrt{2} s+1\right)} d s
$$

You already know how to compute the first term here!

S11.8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

Assaf Bar-Natan

" I fought the war but the war won't
stop for the love of god.
I fought the war but the war won"
-"Monster Hospital", Metric
Feb. 28, 2020

The SIR Model - Contact Number

$$
\begin{aligned}
& \frac{d S}{d t}=-\alpha S I \\
& \frac{d I}{d t}=\alpha S I-\beta I
\end{aligned}
$$

So:

$$
\begin{aligned}
\frac{d I}{d S} & =\frac{\alpha S I-\beta I}{-\alpha S I}=-1+\frac{\beta}{\alpha} \frac{1}{S} \\
& =-1+\frac{1}{c S}
\end{aligned}
$$

Where we define $c=\frac{\alpha}{\beta}$, the contact number.

Why Contact Numbers

Param- eter	What does is Mea- sure?	Units	Interpretation
α	Spreadability		Fraction of S who are in- fected, per sick person per day.
β	Removal rate	Percent of I that get bet- ter per day	
$\frac{1}{\beta}$			
c			

Why Contact Numbers

Param- eter	What does is Mea- sure?	Units	Interpretation
α	Spreadability	$\frac{1}{t \times p p /}$	Fraction of S who are in- fected, per sick person per day.
β	Removal rate	$\frac{1}{t}$	Percent of I that get bet- ter per day
$\frac{1}{\beta}$		t	
C		$\frac{1}{p p l}$	

Why Contact Numbers

Param- eter	What does is Mea- sure?	Units	Interpretation
α	Spreadability	$\frac{1}{t \times p p I}$	Fraction of S who are in- fected, per sick person per day.
β	Removal rate	$\frac{1}{t}$	Percent of I that get bet- ter per day
$\frac{1}{\beta}$		t	Average amount of time someone is sick
C		$\frac{1}{p p I}$	

Why Contact Numbers

Param- eter	What does is Mea- sure?	Units	Interpretation
α	Spreadability	$\frac{1}{t \times p p /}$	Fraction of S who are in- fected, per sick person per day.
β	Removal rate	$\frac{1}{t}$	Percent of I that get bet- ter per day
$\frac{1}{\beta}$		t	Average amount of time someone is sick
c		$\frac{1}{p p I}$	Fraction of S that are in- fected per sick person

Takeaway

> c is a measure of "contagion". It's a quantity that determines how many healthy people a sick person infects, all things considered.

Takeaway

c is a measure of "contagion". It's a quantity that determines how many healthy people a sick person infects, all things considered.

WARNING: some models use $s=\frac{S}{N}$, some models use different constants!

For each scenario on the left, match the constant or quantity that is REDUCED when the scenario happens

All results \downarrow

Correct Order

1	Public transit is closed down	\rightarrow	B	C	33
2	Infected individuals wear respirators	\rightarrow	A	α	28
3	A vaccine is discovered and used	\rightarrow	D	S	75
4	A cure is found	\rightarrow	E	I	54
5	Better hospitals are built	\rightarrow	C	$\frac{1}{\beta}$	47

UofT Model

You, too, can play with the parameters of the SIR model: https://art-bd.shinyapps.io/nCov_control/

Why is our model (the SIR model) imperfect? List three reasons.
1.some people are naturally immune and will not count as susceptible
2. R represents both dead and recovered and we cannot determine the survivors
3.immigrating emigrating

```
Comments目0143 3-4
- Miguel Weerasinghe
1.yo my dude
2.acing this shizz
3.hold my beer
nah for serious likely dude to the fact that geographics and barrierss arent accounted for. epidemiology bros
```


Discussion: Why is our model imperfect?

- Changes in policy
- Constants are not actually constant
- Demographics are different
- Vaccines, medications
- ...

Cat Fight!

Marzipan and Rainbow are having a fight, and they brought all the other cats into it. They muster up their armies, and fight at midnight. Let $R(t)$ be the number of cats remaining in Rainbow's army, t minutes after midnight. Define $M(t)$ similarly. We apply Lanchester's model:

$$
\begin{aligned}
\frac{d R}{d t} & =-0.5 M(t) \\
\frac{d M}{d t} & =-0.3 R(t)
\end{aligned}
$$

Cat Fight!

Marzipan and Rainbow are having a fight, and they brought all the other cats into it. They muster up their armies, and fight at midnight. Let $R(t)$ be the number of cats remaining in Rainbow's army, t minutes after midnight. Define $M(t)$ similarly. We apply Lanchester's model:

$$
\begin{aligned}
\frac{d R}{d t} & =-0.5 M(t) \\
\frac{d M}{d t} & =-0.3 R(t)
\end{aligned}
$$

"I don't care how long the battle takes, I just want to win."
-Marzipan

Which of the following might be the slope field for $\frac{d R}{d M}$? Hint: compute $\frac{d R}{d M}$

Feb. 28, 2020 - S11. 8 Part 2 - The Perils of: Phase Diagrams, War, and Modeling

$$
\frac{d R}{d M}=\frac{0.5}{0.3} \frac{M}{R}
$$

An Equilibrium point is a point where:

$$
\begin{aligned}
\frac{d R}{d t} & =0 \\
\frac{d M}{d t} & =0
\end{aligned}
$$

$$
\frac{d R}{d M}=\frac{0.5}{0.3} \frac{M}{R}
$$

An Equilibrium point is a point where:

$$
\begin{aligned}
& \frac{d R}{d t}=0 \\
& \frac{d M}{d t}=0
\end{aligned}
$$

Q: Does there exist an equilibrium point for this system of differential equations? Yes! At $R=0, M=0$

```
T
    Submissions Closed
Both Rainbow and Marzipan bring five cats to the fight. Who wins?
```


\checkmark 55\% Answered Correctly

Takeaway

We don't need to solve the differential equation! The slope field can tell us quite a bit!

For more: see the SIR model example in the text.

Plans for the Future

For next time:
Review Taylor polynomials!

Welcome to MAT136 LEC0501 (Assaf)

https://tinyurl.com/Unit2-3CIQ

Taylor Expansions and ODEs

Assaf Bar-Natan

"The game has been disbanded My mind has been expanded"
-"Rose Tint My World", Susan Sarandon, et. al.

March 3, 2020

Critical Incident Questionnaire

https://tinyurl.com/Unit2-3CIQ

What is a Solution?

How do we solve an ODE?

What is a Solution?

How do we solve an ODE?

Takeaway

Depending on the ODE, and depending on how we want our solution presented, we use different solution strategies.

A New Way: Taylor Solutions

Key idea: Express a function as a Taylor polynomial, and solve for the coefficients.

A First Example

$$
\begin{aligned}
\frac{d y}{d x} & =y \\
y(0) & =2
\end{aligned}
$$

We compute the Taylor expansion of y around 0 :

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

A First Example

$$
\begin{array}{r}
\frac{d y}{d x}=y \\
y(0)=2
\end{array}
$$

We compute the Taylor expansion of y around 0 :

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Sanity check: What is the formula for a_{2} ?

A First Example

$$
\begin{aligned}
\frac{d y}{d x} & =y \\
y(0) & =2
\end{aligned}
$$

We compute the Taylor expansion of y around 0 :

$$
y(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Sanity check: What is the formula for $a_{2} ? a_{2}=\frac{y^{\prime \prime}(0)}{2}$
Now, we differentiate:

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
$$

In the differential equation $y^{\prime}=y$ with initial condition $y(0)=2$, when we expand $y(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, what is the value of a_{0} ?

A First Example

$$
\frac{d y}{d x}=y \quad y(0)=2
$$

We have:

$$
\begin{aligned}
y(x) & =2+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

To solve the equation, we set them to be equal to each other!

$$
\begin{aligned}
& a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots=y^{\prime}=y \\
= & a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

A First Example

$$
\frac{d y}{d x}=y \quad y(0)=2
$$

We have:

$$
\begin{aligned}
y(x) & =2+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

To solve the equation, we set them to be equal to each other!

$$
\begin{aligned}
& \quad a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots=y^{\prime}=y \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

Q: What is a_{2} in terms of a_{1} ?

A First Example

$$
\frac{d y}{d x}=y \quad y(0)=2
$$

We have:

$$
\begin{aligned}
y(x) & =2+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

To solve the equation, we set them to be equal to each other!

$$
\begin{aligned}
& \quad a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots=y^{\prime}=y \\
& = \\
& =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

Q: What is a_{2} in terms of $a_{1} ? a_{2}=\frac{a_{1}}{2}$

Sanity Check

We have that for the differential equation $y^{\prime}=y$,

$$
\frac{y^{\prime \prime}(0)}{2}=a_{2}=\frac{a_{1}}{2}
$$

but we also know: $a_{1}=y^{\prime}(0)$ (Taylor polynomial) and: $y^{\prime}(0)=y^{\prime \prime}(0)(y$ is a solution to the ODE $)$.

This coincides with what we have!

A First Example

$$
\begin{aligned}
\frac{d y}{d x} & =y \\
y(0) & =2
\end{aligned}
$$

We have:

$$
\begin{aligned}
y(x) & =0+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

Check that $a_{n}=\frac{2}{n!}$ Q: What is $y(x)$?

A First Example

$$
\begin{aligned}
\frac{d y}{d x} & =y \\
y(0) & =2
\end{aligned}
$$

We have:

$$
\begin{aligned}
y(x) & =0+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
y^{\prime} & =a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots
\end{aligned}
$$

Check that $a_{n}=\frac{2}{n!}$ Q: What is $y(x)$?

$$
y(x)=\sum_{n=0}^{\infty} \frac{2}{n!} x^{n}=2 e^{x}
$$

Takeaway

Using an initial condition and the differential equation, we can write the solution as a Taylor polynomial, and solve for the coefficients

This is an entirely new way to solve ODEs!

```
T
Submissions Closed
```

Below are some steps to use when solving an ODE using Taylor approximations. What is an appropriate order?

Correct Order
D Write Y as a Taylor polynomial
A Compute the derivative of \mathfrak{Y} in terms of a Taylor polynomial
E Write the LHS and RHS of the ODE as Taylor polynomials
F Set two Taylor polynomials equal to each other and solve for the coefficients
B Use the initial condition to plug in coefficients you know
C Extract information from the Taylor expansion of \mathbf{Y}

```
March 2 at 12:03 PM results -
```

0/4 answered

In the differential equation $y^{\prime}=x^{2} y$ with initial condition $y(0)=1$, when we expand $y(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$, what is the value of a_{3} ?

$$
0.332999667 \text { to } 0.3336663330
$$

ヘ	$<$	$>$	\% Open	O Closed	를 Responses	\checkmark Correct	>

A Hard Differential Equation

$$
\begin{aligned}
y^{\prime} & =x^{2} y \\
y(0) & =1
\end{aligned}
$$

Write:

$$
\begin{array}{rlrl}
y(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \\
x^{2} y(x) & = & a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+a_{3} x^{5} \\
y^{\prime}(x) & =a_{1}+2 a_{2} x+3 a_{3} x^{2}
\end{array}
$$

We know:

$$
\begin{array}{ll}
a_{0}=1 & a_{1}=0 \\
a_{2}=0 & a_{3}=\frac{1}{3} a_{0}=\frac{1}{3}
\end{array}
$$

Using Taylor Solutions to Estimate

Assume that:

$$
\begin{aligned}
y^{\prime} & =x^{2} y \\
y(0) & =1
\end{aligned}
$$

Use Taylor approximations to estimate $y(0.5)$.

Using Taylor Solutions to Estimate

Assume that:

$$
\begin{aligned}
y^{\prime} & =x^{2} y \\
y(0) & =1
\end{aligned}
$$

Use Taylor approximations to estimate $y(0.5)$.
We know that:

$$
y(x)=1+0 x+0 x^{2}+\frac{1}{3} x^{3}
$$

at $x=0.5$, we get: $y(0.5) \approx 1.04$.

Using Taylor Solutions to Estimate

Assume that:

$$
\begin{aligned}
y^{\prime} & =x^{2} y \\
y(0) & =1
\end{aligned}
$$

Use Taylor approximations to estimate $y(0.5)$.
We know that:

$$
y(x)=1+0 x+0 x^{2}+\frac{1}{3} x^{3}
$$

at $x=0.5$, we get: $y(0.5) \approx 1.04$.
The actual solution to this ODE (it's separable) is $y(x)=e^{x^{3}}$. How close is our estimate?

The solution to the differential equation $y^{\prime \prime}=x y+y$ with initial condition $y(0)=1$ is...
A Concave up at 0 , and I can prove it 0
B Concave up at 0, but I don't know how to prove it 0
C Concave down at 0 , but I don't know how to prove it 0
D Concave down at 0 , and I know how to prove it 0
0/4 answered

\wedge	$<$	>	- Open	θ closed	르 Responses	\checkmark Correct	》	Q 100\%	」

Takeaway

We can get information about convexity or other properties of the function by looking at the coefficients of its solution. For example, increasing, decreasing, concavity,...

Plans for the Future

For next time:
WeBWork 8.1 and actively read section 8.1

Welcome to MAT136 LEC0501 (Assaf)

We continue to solve $\int \sqrt{\tan (x)}$. We substitute $w=s^{2}-\sqrt{2} s+1$ to get:

$$
\begin{aligned}
\int \frac{s}{s^{2}-\sqrt{2} s+1} d s & =\int \frac{2 s-\sqrt{2}}{2\left(s^{2}-\sqrt{2} s+1\right)}+\frac{1}{\sqrt{2}\left(s^{2}-\sqrt{2} s+1\right)} d s \\
& =\int \frac{1}{2 w} d w+\int \frac{1}{\sqrt{2}\left(s^{2}-\sqrt{2} s+1\right)} d s \\
& =\frac{\log (w)}{2}+\frac{1}{\sqrt{2}} \int \frac{1}{\left(s-\frac{1}{\sqrt{2}}\right)^{2}+\frac{1}{2}}
\end{aligned}
$$

The last integral is computed using an inverse trig substitution. This is covered in chapter 7.4

Areas and Volumes - Slice 'em, Dice 'em, Integrate 'em

Assaf Bar-Natan

"Where trouble melts like lemon drops
High above the chimney top
That's where you'll find me"

- "Somewhere Over The Rainbow", Israel Kamakawiwo'ole

March 4, 2020

You are given a lemon，a knife，a piece of string，and a ruler．How would you use these tools to estimate the volume of the lemon？（Hint：the lemon can be destroyed in the process．）
－Hidden
1：Slice up the lemon into many equal－width（height）slices．
2：Use the ruler to measure the height and the radius of each lemon slice．
3：Use these measurements to find the volume of each slice．
4：Add all volumes together．
Comments 0 目 1
－Hidden

1．Slice the lemon in half with the knife
2．Measure the circumference of the lemon with the string
3．Use the ruler to find the radius for that circumference
148／148 answered
－〈＞
Resume
Q 100\％\quad 」

Cutting a Lemon

"When life gives you lemons, cut them up, and compute their volume"

We can estimate the volume by slicing the lemon into 1 cm -thick slices. Then:

$$
\mathrm{Vol}=\sum_{\text {slices }} \operatorname{Area}(\text { slice }) \times 1 \mathrm{~cm}
$$

$$
\text { Area(slice) }=\pi \times \text { radius }^{2}
$$

A Stack of Post-lts

Sometimes, shapes that look irregular, have nice-looking cross-sections:

Q: A 3in tall stack of post-its is twisted like in the picture. What is the volume of the stack?

A Stack of Post-lts

Sometimes, shapes that look irregular, have nice-looking cross-sections:

Q: A 3in tall stack of post-its is twisted like in the picture. What is the volume of the stack?
A: Separate the stack into n individual post-its, each having a height of $\frac{3}{n}$ in. The total volume is:

$$
\sum_{i=1}^{n} I \times w \times \frac{3}{n}
$$

Takeaway

In the same way that we sliced regions into small rectangles to compute areas using integrals, we can slice solids into thin cross-sections to compute volumes using integrals.

The Cat's Nest

The cats are burrowing into the top of a square hay-bale. The hay bale has a width of 18 ", a length of 36 ", and a height of 14 ". The cats burrow a cavity from the top whose radius is changing with the height above the ground. The radius of the cavity is $\frac{\sqrt{h}}{3}$ feet, where h is measured in feet above the ground. How much hay is in the bale?

What are the steps we must take in order to use the "slicing method" to find the volume of an object?

Correct Order
A Draw a picture of the object and decide which direction to slice it in
F Estimate the volume of each slice
B Approximate the total volume by adding up the slices
C Take the limit to obtain the exact value of the shape's volume
E
Interpret the limit as a Riemann sum then interpret the Riemann sum as an integral

D Compute the definite integral to find the volume of the solid
\qquad

Draw a Picture

March 4, 2020 - Areas and Volumes - Slice 'em, Dice 'em, Integrate 'em

In which direction should we slice our shape in order to find the volume?

B Horizontal slices (like the post-its)	102
C Both will work	50

Draw the horizontally-sliced cross-sections of the shape of the hay.

Ordered by Most Liked $\boldsymbol{}$

- Hidden

Approximating the Volume

If the height of each cross-section is Δh, then the volume of the cross section at height h is:

Approximating the Volume

If the height of each cross-section is Δh, then the volume of the cross section at height h is:

$$
\begin{aligned}
V(h) & =\left(18 \times 36-\pi r^{2}\right) \Delta h \\
& =648 \Delta h-\frac{\pi h}{9} \Delta h
\end{aligned}
$$

Approximating the Total Volume

If the height of each cross-section is Δh, then the volume of the cross section at height h is:

$$
\begin{aligned}
\text { Cross-Sec. Vol } & =\left(18 \times 36-\pi r^{2}\right) \Delta h \\
& =648 \Delta h-\frac{\pi h}{9} \Delta h
\end{aligned}
$$

Q: Write a Riemann sum that estimates the total volume (take $\Delta h=\frac{14}{n}$).

Approximating the Total Volume

If the height of each cross-section is Δh, then the volume of the cross section at height h is:

$$
\begin{aligned}
\text { Cross-Sec. Vol } & =\left(18 \times 36-\pi r^{2}\right) \Delta h \\
& =648 \Delta h-\frac{\pi h}{9} \Delta h
\end{aligned}
$$

Q: Write a Riemann sum that estimates the total volume (take $\Delta h=\frac{14}{n}$).

$$
\sum_{i=1}^{n} 648 \frac{14}{n}-\frac{14 \pi i}{9 n} \frac{14}{n}
$$

Taking the Limit

We've replaced h with $h_{i}=\frac{14}{n} i$, and $\Delta h=\frac{14}{n}$, then added it up. All that's left (in cubic inches) is to take the limit:

$$
\mathrm{Vol}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 648 \frac{14}{n}-\frac{14 \pi i}{9 n} \frac{14}{n}
$$

Which of the following integrals corresponds to the Riemann sum $\lim _{n \rightarrow \infty} \sum_{i=1}^{n-1} 648 \frac{14}{n}-\frac{14 \pi i}{9 n} \frac{14}{n}$

Evaluating the Integral

When all is said and done, the volume of hay left is:

$$
\int_{0}^{14}\left(648-\frac{\pi}{9} h\right) d h
$$

Which is around 9000 in 3, or, around 5.2 cubic feet.

Plans for the Future

For next time:
WeBWork 8.2 and actively read section 8.2

Ban cars on campus

Welcome to MAT136 LEC0501 (Assaf)

We continue to solve $\int \sqrt{\tan (x)}$. After computing the last integral, and subbing in everything...

$$
\begin{aligned}
\int \sqrt{\tan (x)} d x & =\frac{1}{2 \sqrt{2}} \log (\tan (x)-\sqrt{2 \tan (x)}+1) \\
& -\frac{1}{2 \sqrt{2}} \log (\tan (x)+\sqrt{2 \tan (x)}+1) \\
& +\frac{1}{\sqrt{2}} \tan ^{-1}(\sqrt{2 \tan (x)}+1) \\
& -\frac{1}{\sqrt{2}} \tan ^{-1}(1-\sqrt{2 \tan (x)})
\end{aligned}
$$

Easy, right?

Areas and Volumes - Rotating, Spinning, and a Bit of Slicing

Assaf Bar-Natan

"My head is in a spin, My feet don't touch the ground.

Because you're near to me
My head goes round and round."
-"Feels Like I'm in Love", Kelly Marie

March 6, 2020

CIQ summary

- You were most engaged when using TopHat. Specifically, discussing with groups, and discussing things together.
- You were engaged during the lectures about COVID-19, SIR model, and the Excel spreadsheet activity
- You were sad that people leave before class is over, or talk over me.
- Some of you were distanced when doing the SIR model stuff. A lot of you were confused at slope fields.
- At times, the lecture was moving fast, and you disliked skipped questions.
- You did not gain a lot from classes when you did not do the reading.

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

- idk (this annoyed a lot of of you, too)

CIQ summary - Cont.

Things you liked:

- Taking up WeBWork and TopHat questions (through discussions, or on slides)
- The amount of interaction and group discussion
- Traditional lecturing
- Each other

Things that confused you:

- idk (this annoyed a lot of of you, too)
- Going too fast
Draw a cross-section of this shape, when sliced with
vertical sections (ie, planes perpendicular to the x-
axis). What are the dimensions of these cross-
sections?

CIQ summary - Cont.

Things that surprised you:

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling
- Difference in marks between those who attended the class on the day of the mid term and those who did not

CIQ summary - Cont.

Things that surprised you:

- 0/1000000000
- "The friends I made in this class"
- SIR/Coronavirus modeling
- Difference in marks between those who attended the class on the day of the mid term and those who did not
- Cats?

A First Application of Slices

To find the arc-length of a function:

$$
\begin{aligned}
\Delta \text { Arc length } & =\sqrt{\Delta x^{2}+\Delta y^{2}} \\
& =\sqrt{\Delta x^{2}+\left(f^{\prime}(x)^{2}\right) \Delta x^{2}} \\
& =\sqrt{1+\left(f^{\prime}\right)^{2}} \Delta x
\end{aligned}
$$

Integrate to get Arclength $=\int \sqrt{1+\left(f^{\prime}\right)^{2}} d x$

Slices - Areas and Volumes

Previously, on MAT136:

Taking the slices to be really small...

$$
\text { Area }=\int_{a}^{b}(f(x)-g(x)) d x
$$

Slices - Areas and Volumes

Now, on MAT136: Find the volume of the solid obtained by rotating the region in the first quadrant bounded by and $y=x^{2}, y=x$ around the $y=3$ axis.
Q: What does the base region look like?

Slices - Areas and Volumes

Now, on MAT136: Find the volume of the solid obtained by rotating the region in the first quadrant bounded by and $y=x^{2}, y=x$ around the $y=3$ axis.
Q: What does the base region look like?

Slices - Areas and Volumes

rotate the region between the curves around the line $y=3$

Use slices here, and make them really small...

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

$$
V=\Delta x \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right)
$$

- Write an integral that computes the total volume

Finding the Volume

Get into groups.

- In your groups, draw the cross-section of the slices
- Write an expression for the volume of each slice.

$$
V=\Delta x \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right)
$$

- Write an integral that computes the total volume

$$
\int_{0}^{1} \pi\left(\left(3-x^{2}\right)^{2}-(3-x)^{2}\right) d x
$$

We rotate the graph of $y=(x+1)^{2}$ around the x-axis. The approximate volume of the slice of the solid that is χ_{i} units away from the y-axis is given by:

Cats and Troughs

The cats are stealing food from the sheep's trough (pictured below schematically):

Assume that the trough has a cubic cross-section $y=2 x^{3}$, and that its length is $2 m$. At the start of the day, the food in the trough is $0.4 m$ high in the trough. At the end of the day, it's $0.39 m$ high. How much food did the cats eat?

```
T
    Submissions Closed
```

We can slice the volume of food at the start of the day using vertical slices or horizontal slices. Each of these slices then has a different area. Match the type of slicing to the formula giving the area of the slice.

Correct Order

Cats and Troughs

Vertical Slices
$\Delta V($ start of day $)$
$=2 \times\left(0.4-2 x^{3}\right) \times \Delta x$
$\Delta V($ start of day $)$
$=2 \times \sqrt[3]{y / 2} \times \Delta y$

```
T
Submissions Closed
```

We can slice the volume of food at the start of the day in two ways. Which of the following give an integral that evaluates the volume of food at the start of the day?

63\% Answered Correctly

A $2 \int_{0}^{0.4}\left(0.4-2 t^{3}\right) d t$
B $2 \int_{0}^{\sqrt[3]{0.2}}\left(0.4-2 t^{3}\right) d t$
C $2 \int_{0}^{0.4} \sqrt[3]{t / 2} d t$
D $2 \int_{0}^{\sqrt[3]{0.4 / 2}} \sqrt[3]{t / 2} d t$

March 6at 1:45presults - Segnentresuls					Comp	ere withession					Show perentages	Hide Craph	conde	sse Text
152/152 answered													C	kAgain
\wedge	<	>	- open	θ	closed	三 Responses	\checkmark	Correct		>			Q. $8_{8 \%}$	

March 6, 2020 - Areas and Volumes - Rotating, Spinning, and a Bit of Slicing
Assaf Bar-Natan

Cats and Troughs

At the start of the day...

Vertical Slices

Horizontal Slices

$$
\begin{aligned}
\Delta \mathrm{V} & =2 \times\left(0.4-2 x^{3}\right) \times \Delta x & \Delta \mathrm{~V}=2 \times \sqrt[3]{y / 2} \times \Delta y \\
\mathrm{~V} & =2 \int_{0}^{\sqrt[3]{0.2}}\left(0.4-2 x^{3}\right) d x & \mathrm{~V}=2 \int_{0}^{0.4} \sqrt[3]{y / 2} d y
\end{aligned}
$$

Both are equal to ≈ 0.3508

Cats and Troughs

So how much did the cats eat?

Cats and Troughs

So how much did the cats eat?

$$
\begin{aligned}
\mathrm{V}(\text { start of day }) & -\mathrm{V}(\text { end of day }) \\
& =2 \int_{0}^{0.4} \sqrt[3]{y / 2} d y-2 \int_{0}^{0.39} \sqrt[3]{y / 2} d y \\
& =2 \int_{0.39}^{0.4} \sqrt[3]{y / 2} d y \approx 0.011 m^{2}=11 L
\end{aligned}
$$

Plans for the Future

For next time:
WeBWork 8.4 and actively read section 8.4

Welcome to MAT136 LEC0501 (Assaf)

https://www.youtube.com/watch?v=Kas0tIxDvrg An interesting video on COVID-19 modeling and exponential growth.

Q: What model (SI, SIR, or SIS) is this video using?

S8.4 - Density and Slicing

Assaf Bar-Natan

" Come gather 'round people
Wherever you roam
And admit that the waters
Around you have grown"
-"The Times They Are 'a Changin"', Simon and Garfunkel

March 9, 2020

WeBWork Round Robin

In your groups, go in a circle, and:

- Say a problem from the WeBWork you struggled with.

WeBWork Round Robin

In your groups, go in a circle, and:

- Say a problem from the WeBWork you struggled with.
- Discuss the solution to each problem that the group mentioned.

WeBWork Round Robin

In your groups, go in a circle, and:

- Say a problem from the WeBWork you struggled with.
- Discuss the solution to each problem that the group mentioned.
- Write a hint for a student struggling with the problem.

Takeaway

In life, and on the exam, you will be asked to communicate your math using complete sentences.

The writing exercises we do in class are for your practice!

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(/) \frac{\text { hairs }}{\mathrm{m}}$, where $/$ is the length along her tail. If Flood's tail is 30 cm long, how many hairs does Flood have?

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(I) \frac{\text { hairs }}{\mathrm{m}}$, where $/$ is the length along her tail. If Flood's tail is 30 cm long, how many hairs does Flood have?

$$
\text { Hairs } \approx \sum h(I) \Delta I=\int_{a}^{b} h(I) d I
$$

Q: What are a and b ? (Hint: units!)

What is Density?

Flood has a long tail, and the fur-density is given by a function, $h(I) \frac{\text { hairs }}{\mathrm{m}}$, where $/$ is the length along her tail. If Flood's tail is 30 cm long, how many hairs does Flood have?

$$
\text { Hairs } \approx \sum h(I) \Delta I=\int_{a}^{b} h(I) d I
$$

Q: What are a and b ? (Hint: units!) $a=0$ and $b=0.3 \mathrm{~m}=30 \mathrm{~cm}$.

Takeaway

Always make sure that the units work out!

Torontopolis

The fictional city of Torontopolis radially has a population density of $4000 e^{-0.02 r^{2}}$ people per km^{2}, where r is the radius (in km) from the CM-tower.
We are interested in finding the total population living within a certain radius of the CM-tower.

Put the steps for solving a slicing problem in order．

Correct Order
B Slice the object or process into pieces where you can approximate quantity．
E Approximate the quantity on each slice．
F Add up the slices to get an approximation for the total．
A Take a limit as the number of slices approaches infinity to get the exact value for the total．
D Interpret your limit as an integral．
C Use the FTC to find an exact value for the total．

Invalid date -								Condense Text	
172／172 answered								C Ask Again	
ヘ	く	＞	－Open	θ closed	三 Responses	\checkmark Correct	＞	Q 88%	$7{ }^{\text {」 }}$

Slice object where density is constant

Discussion: Along what "slices" of Torontopolis is the population density approximately constant?

Slice object where density is constant

Discussion: Along what "slices" of Torontopolis is the population density approximately constant?
A: Annuli of small thickness centered at the CM-tower.

True or False: A different city, Montrealville, occupies a region in the xy-plane, with population density $\delta(y)=1+y$. To set up an integral representing the total population in the city, we should slice the region into...
A Pieces that run parallel to the x axis 96

B Annuli around a center point16

C Pieces that run parallel to the y axis 54

D Depends on the shape of Montrealville
I

Invalid da	-		Results	Compare with session					Show percentages	Hide Graph	Condense Text	
173/173 answered											$\mathbf{C l}_{\text {Ask Again }}$	
\wedge	く	>	**		Q Closed	ㄹ Responses	\checkmark Correct	>			Q 88\%	」 7 L

Add up slices

Discussion: What is the total population living on an annulus of radius r_{i} and of width Δr ?

Add up slices

Discussion: What is the total population living on an annulus of radius r_{i} and of width Δr ?

$$
\text { A: } 4000 e^{-0.02 r^{2}} \times 2 \pi r \times \Delta r
$$

Interpret as Riemann sum

Discussion: What is the total number of people who live within a 3 km radius of the CM-tower? Write your answer as a Riemann sum.

Interpret as Riemann sum

Discussion: What is the total number of people who live within a 3 km radius of the CM-tower? Write your answer as a Riemann sum.

A: We partition the interval $[0,3]$ into n pieces. So $\Delta r=\frac{3}{n}$. What is r_{i} ?

Interpret as Riemann sum

Discussion: What is the total number of people who live within a 3 km radius of the CM-tower? Write your answer as a Riemann sum.

A: We partition the interval $[0,3]$ into n pieces. So $\Delta r=\frac{3}{n}$. What is r_{i} ?
A: $r_{i}=\frac{3 i}{n}$, so the sum becomes:

Interpret as Riemann sum

Discussion: What is the total number of people who live within a 3 km radius of the CM-tower? Write your answer as a Riemann sum.

A: We partition the interval $[0,3]$ into n pieces. So $\Delta r=\frac{3}{n}$. What is r_{i} ?
A: $r_{i}=\frac{3 i}{n}$, so the sum becomes:

$$
\sum_{i=1}^{n} 2 \pi r_{i} \times 4000 e^{-0.02 r_{i}^{2}} \times \frac{3}{n}
$$

To get the true quantity, take the limit.

7
 Submissions Closed

We've seen that the number of people who live within 2 km of the CM tower in Torontopolis is given by $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 8000 \pi \frac{3 i}{n} e^{-0.02 \times(3 i / n)^{2}} \frac{3}{n}$. What will evaluate this?

A $8000 \pi \int_{0}^{1} r e^{-0.02 r^{2}} d r$
B $8000 \pi \int_{0}^{1} 9 r e^{-0.02 \times 9 r^{2}} d r$
c $8000 \pi \int_{0}^{1} 3 r e^{-0.02 \times 3 r^{2}} d r$
D $8000 \pi \int_{-}^{1} 3 r e^{-0.02 \times 9 r^{2}} \mathrm{dr}$
69

March 8 at 10:14 PM results	Segment Results	Compare with session

Compute the Integral

The total number of people who live within a 3 km radius of the CM-tower is:

$$
8000 \pi \int_{0}^{1} 9 r e^{-0.02 \times 9 r^{2}} d r=8000 \pi \int_{0}^{3} r e^{-0.02 r^{2}} d r
$$

Compute the Integral

The total number of people who live within a 3 km radius of the CM-tower is:

$$
8000 \pi \int_{0}^{1} 9 r e^{-0.02 \times 9 r^{2}} d r=8000 \pi \int_{0}^{3} r e^{-0.02 r^{2}} d r \approx 103,000
$$

Takeaway

Reminder: for ALL slicing problems, you need to show all the steps on the exam!

Plans for the Future

For next time:
Go over WeBWork 8.4 and section 8.4

Ban cars on campus

Welcome to MAT136 LEC0501 (Assaf)

Final exam is in three weeks - Do you have a study plan?

Applications for Slicing

Assaf Bar-Natan

"Money. It's a crime
Share it fairly, but don't take a slice of my pie
Money. So they say Is the root of all evil today. "
-"Money", Pink Floyd
March 11, 2020

Today's Plan

Today: practice for the short answer problems on the final

- Read a text on slicing problems
- Summarize the text
- TopHat

Please open the text (Week 9 on Quercus)

Consumer Surplus

Main points from the reading:

- The demand curve plots the price of a product as a function of how many will sell at that price.
- The difference between what a consumer pays and what they are willing to pay is called the consumer surplus.
- Adding up (savings per unit) \times (number of units) $=\sum\left(p\left(x_{i}\right)-P\right) \Delta x$ gives the total amount of money saved by everyone.
- The above is called the commodity consumer surplus
- We can compute the the commodity consumer surplus using an integral

A new business is selling cat toys, and tracks the number of toys sold when priced at a certain price with a function, \mathbf{f}. If they sell the cat toys at 5 dollars each, what is the expression for the consumer surplus?
\checkmark 58\% Answered Correctly

Laminar Flow

Main points from the reading:

- The laminar flow rate depends on the radius of the tube
- The total flow is the integral of the flow rate - use rings
- This reminds me of a WeBWork problem.... Q: which one?
- The flux is the amount of blood that passes through a section of the tube per unit time.
- Poiseuille's Law says that the flux is given by:

$$
F=\frac{\pi P R^{4}}{8 \eta I}
$$

Laminar Flow

Main points from the reading:

- The laminar flow rate depends on the radius of the tube
- The total flow is the integral of the flow rate - use rings
- This reminds me of a WeBWork problem.... Q: which one? WW8.4, number 5
- The flux is the amount of blood that passes through a section of the tube per unit time.
- Poiseuille's Law says that the flux is given by:

$$
F=\frac{\pi P R^{4}}{8 \eta I}
$$

If the radius of an artery is reduced to half of its former value，the body still needs to maintain the same flux． This means that the blood pressure．．．

C Triples
I5
D Quadruples 30
E More than quadruples

\square 93

March 11 at 1：21 AM results－				Segment Results		Compare with session				Show percentages	Hide Graph	Condense Text	
164／170 answered												C Ask Again	
\wedge	く	＞		Open	θ	osed	ㄹ Responses	\checkmark Correct	》			Q 88\％	」 7 L

March 11， 2020 －Applications for Slicing
Assaf Bar－Natan

Plans for the Future

For next time:
Go over WeBWork 9.1 and section 9.1

Welcome to MAT136 LEC0501 (Assaf)

Next week - We're going digital!
I don't care what the university says.

S9.1 - Sequences (AKA infinite lists)

Assaf Bar-Natan

"Yeah yeah 'cause it goes on and on and on And it goes on and on and on yeah
I throw my hands up in the air sometimes
Saying ayeoh, gotta let go"
-"Dynamite", Taio Cruz

March 13, 2020

What is a sequence?

A sequence is an ordered list of numbers

We can give a sequence in a few ways:

- Explicity: $1,4,9, \ldots$ (like a table of values $f(n)=n^{2}$)
- Closed form: $c_{n}=\frac{1+2 n}{3 n-2}$ (like Taylor coefficients $c_{n}=\frac{1}{n!} \frac{d^{n} f}{d x^{n}}$)
- Recursive: $s_{n+1}=s_{n}+1 / n$ (like Euler's method)

```
T
    Submissions Closed
```

Match the sequences given in different forms

Correct Order

1	$\begin{aligned} & s_{n}=s_{n-1}+2 \text { and } \\ & s_{1}=-1 \end{aligned}$	\rightarrow	C	-1; 1; 3; 5; and so on	98
2	$\frac{n+1}{n}$	\rightarrow	A	2; 3/2; 4/3; 5/4; and so on	95
3	1;2;4;8; and so on	\rightarrow	B	$s_{n}=2^{n}$	98


```
T
Submissions Closed
```

Find a formula for the nth term of the sequence $\{1 / 2,-4 / 3,9 / 4,-16 / 5,25 / 6 \ldots\}$

A $(-1)^{n} n /(n+1)$
B $(-1)^{n+1} n /(n+1)$
c $(-1)^{n-1} n /(n+1)$
D $(-1)^{n} n^{2} /(n+1)$
$E(-1)^{n+1} n^{2} /(n+1)$
F $(-1)^{n-1} n^{2} /(n+1)$

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Takeaway

We can move back and forth between representations of sequences!

Fill in the Blanks

- If a sequence is $m \ldots$ and b ___ it converges.
- A sequence s_{n} converges to L if s_{n} is as close to ___ as we please if \qquad is \qquad .
- A sequence is an ___ list of numbers.
- For a positive integer $n, n!=$ \qquad .
- A sequence is __ defined if the equation for a general term depends on previous terms.

Fill in the Blanks

- If a sequence is monotonic and bounded, it converges.
- A sequence s_{n} converges to L if s_{n} is as close to L as we please if \mathbf{n} is large.
- A sequence is an ordered list of numbers.
- For a positive integer n, n ! $=$ $n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1$.
- A sequence is recursively defined if the equation for a general term depends on previous terms.

```
F
Submissions Closed
```


You can tell if a sequence converges by looking at the first 1000 terms

A		
True	$\vee 65 \%$ Answered Correctly	
B		43


```
T
Submissions Closed
```

What value does each of the following sequences converge to?

Correct Order

$\mathbf{1}\left\{\frac{1+2 n}{3 n-2}\right\}$	\rightarrow	B $2 / 3$	$\mathbf{7 2}$
$2\left\{\frac{5+3^{n}}{10+2^{n}}\right\}$	\rightarrow	A diverges	$\mathbf{6 6}$
$3\left\{3 / 2+e^{-2 n}\right\}$	\rightarrow	D $3 / 2$	$\mathbf{7 3}$
$4\left\{3+(-1)^{n} \frac{1}{2^{n}}\right\}$	\rightarrow	C 3	$\mathbf{7 4}$

March 13, 2020 - S9.1 - Sequences (AKA infinite lists)

Takeaway

> We have a few ways to check if a sequence converges. One way is to look at the closed form and plug in big numbers

Champernowne constant

Consider the sequence:

- $C_{1}=0.1$
- $C_{2}=0.12$
- $C_{3}=0.123$

Q: Does this sequence converge? How do you know this?
A: This sequence converges because it is monotonic and bounded.

Champernowne constant

The limit of the sequence $0.1,0.12,0.123, \ldots$ is called Champernowne constant, and its decimal expansion contains every number. Even your phone number!

And now, we meet our friends...

The gang

Inspiration for cat opening mouth question

Cats looking

Cuddles

Bulking up for winter

Sunset

Plans for the Future

For next time:
Go over WeBWork 9.2 and section 9.2

Welcome to MAT136 LEC0501 (Assaf)

Administrative Announcements

us Class will "meet" at 2:10pm MWF on BB Collaborate
us Classes will all be recorded
me My office hour times are now after every class, and will be held on BB Collaborate
me In-Class TopHat is ungraded, and is replaced by assigned TopHat questions
you Pre-reading, WeBWork stay the same
you Watch the videos on the main site!

S9.2 - Geometric Series

Assaf Bar-Natan

"If I could only reach you
If I could make you smile, If I could only reach you,
That would really be a breakthrough."
-"Breakthru", Queen

March 16, 2020

Welcome to MAT136 LEC0501 (Assaf)

Administrative Announcements

us Class will "meet" at 2:10pm MWF on BB Collaborate
us Classes will all be recorded
me My office hour times are now after every class, and will be held on BB Collaborate
me In-Class TopHat is ungraded, and is replaced by assigned TopHat questions (due at the end of the class day)
you Pre-reading, WeBWork stay the same
you Watch the videos on the main site!

Series

We've seen sequences:

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

Now, we're going to add them up:

$$
\begin{aligned}
& a_{1} \\
& a_{1}+a_{2} \\
& a_{1}+a_{2}+\cdots+a_{n}+\cdots
\end{aligned}
$$

Such a sum is called a series.

Takeaway

Q: What is the difference between a sum and a series?

Takeaway

Q: What is the difference between a sum and a series?
A sum only adds up finitely many elements, but a series adds up ininitely many elements.

Takeaway

Q: What is the difference between a sum and a series?
A sum only adds up finitely many elements, but a series adds up ininitely many elements.

$$
\sum_{i=0}^{n} f\left(x_{i}\right) \Delta x
$$

is a sum.

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}
$$

is a series (see Zeno's Paradox video)

A geometric series is characterized by...

Takeaway

A geometric series is a special kind of series, where the ratio between subsequent terms is constant.

Marzipan's Problem

Marzipan is modeling the mouse population in the barn. She finds three mice in the barn, and measures that the number of mice is multiplied by a factor of 1.3 every week. She writes:
"I want to know how many mice will be in the barn by summertime. If summer many many weeks away, I'll approximate using the formula for the inifinite geometric series to get:
number of mice $=3+3(1.3)+3(1.3)^{2}+\cdots=\frac{3}{1-1.3}=-10$
So there will be -10 mice over the summer."
Can you help Marzipan interpret her answer?

```
F
Submissions Closed
```

Which of the following add up to 10 ?

Plans for the Future

For next time:
Do WeBWork 9.3 and actively read section 9.3

What is the area of the shaded region?

A π
15
B $\frac{2 \pi}{3}$
75

C $\frac{4 \pi}{3}$
24

D ∞

Write the limit of the sequence $\{1,1.1,1.11,1.111,1.1111,1.11111,1.111111, \ldots\}$ as a series.
$\checkmark \mathbf{6 0 \%}$ Answered Correctly
$\omega \sum_{n=0}^{\infty}\left(\frac{1}{10}\right)^{n}$
B $\sum_{n=0}^{\infty}(1.1)^{n}$
c $\sum_{n=0}^{\infty}(1)^{n}$
6

Write the limit of the sequence $\{0.9,0.99,0.999,0.9999,0.99999, \ldots\}$ as a series.

Welcome to MAT136 LEC0501 (Assaf)

How similar are other online classes to this one? What's different? Answer in the chat.

S9.3 - Series \& Convergence

Assaf Bar-Natan

"One thing I can tell you is
You got to be free
Come together, right now
Over me"
-"Come Together", The Beatles
March 18, 2020

Fill in the Blanks

- We say that a series $\sum_{k=1}^{\infty} a_{k} c$ \qquad if the p \qquad S $\sum_{k=1}^{n} a_{k}$ converge
- We define the value of a series as the \qquad of the partial sums.
- The series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ \qquad -test

Partial Sums and Convergence

When we write:

$$
\sum_{k=1}^{\infty} a_{k}
$$

what we really mean is:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

Partial Sums and Convergence

When we write:

$$
\sum_{k=1}^{\infty} a_{k}
$$

what we really mean is:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

If we write $S_{n}=\sum_{k=1}^{n} a_{k}$, and call it the partial sum, then the series $\sum_{k=1}^{\infty} a_{k}$ converges when $\lim _{n \rightarrow \infty} S_{n}$ converges.

Partial Sums - Geometric Series

Consider the series:

$$
1+0.2+(0.2)^{2}+(0.2)^{3}+\cdots
$$

- What is a_{k} ?
- What is S_{n} ?
- What is $\lim _{n \rightarrow \infty} S_{n}$?
- What integral do we use in the integral test?

Partial Sums - Geometric Series

Consider the series:

$$
1+0.2+(0.2)^{2}+(0.2)^{3}+\cdots
$$

- What is $a_{k} ? a_{k}=(0.2)^{k}$
- What is $S_{n} ? S_{n}=\frac{1-(0.2)^{n+1}}{0.8}$
- What is $\lim _{n \rightarrow \infty} S_{n} ? \frac{1}{0.8}$
- What integral do we use in the integral test? We use the integrand (0.2) ${ }^{x}$

Teaching in 2020

Semester Begins

Told to Plan for Possible
Remote Teaching

Making Remote Teaching Plan

The Integral Idea

Suppose $a_{n}=f(n)$, where $f(x)$ is decreasing and positive.

- If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum a_{n}$ diverges.
- If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum a_{n}$ converges.

Q: Does the series:

$$
e^{4}-0.2+\pi+1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots
$$

converge?

The Integral Idea

Suppose $a_{n}=f(n)$, where $f(x)$ is decreasing and positive.

- If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum a_{n}$ diverges.
- If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum a_{n}$ converges.

Q: Does the series:

$$
e^{4}-0.2+\pi+1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\cdots
$$

converge?
A: Yes! We only care about the tail of the series, which converges by the integral test.

The series $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$ converges
\checkmark 69\% Answered Correctly

March 18, 2020 - S9.3 - Series \& Convergence
Assaf Bar-Natan

Lexi's Series

Lexi, the tail-less cat (she was born that way) is practicing her convergence properties. She writes:
"I want to see if the series $\sum\left(\frac{1}{n}-\frac{1}{n+1}\right)$ converges. I'll split it up to get:

$$
\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}=\sum_{n=1}^{\infty} \frac{1}{n}-\sum_{n=1}^{\infty} \frac{1}{n+1}
$$

The series on the right is the Harmonic series, which diverges, so the whole thing diverges."

Is Lexi's reasoning correct?

The series $\sum_{n=1}^{\infty} \frac{1}{n}-\frac{1}{n+1}$ converges
\checkmark 62\% Answered Correctly

A	True and I am confident in my answer.	
B	True and I am not confident in my answer.	17

C False and I am not confident in my answer.
20

D False and I am confident in my answer.
8

March 18 at 12:10 PM results				Segment Results		Compare with session				Show percentages	Hide Graph	Condense Text	
73/76 answered												$\mathbf{C A s k A g a i n}^{\text {A }}$	
\wedge	く	>		Open	θ		ㄹ Responses	\checkmark Correct	>			Q 72%	」 7 ¢

March 18, 2020 - S9.3 - Series \& Convergence
Assaf Bar-Natan

Takeaway

When all else fails, look at the partial sums!

Plans for the Future

For next time:
Do WeBWork 9.3 and actively read section 9.3

True / False: Since $\lim _{n \rightarrow \infty} 1 / n=0, \sum_{n=1}^{\infty} 1 / n$ converges.

A True, and I am very certain
B True, but I am not very certain
C False, but I am not very certain
D False, and I am very certain

March 18, 2020 - S9.3 - Series \& Convergence

True / False: Since $\lim _{n \rightarrow \infty} 1 / n=0, \sum_{n=1}^{\infty} 1 / n$ converges.

A True, and I am very certain
B True, but I am not very certain47
$\begin{array}{lll}\text { C False, but lam not very certain } & 18\end{array}$
D False, and I am very certain $\quad 26$

Invalid da	-	Segment Results		Compare with session					Show percentages	Hide Graph	Condens	Text
132/132 answered										CAskAgain		
\wedge	く	>	** Open		Q Closed	ㄹ Responses	\checkmark Correct	>			Q 88\%	7 7

The graph below is of $y=2^{-x}$ and the area of the sequential rectangles is $1 / 2,1 / 4,1 / 8,1 / 16, \ldots$. Since we know that $\int_{1}^{\infty} 2^{-x} d x$ converges, what can you conclude directly from this picture?


```
A The series }\mp@subsup{\sum}{k=1}{\infty}\mp@subsup{2}{}{-n}\mathrm{ converges
B The series }\mp@subsup{\sum}{k=1}{\infty}\mp@subsup{2}{}{-n}\mathrm{ diverges
C We cannot get any information about the series }\mp@subsup{\sum}{k=1}{\infty}\mp@subsup{2}{}{-n}\mathrm{ directly 
```


| A converges | 27 | |
| :--- | :--- | :--- | :--- |
| B | diverges | |
| C | we cannot determine with what we＇ve learned so far | 77 |
| 26 | 2 | |

Invalid dat	－		Results	Compare with session					Show percentages	Hide Graph	Condense Text	
130／130 answered											C Ask Again	
\wedge	く	＞	＊ 0		θ Closed	三 Responses	\checkmark Correct	＞			Q 72%	」 7 L

Let $f(x)$ be a function such that $f(n)=a_{n}$. Suppose that $\int_{1} f(x) d x$ diverges. Which picture below implies that $\sum_{k=1} a_{k}$ also diverges?

March 18, 2020 - S9.3 - Series \& Convergence
Assaf Bar-Natan

Welcome to MAT136 LEC0501 (Assaf)

Online final exam is happening April 9 between 1:30pm and 5:30pm EST. See main course page for details (none posted yet).

S9.3 - Series \& The Ratio Test

Assaf Bar-Natan

"Life is a series of hellos and goodbyes
I'm afraid it's time for goodbye again
Say goodbye to Hollywood
Say goodbye my baby"
-"Say Goodbye to Hollywood", Billy Joel

March 20, 2020

Fill in the Blanks

We have a series, $\sum a_{n}$.

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L<1$, then the series $\sum a_{n}$ grows
__ a geometric series with factor __ which is _ $(<,>,=)$

1. Hence, the series

Fill in the Blanks

We have a series, $\sum a_{n}$.

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L<1$, then the series $\sum a_{n}$ grows __ a geometric series with factor __ which is __ $(<,>,=)$ 1. Hence, the series \qquad

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L>1$, then the series $\sum a_{n}$ grows __ a geometric series with factor __ which is __ $(<,>,=)$ 1. Hence, the series \qquad .

```
Suppose that
lim
Then the series \sum a a

```

Invalid da	-	Segment Results		Compare with session				Show percentages	Hide Graph	Condense Text	
62/62 answered										C Ask Again	
\wedge	$<$	>	*. Open	- Closed	ㄹ Responses	\checkmark Correct	>			Q 72%	」 7

```

\section*{Why the Ratio Test}

Let's assume that for any sufficiently large \(n, \frac{a_{n+1}}{a_{n}} \approx L\). Then:
\[
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
\]

Continuing in this manner, we get:

\section*{Why the Ratio Test}

Let's assume that for any sufficiently large \(n, \frac{a_{n+1}}{a_{n}} \approx L\). Then:
\[
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
\]

Continuing in this manner, we get:
\[
a_{k}+a_{k+1}+a_{k+2}+\cdots \approx a_{k}\left(1+L+L^{2}+L^{3}+\cdots\right)
\]

If \(L<1\), then the right hand side is a geometric series, which converges!

\section*{Why the Ratio Test}

Let's assume that for any sufficiently large \(n, \frac{a_{n+1}}{a_{n}} \approx L\). Then:
\[
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
\]

Continuing in this manner, we get:
\[
a_{k}+a_{k+1}+a_{k+2}+\cdots \approx a_{k}\left(1+L+L^{2}+L^{3}+\cdots\right)
\]

If \(L<1\), then the right hand side is a geometric series, which converges!
If \(L=0\), replace all \(\approx\) with \(<\), and replace \(L\) with \(\frac{1}{2}\)

\section*{Takeaway}

The ratio test measures how much a series looks like a geometric series. If the limit of the ratio \(\frac{a_{n+1}}{a_{n}}\) is \(<1\), the series converges, and if it is \(>1\), it diverges. Just like a geometric series!

\section*{Obie and Limits}

Obie (the bully cat) says:
"In examining the series:
\[
\sum_{n=0}^{\infty} \frac{n}{(1.05)^{n}}=0.95+1.181+2.59+3.29+\cdots
\]

I notice that the terms are getting larger, so \(L>1\). Thus, by the ratio test, this series diverges."

Is Obie correct?

\section*{Obie and Limits}

Obie (the bully cat) says:
"In examining the series:
\[
\sum_{n=0}^{\infty} \frac{n}{(1.05)^{n}}=0.95+1.181+2.59+3.29+\cdots
\]

I notice that the terms are getting larger, so \(L>1\). Thus, by the ratio test, this series diverges."

Is Obie correct?
If this still confuses you, write a star in your notebook to go over this later

\section*{Takeaway}

We really do need to take a limit in the ratio test. We don't care what the series' terms do early. The limit captures this "end behaviour"

For the series \(\sum_{k=1}^{\infty} \frac{k+1}{k!}\), which test would you use?
\(\checkmark\) 77\% Answered Correctly
\begin{tabular}{|c|c|c|}
\hline A & Ratio Test & 47 \\
\hline B & Integral Test & 8 \\
\hline C & Divergence Test & 6 \\
\hline
\end{tabular}


March 20, 2020 - S9.3 - Series \& The Ratio Test
Assaf Bar-Natan
\[
\text { For the series } \sum_{k=1}^{\infty} \frac{k}{(k+1)^{2}} \text {, which test would you use? }
\]

\[
\text { For the series } \sum_{k=1}^{\infty} \frac{k}{k+1} \text {, which test would you use? }
\]
\begin{tabular}{|l|l|c|c|}
\hline A & Ratio Test & & 27 \\
\hline B & Integral Test & 12 \\
\hline C & Divergence Test & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{March 20 at 12:45 PM results -} & \multicolumn{2}{|l|}{Segment Results} & \multicolumn{2}{|l|}{Compare with session} & & & Show percentages & Hide Graph & Conden & Text \\
\hline \multicolumn{3}{|l|}{59/60 answered} & & & & & & & & & & \multicolumn{2}{|l|}{\(\mathbf{C l}_{\text {Ask Again }}\)} \\
\hline \(\wedge\) & \(<\) & > & & Open & \(\theta\) & & ミ Responses & \(\checkmark\) Correct & > & & & Q \(72 \%\) & 7 7 \\
\hline
\end{tabular}

\section*{Inconclusive Test Results}

Write a series which diverges, but for which the ratio test gives a limit of 1 .
Challenge: write a series which converges, but for which the ratio test gives a limit of 1 .

\section*{Plans for the Future}

For next time:
Do WeBWork 9.5, actively read section 9.5, and watch the videos!

Which test (or tests) can you use to determine if the following series converges?
\(\sum_{k=1}^{\infty} e^{-k}\)
\(\checkmark\) 67\% Answered Correctly

A Divergence Test 53



March 20, 2020 - S9.3 - Series \& The Ratio Test
Assaf Bar-Natan

Which test (or tests) can you use to determine if the following series converges?
\(\sum_{k=1}^{\infty} e^{k}\)
\(\checkmark\) 100\% Answered Correctly
\begin{tabular}{|l|l|c|}
\hline A & Divergence Test & \\
\hline B & Integral Test & 42 \\
\hline C & Ratio Test & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Invalid date - Segment Results} & \multicolumn{5}{|l|}{Compare with session} & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{13}{|l|}{159/159 answered CAskAgain} \\
\hline \(\wedge\) & < & > & - & & Q closed & 三 Responses & \(\checkmark\) correct & » & & & Q \({ }^{\text {72\% }}\) & 缶 \\
\hline
\end{tabular}

March 20, 2020 - S9.3 - Series \& The Ratio Test
Assaf Bar-Natan

Suppose that you have a series that has negative terms as well as positive terms. Which of the following tests could you still try?
\(\checkmark\) 77\% Answered Correctly
\begin{tabular}{|l|l|l|}
\hline A & Divergence Test & \\
\hline B & Integral Test & 49 \\
\hline C & Ratio Test & 37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Invalid dat & - & & & \multicolumn{2}{|l|}{Compare with session} & & & & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{3}{|l|}{158/158 answered} & & & & & & & & & \multicolumn{2}{|l|}{C Ask Again} \\
\hline \(\wedge\) & \(<\) & > & * & & \(\theta\) Closed & ㄹ Responses & \(\checkmark\) Correct & > & & & Q \(72 \%\) & 」12 \\
\hline
\end{tabular}

March 20, 2020 - S9.3 - Series \& The Ratio Test
Assaf Bar-Natan

\section*{Welcome to MAT136 LEC0501 (Assaf)}

No more in-class TopHats. The software isn't working and I'm tired of fighting it.

\title{
S9.5 - Power Series \& Convergence Interval
}

\author{
Assaf Bar-Natan
}
"You and me got staying power yeah
You and me we got staying power
Staying power (I got it I got it)"
-"Staying Power", Queen

March 23, 2020

\section*{Using the Ratio Test on a Power Series}

We are given the power series:
\[
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
\]

To check for convergence, apply the ratio test:
\[
\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|
\]

The series \(\sum C_{n}(x-a)^{n}\) converges when the above is less than 1 .

\section*{Using the Ratio Test on a Power Series}

We are given the power series:
\[
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
\]

To check for convergence, apply the ratio test:
\[
\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|
\]

The series \(\sum C_{n}(x-a)^{n}\) converges when the above is less than 1 . Q: If \(\lim _{n \rightarrow \infty}\left|C_{n+1} / C_{n}\right|=3\), what is the radius of convergence?

\section*{Using the Ratio Test on a Power Series}

We are given the power series:
\[
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
\]

To check for convergence, apply the ratio test:
\(\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|\)
The series \(\sum C_{n}(x-a)^{n}\) converges when the above is less than 1 . Q: If \(\lim _{n \rightarrow \infty}\left|C_{n+1} / C_{n}\right|=3\), what is the radius of convergence? A: We want \(3|x-a|<1\), so \(|x-a|<\frac{1}{3}\), and this is the radius of convergence.

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]
- What are the variables?
- What are the parameters?
- What plays the role of the index?

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]
- What are the variables? \(x\)
- What are the parameters? \(c\) and \(a\)
- What plays the role of the index?n
- What is the radius of convergence of this power series?

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]
- What are the variables? \(x\)
- What are the parameters? \(c\) and \(a\)
- What plays the role of the index?n
- What is the radius of convergence of this power series?
- What is the interval of convergence of this power series?

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]

What is the radius of convergence of this power series?

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]

What is the radius of convergence of this power series?
We compute:
\[
\lim _{n \rightarrow \infty} \frac{c^{(n+1) / 2}}{c^{n / 2}} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n+1} c^{1 / 2}=\sqrt{c}
\]

So the radius of convergence is \(\frac{1}{\sqrt{c}}\).
What is the interval of convergence of this power series?

\section*{Variables, Indices, and Parameters}

Consider the following power series:
\[
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
\]

What is the radius of convergence of this power series?
We compute:
\[
\lim _{n \rightarrow \infty} \frac{c^{(n+1) / 2}}{c^{n / 2}} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n+1} c^{1 / 2}=\sqrt{c}
\]

So the radius of convergence is \(\frac{1}{\sqrt{c}}\).
What is the interval of convergence of this power series?
The power series is centered at \(x=a\), so it will converge for
\[
a-\frac{1}{\sqrt{c}}<x<a+\frac{1}{\sqrt{c}}
\]

\section*{Takeaway}

\section*{In general, for \(\sum c_{n}(x-a)^{n}\), the interval of convergence is centered at \(a\).}

The power series \(\sum c_{n}(x-5)^{n}\) converges at \(\chi=-5\) and diverges at \(x=-10\). At \(x=-13\), the series is:

A Convergent
B Divergent
C Cannot determine

\section*{The power series \(\sum c_{n}(x-5)^{n}\) converges at \(\chi=-5\) and diverges at \(x=-10\). At \(\chi=17\), the series is:}

A Convergent
B Divergent
C Cannot determine

\section*{The power series \(\sum c_{n}(x-5)^{n}\) converges at \(\chi=-5\) and diverges at \(\chi=-10\). At \(\chi=14\), the series is:}

A Convergent
B Divergent
C Cannot determine


\section*{What Possible Interval?}

Draw a possible interval of convergence for \(\sum c_{n}(x-5)^{n}\), given that the series converges at \(x=-5\) and diverges at
\[
x=-10
\]

\section*{What Possible Interval?}

Draw a possible interval of convergence for \(\sum c_{n}(x-5)^{n}\), given that the series converges at \(x=-5\) and diverges at
\[
x=-10
\]

We know that the interval needs to be centered at 5 . Since the series converges at -5 , this means that the radius of convergence is at least 10. Since the series diverges at \(x=-10\), this means that the radius of convergence is less than 15. A possible interval of convergence is:
\[
\begin{gathered}
|x-5|<11 \\
-6<x<16
\end{gathered}
\]

\section*{What Possible Interval?}

Draw a possible interval of convergence for \(\sum c_{n}(x-5)^{n}\), given that the series converges at \(x=-5\) and diverges at
\[
x=-10
\]

We know that the interval needs to be centered at 5 . Since the series converges at -5 , this means that the radius of convergence is at least 10. Since the series diverges at \(x=-10\), this means that the radius of convergence is less than 15. A possible interval of convergence is:
\[
\begin{gathered}
|x-5|<11 \\
-6<x<16
\end{gathered}
\]

Note that the interval \(|x-5|<14\) (ie \(-9<x<19\) ) is also possible

\section*{Plans for the Future}

For next time:
Watch the week 11 videos, do WeBWork 10.2, actively read section 10.2

Suppose that a power series centered at \(\chi=0\) converges when \(\chi=-4\) and diverges when \(\chi=13\). Which of the following are necessarily true?
\(\checkmark\) 81\% Answered Correctly
\begin{tabular}{|l|l|c|}
\hline A & The power series converges when \(x=10\) & 23 \\
\hline B & The power series converges when \(x=3\) & \\
\hline C & The power series converges when \(x=1\) & 37 \\
\hline D & The power series converges when \(x=6\) & 19 \\
\hline E & The power series converges when \(x=-1\) & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{March 22 at 9:53 PM results} & \(\checkmark\) & \multicolumn{2}{|l|}{Segment Results} & \multicolumn{2}{|l|}{Compare with session} & & & Show percentages & Hide Graph & Conden & Text \\
\hline \multicolumn{3}{|l|}{142/142 answered} & \multicolumn{11}{|l|}{( Ask Again \(^{\text {a }}\)} \\
\hline ヘ & \(<\) & > & & Open & & sed & Responses & \(\checkmark\) Correct & > & & & Q \(72 \%\) &  \\
\hline
\end{tabular}

March 23, 2020 - S9.5 - Power Series \& Convergence Interval
Assaf Bar-Natan

If a power series converges at \(\chi=4\), then the power series will necessarily also converge at \(\chi=-4\)



Which of the following series has the smallest radius of convergence?

A \(\quad \sum(-1)^{n}(n+2)(x-1)^{n}\)
B \(\sum \frac{(x-1)^{n}}{3^{n}}\)
\(c \sum \frac{(x-1)^{n}}{\sqrt{(n+1)!}}\)
- \(\sum 3^{n}(x-1)^{n}\) \(\square\)31
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{March 22 at 9:59 PM results} & \(\checkmark\) & \multicolumn{2}{|l|}{Segment Results} & \multicolumn{2}{|l|}{Compare with session} & & & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{3}{|l|}{141/141 answered} & & & & & & & & & & \multicolumn{2}{|l|}{CAsk Again} \\
\hline \(\wedge\) & \(<\) & > & & Open & \(\theta\) & sed & ㄹ Responses & \(\checkmark\) Correct & > & & & Q \(72 \%\) & \(7{ }_{7}\) \\
\hline
\end{tabular}

\section*{Welcome to MAT136 LEC0501 (Assaf)}

\section*{COURSE EVALUATIONS ARE OPEN! PLEASE PLEASE PLEASE SUBMIT THEM!!!}

Especially important: feedback about online learning, the transition process, the overall course structure given the situation, and your suggestions for next semester if we still need to do things online by then.

\title{
S10.2 - Taylor Series - Back Again
}

\author{
Assaf Bar-Natan
}
"I never knew l'd love this world they've let me into
And the memories were lost long ago So I'll dance with these beautiful ghosts"
-"Beautiful Ghosts (Cats movie)", Taylor Swift

March 25, 2020

\section*{Review: Taylor Polynomials}

Recall that if \(f\) is some function, we can approximate \(f\) around \(a\) using a Taylor polynomial:
\[
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\]
where \(x\) is close to \(a\).

\section*{Review: Taylor Polynomials}

Recall that if \(f\) is some function, we can approximate \(f\) around a using a Taylor polynomial:
\[
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\]
where \(x\) is close to \(a\).
Use the following Geogebra applet to investigate what happens when \(n\) gets big:
https://www.geogebra.org/m/s9SkCsvC

\section*{The Taylor Series}

Take a Taylor polynomial to the extreme, and use a power series to approximate \(f\) :
\(f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots\)
This is called the Taylor Series of \(f\) at \(x=a\)

\title{
True or False：A Taylor series always converges
}

A True
B False
C Depends on the function

\section*{Takeaway}

The Taylor series is a power series, so, just like any power series, it might converge for some values of \(x\) and diverge for other values of \(x\).

For what values of \(\chi\) is it possible that
\[
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots ?
\]

A This is true for all values of \(\chi\) because of the Taylor series formula
B This may only be true for \(\boldsymbol{x}>-1\) because of our graphical evaluation (geogebra)

This may only be true for \(-1<x<1\) because the series doesn't have a finite value for other values of \(\chi\)

\section*{Takeaway}

\section*{We use the ratio test to check when a Taylor series converges}

For which values of \(x\) is it possible that \(\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\)
A This is true for all values of \(x\) because of the Taylor series formula.
B This appears to be true for all values of \(x\) based on the graphical evaluation (geogebra).

C This may only be true for \(-5<x<5\) because the series doesn't have a value for other values of \(x\)

D For all values of \(x\), because of the ratio test

\section*{The Miracle of Taylor Series}

I'd like to use my Taylor series to approximate \(\sin (1000000)\). I know:
\[
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

\section*{The Miracle of Taylor Series}

I'd like to use my Taylor series to approximate \(\sin (1000000)\). I know:
\[
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

My first approximation will be \(\sin (1000000) \approx 1000000\). But this is garbage! I know that \(\sin (1000000)<1\).

\section*{The Miracle of Taylor Series}

I'd like to use my Taylor series to approximate \(\sin (1000000)\). I know:
\[
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

My first approximation will be \(\sin (1000000) \approx 1000000\). But this is garbage! I know that \(\sin (1000000)<1\).
Let me try again....

\section*{The Miracle of Taylor Series}

I'd like to use my Taylor series to approximate \(\sin (1000000)\). I know:
\[
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

My first approximation will be \(\sin (1000000) \approx 1000000\). But this is garbage! I know that \(\sin (1000000)<1\).
Let me try again....
\[
\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6} \approx-1.6 \times 10^{17}
\]

Wow! That's even worse than the first time... Let me try again...

\section*{The Miracle of Taylor Series}

I'd like to use my Taylor series to approximate \(\sin (1000000)\). I know:
\[
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
\]

My first approximation will be \(\sin (1000000) \approx 1000000\). But this is garbage! I know that \(\sin (1000000)<1\).
Let me try again....
\[
\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6} \approx-1.6 \times 10^{17}
\]

Wow! That's even worse than the first time... Let me try again...
\(\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6}+\frac{(1000000)^{5}}{5!} \approx 8.3 \times 10^{27}\)

\section*{The Miracle of Taylor Series}

My approximations on the previous slide were trash.
\(-1<\sin (1000000)<1\), but I kept getting absurdly high numbers.
Q: What is something I can do to get good approximations of \(\sin (1000000)\) ?

\section*{The Miracle of Taylor Series}

My approximations on the previous slide were trash.
\(-1<\sin (1000000)<1\), but I kept getting absurdly high numbers.
Q: What is something I can do to get good approximations of \(\sin (1000000)\) ?
- I could choose to expand at a point close to 1000000
- I could keep going, and take many many many more terms in the series
- I could use the fact that sin is periodic, and get that \(\sin (1000000)=\sin (x)\), where \(-\pi<x<\pi\). Then I could approximate.

\section*{Takeaway}

Some functions have Taylor series that have an infinite radius of convergence (eg: \(\sin , \cos , e^{x}\) ). For these functions, the Taylor series always converges, but it might converge very slowly!

Check that sin, cos, and \(e^{x}\) indeed have this property: https://www.geogebra.org/m/s9SkCsvC

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

These look related

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

\section*{These look related}

Let \(i=\sqrt{-1}\) be an imaginary number (don't worry about it, just pretend that all algebra works the same, but \(i^{2}=-1\) ). Q: Write the Taylor series for \(e^{i x}\).

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

\section*{These look related}

Let \(i=\sqrt{-1}\) be an imaginary number (don't worry about it, just pretend that all algebra works the same, but \(i^{2}=-1\) ). Q: Write the Taylor series for \(e^{i x}\). \(e^{i x}=1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\)

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

Q: Relate \(e^{i x}, \cos (x)\), and \(\sin (x)\) using the above.

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

Q: Relate \(e^{i x}, \cos (x)\), and \(\sin (x)\) using the above. Hint: multiply \(\sin (x)\) by \(i \ldots\)

\section*{Euler's Identity}

We know:
\[
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
\]

Q: Relate \(e^{i x}, \cos (x)\), and \(\sin (x)\) using the above. Hint: multiply \(\sin (x)\) by \(i \ldots\)
\[
e^{i x}=\cos (x)+i \sin (x)
\]

Q: Compute \(e^{i \pi}\).
\[
e^{i \pi}=-1
\]
\[
e^{i \pi}=-1
\]

A good explanation of this:
https://www.youtube.com/watch?v=v0YEaeICIKY

\section*{Plans for the Future}

For next time:
Watch the week 11 videos, do WeBWork 10.3, actively read section 10.3
\[
\begin{aligned}
& \frac{\text { Since }}{\frac{1}{1-x}}=1+x+x^{2}+x^{3}+\cdots \\
& -1=\frac{1}{1-2}=1+2+4+8+\cdots
\end{aligned}
\]

A True

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Invalid dat & e & & Results & & pare with sessi & & & & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{3}{|l|}{129／129 answered} & & & & & & \multirow[b]{2}{*}{＞} & & \multicolumn{3}{|r|}{\(\mathbf{C l}^{\text {Ask Again }}\)} \\
\hline ヘ & く & ＞ & \multicolumn{2}{|l|}{＊＊Open} & Q Closed & ㄹ Responses & \(\checkmark\) Correct & & & & Q \(72 \%\) & \(7{ }_{7}^{\text {」 }}\) \\
\hline
\end{tabular}

> Let
> \(g(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\)
> Is \(x=2\) in the domain of \(g(x) ?\)


The graphs of 3 functions are shown below. For which functions is \(-1+0.3 x-0.1 x^{2}+0.08 x^{3}+\cdots\)
the Taylor series around \(x=0\) ?

\(\checkmark\) 12\% Answered Correctly

A \(f(x)\)

B \(\mathrm{g}(\mathrm{x})\)

C \(\mathrm{h}(\mathrm{x})\)

D it could be more than one of these functions
30
E it cannot be any of these functioons
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Invalid da & - & & Results & \multicolumn{3}{|l|}{Compare with session} & & & & & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{3}{|l|}{127/127 answered} & & & & & & & & & & & \multicolumn{2}{|l|}{C Ask Again} \\
\hline \(\wedge\) & \(<\) & > & - & & \(\theta\) Closed & & Responses & & Correct & 》 & & & Q \(72 \%\) & \(\xrightarrow{\text { 」 }}\) \\
\hline
\end{tabular}

\section*{Compute \\ \(\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}\)}
using a Taylor series approximation.
\(\checkmark\) 14\% Answered Correctly


\section*{Welcome to MAT136 LEC0501 (Assaf)}

Final exam information is on the main course website, under Test \& Exam

\title{
S10.3 - Taylor Series - Applications
}

\author{
Assaf Bar-Natan
}
"They'll tell you I'm insane But l've got a blank space baby

And I'll write your name"
-"Blank Space", Taylor Swift

March 27, 2020

\section*{Taylor Series and Substitution}

Key observation: the equation
\[
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
\]
holds for any \(x\).

\section*{Taylor Series and Substitution}

Key observation: the equation
\[
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
\]
holds for any \(x\).
So, we can write:
\[
f\left(3 x^{2}\right)=\sum_{n=0}^{\infty} c_{n}\left(3 x^{2}-a\right)^{n}
\]

\section*{Taylor Series and Substitution}

Key observation: the equation
\[
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
\]
holds for any \(x\).
So, we can write:
\[
f\left(3 x^{2}\right)=\sum_{n=0}^{\infty} c_{n}\left(3 x^{2}-a\right)^{n}
\]

Q: If the radius of convergence of \(\sum_{n=0}^{\infty} c_{n} x^{n}\) is 3 , what is the radius of convergence of \(\sum_{n=0}^{\infty} c_{n}\left(3 x^{2}\right)^{n}\) ?

\section*{Taylor Series and Substitution}

Key observation: the equation
\[
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}
\]
holds for any \(x\).
So, we can write:
\[
f\left(3 x^{2}\right)=\sum_{n=0}^{\infty} c_{n}\left(3 x^{2}-a\right)^{n}
\]

Q: If the radius of convergence of \(\sum_{n=0}^{\infty} c_{n} x^{n}\) is 3 , what is the radius of convergence of \(\sum_{n=0}^{\infty} c_{n}\left(3 x^{2}\right)^{n}\) ?
A: We need \(-3<3 x^{2}<3\), so this means that \(-1<x<1\), and the radius of convergence is 1 .
```

T
Submissions Closed

```

Compute the Taylor series centred around \(x=0\) of the function \(f(x)=\chi \cos \left(x^{2} / 3\right)\). What is its formula?

A \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{3^{2 n+1}(2 n)!}\)
B \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{3^{2 n}(2 n)!}\)
c \(\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{3(2 n)!}\)
D none of the above


March 27, 2020 - S10.3 - Taylor Series - Applications

\section*{Radius of Convergence}

Compute the radius of convergence of
\[
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+2}}{3^{2 n}(2 n)!}
\]

\section*{Takeaway}

To compute the interval of convergence of a substituted series, use the original interval of convergence and transform it

This should remind you of integration by substitution, and changing the bounds
```

T
Submissions Closed
(i) Multiple answers: Multiple answers are accepted for this question

```

We know that the Taylor series for the function \(\ln (1-x)\) about \(\chi=0\) converges for \(-1<x<1\). What is the interval of convergence for the function \(\ln (8-x)\) ?

A \(-8<x<8\) because \(\ln (8-x)=\ln (8(1-x / 8))=\ln (8)+\ln (1-x / 8)\)
B \(-8<x<-6\) because we have moved the function to the left by 7 units
c \(-1<x<1\) because we have not transformed the function in a way that will change the interval of convergence

D none of the above is completely correct
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{46/46 answered} & & & & & & \multicolumn{2}{|l|}{\(\mathbf{C l}_{\text {Ask Again }}\)} \\
\hline \(\wedge\) & く & > & *- Open & \(\theta\) closed & 三 Responses & \(\checkmark\) Correct & > & Q 88\% & \(7{ }^{\text {¢ }}\) \\
\hline
\end{tabular}

\section*{Fill in the Blanks}

If a ___ series for \(f(x)\) at \(x=a\) converges to \(f\) for \(|x-a|<R\), then the series found by term-by-term differentiation is the Taylor series for \(\qquad\) , and converges on the interval \(\qquad\)

\section*{erf and Taylor Series Integration}

Let's revisit our friend,
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

To estimate \(\operatorname{erf}(x)\) for small \(x\), we will write it as a Taylor series. Q: Write down three steps to computing the Taylor series of erf( \(x\) ) around \(x=0\).

\section*{erf and Taylor Series Integration}

Let's revisit our friend,
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
\]

To estimate \(\operatorname{erf}(x)\) for small \(x\), we will write it as a Taylor series.
Q: Write down three steps to computing the Taylor series of erf( \(x\) ) around \(x=0\).
- Write the Taylor series for \(e^{x}\)
- Plug in \(x=-t^{2}\)
- Integrate term-by-term

\section*{erf and Taylor Series Integration}
- Write the Taylor series for \(e^{x}\)
- Plug in \(x=-t^{2}\)
- Integrate term-by-term

Let's do it:
\[
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\]

SO
\[
e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}
\]

Q: What is the Taylor series for \(\operatorname{erf}(x)\) ?

\section*{erf and Taylor Series Integration}
- Write the Taylor series for \(e^{x}\)
- Plug in \(x=-t^{2}\)
- Integrate term-by-term

Let's do it:
\[
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
\]

SO
\[
e^{-t^{2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{n!}
\]

Q: What is the Taylor series for \(\operatorname{erf}(x)\) ?
\[
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)(n!)}
\]

\section*{Computing Series Using Taylor Polynomials}

WolframAlpha says:
\[
\operatorname{erf}(1)=0.842 \ldots
\]

We can use this to compute:
\[
\begin{aligned}
0.746 \approx \operatorname{erf}(1) \frac{\sqrt{\pi}}{2} & =\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{(2 n+1)(n!)} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(n!)}
\end{aligned}
\]

Find the exact sum of the series
\(\sum_{n=1}^{\infty} n(0.2)^{n-1}\)


March 27, 2020 - S10.3 - Taylor Series - Applications

\section*{Takeaway}

\title{
When we have a series, we can plug in a variable, \(x\), then interpret it as a derivative or an integral of series that we know
}

\section*{Plans for the Future}

For next time:
Watch the week 12 videos, and review section 10.3

\section*{Welcome to MAT136 LEC0501 (Assaf)}

Critical Incident Questionnaire 3: https://tinyurl.com/March2020CIQ

\title{
S10.3 - Taylor Series - Applications (Part 2)
}

\section*{Assaf Bar-Natan}
"Everything will be alright, if
We just keep dancing like we're twenty-two..."
-"22", Taylor Swift
March 30, 2020

\section*{Taylor Series and Substitution}

\section*{Recall:}

If a Taylor series for \(f(x)\) converges for \(x\) on some interval, then the Taylor series for \(f(g(x))\) converges whenever \(g(x)\) is in that interval

If a Taylor series for \(f(x)\) converges for \(x\) on some interval, then the Taylor series for \(f^{\prime}(x)\) converges on the same interval

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
\(14 x \cdot e^{x} \cos (x)\)
\(2 \frac{1}{1-(x / 4)}\)
\(3 \frac{1}{4(1-(x / 4))^{2}}\)
\(4 \cos \left(x^{2}+4 x^{3}\right)\)

Response
\(\rightarrow\) A \(\infty\) by substitution of polynomials into known Taylor Series
\(\rightarrow \quad\) B 4 by differentiation of known Taylor series
\(\rightarrow \quad\) C \(\quad \begin{aligned} & 4 \text { by substitution of polynomials into known } \\ & \text { Taylor Series }\end{aligned}\)
\(\rightarrow\) D
\(\infty\) by multiplication of known Taylor series and polynomials


\section*{Radius of Convergence}

Consider \(\frac{1}{1-(x / 4)}\). The Taylor series around 0 is:
\[
1+y+y^{2}+\cdots
\]

Where \(y=x / 4\).
This converges when \(-1<y<1\), ie, when \(-4<x<4\), so the Taylor series converges on this interval by subtituting \(x / 4\) into a known Taylor series.

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
\(14 x \cdot e^{x} \cos (x)\)
\(2 \frac{1}{1-(x / 4)}\)
\(3 \frac{1}{4(1-(x / 4))^{2}}\)
\(4 \cos \left(x^{2}+4 x^{3}\right)\)

Response
\(\rightarrow\) A \(\infty\) by substitution of polynomials into known Taylor Series
\(\rightarrow \quad\) B 4 by differentiation of known Taylor series
\(\rightarrow \quad\) C \(\quad \begin{aligned} & 4 \text { by substitution of polynomials into known } \\ & \text { Taylor Series }\end{aligned}\)
\(\rightarrow\) D
\(\infty\) by multiplication of known Taylor series and polynomials


\section*{Radius of Convergence}

Consider \(\frac{1}{4(1-(x / 4))^{2}}\). Can we interpret this function as a derivative of something?

\section*{Radius of Convergence}

Consider \(\frac{1}{4(1-(x / 4))^{2}}\). Can we interpret this function as a derivative of something?
\[
\frac{d}{d x}\left(\frac{1}{1-(x / 4)}\right)=\frac{1}{4(1-(x / 4))^{2}}
\]

\section*{Radius of Convergence}

Consider \(\frac{1}{4(1-(x / 4))^{2}}\). Can we interpret this function as a derivative of something?
\[
\frac{d}{d x}\left(\frac{1}{1-(x / 4)}\right)=\frac{1}{4(1-(x / 4))^{2}}
\]

We know that converges when \(-4<x<4\), because it's the derivative of a Taylor series that converges on that interval.

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
\(14 x \cdot e^{x} \cos (x)\)
\(2 \frac{1}{1-(x / 4)}\)
\(3 \frac{1}{4(1-(x / 4))^{2}}\)
\(4 \cos \left(x^{2}+4 x^{3}\right)\)

Response
\(\rightarrow\) A \(\infty\) by substitution of polynomials into known Taylor Series
\(\rightarrow \quad\) B 4 by differentiation of known Taylor series
\(\rightarrow \quad\) C \(\quad \begin{aligned} & 4 \text { by substitution of polynomials into known } \\ & \text { Taylor Series }\end{aligned}\)
\(\rightarrow\) D
\(\infty\) by multiplication of known Taylor series and polynomials


\section*{Radius of Convergence}

The Taylor series for \(\cos (x)\) converges for any \(x\), so no matter what we substitute into cos, the Taylor series will converge.

\section*{Radius of Convergence}

The Taylor series for \(\cos (x)\) converges for any \(x\), so no matter what we substitute into cos, the Taylor series will converge.

If two functions have Taylor series which converge everywhere, then their product also has a Taylor series that converges everywhere

This is just an application of the product formula for Taylor series (Example 4)

\section*{Computing Series Using Derivatives}

We are going to compute the series:
\[
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
\]
- Identify constants, indices, and patterns in the series
- Substitute a variable into the series
- Interpret each term as an integral or derivative of something
- Integrate or differentiate term by term to get a new series
- Do you recognize the new series? If not, go back to step 2 .
- Write the new series in closed form, and interpret the original series as its derivative or integral

\section*{Computing Series Using Derivatives}
\[
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
\]

The constants here are 2, 3 (and 1). The index is \(n\). We will try replacing all instances of 3 with the variable \(x\) :
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
\]

\section*{Computing Series Using Derivatives}
\[
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
\]

The constants here are 2, 3 (and 1). The index is \(n\). We will try replacing all instances of 3 with the variable \(x\) :
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
\]

Q: Can we interpret each term as the derivative of something?

\section*{Computing Series Using Derivatives}
\[
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
\]

The constants here are 2, 3 (and 1). The index is \(n\). We will try replacing all instances of 3 with the variable \(x\) :
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
\]

Q: Can we interpret each term as the derivative of something?
\[
\frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)
\]

\section*{Computing Series Using Derivatives}

Remembering that we are evaluating when \(x=3 \ldots\)
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)
\]

Q: Do you recognize this series?

\section*{Computing Series Using Derivatives}

Remembering that we are evaluating when \(x=3 \ldots\)
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)
\]

Q: Do you recognize this series?
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x}\left(e^{x^{2}}-1\right)
\]

\section*{Computing Series Using Derivatives}

Remembering that we are evaluating when \(x=3\)...
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(e^{x^{2}}-1\right)=2 x e^{x^{2}}
\]

Q: What is \(\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}\) ?

\section*{Computing Series Using Derivatives}

Remembering that we are evaluating when \(x=3 \ldots\)
\[
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(e^{x^{2}}-1\right)=2 x e^{x^{2}}
\]

Q: What is \(\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}\) ? We plug in \(x=3\) to get:
\[
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}=6 e^{9}
\]

Find the exact sum of the series
\(\sum_{n=1}^{\infty} n(0.2)^{n-1}\)


\section*{The Series \(\sum n(0.2)^{n-1}\)}

Folllowing the steps we've outlined, replace 0.2 with \(x\), and get:
\[
\sum_{n=1}^{\infty} n x^{n-1}
\]

\section*{The Series \(\sum n(0.2)^{n-1}\)}

Folllowing the steps we've outlined, replace 0.2 with \(x\), and get:
\[
\sum_{n=1}^{\infty} n x^{n-1}
\]

Interpret each term as a derivative to get:
\[
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
\]

\section*{The Series \(\sum n(0.2)^{n-1}\)}

Folllowing the steps we've outlined, replace 0.2 with \(x\), and get:
\[
\sum_{n=1}^{\infty} n x^{n-1}
\]

Interpret each term as a derivative to get:
\[
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
\]

Finally, differentiate and plug in \(x=0.2\) :
\[
\sum_{n=1}^{\infty} n(0.2)^{n-1}=\frac{1}{(1-(0.2))^{2}}=1.5625
\]

\section*{The Series \(\sum n(0.2)^{n-1}\)}

Folllowing the steps we've outlined, replace 0.2 with \(x\), and get:
\[
\sum_{n=1}^{\infty} n x^{n-1}
\]

Interpret each term as a derivative to get:
\[
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
\]

Finally, differentiate and plug in \(x=0.2\) :
\[
\sum_{n=1}^{\infty} n(0.2)^{n-1}=\frac{1}{(1-(0.2))^{2}}=1.5625
\]

Everything worked because \(|x|<1\), so the series above

\section*{Takeaway}

\title{
When we have a series, we can plug in a variable, \(x\), then interpret it as a derivative or an integral of series that we know
}

\section*{Plans for the Future}

For next time:
Watch the uploaded Section 10.3 video, and go over Taylor Solutions to ODEs

\section*{Welcome to MAT136 LEC0501 (Assaf)}

Today: ODEs
Friday: Review

\section*{COURSE EVALUATIONS!!!!!!}

\author{
http://uoft.me/openevals
}

\section*{Taylor Expansions and ODEs - Part 2}

\section*{Assaf Bar-Natan}
"It goes, all my troubles on a burning pile
All lit up and I start to smile
If I, catch fire then I change my aim
Throw my troubles at the pearly gates"
-"Burning Pile", Mother Mother

April 1, 2020

\section*{Welcome to MAT136 LEC0501 (Assaf)}

\section*{COURSE EVALUATIONS!!!!!!}
http://uoft.me/openevals

\section*{Last time: What is a Solution?}

How do we solve an ODE?


Depending on the ODE, and depending on how we want our solution presented, we use different solution strategies.

\section*{Today's Main Idea}

\section*{Express a function as a Taylor polynomial, and solve for the coefficients.}

\section*{A First Example}

We will try to solve:
\[
\begin{array}{rlrl}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0)=0 & y^{\prime}(0) & =1
\end{array}
\]

This equation is not separable, and we do not have other techniques to solve it.

\section*{The Steps}
- Write the solution (which we want to find) as a Taylor series
- Find the Taylor series for every term in the differential equation
- Group together like terms
- Write out the differential equation as a Taylor series equation
- Solve for the coefficients
- (Hopefully) Identify the Taylor series as a known function

\section*{Step 1: Writing Taylor series}

We will try to solve:
\[
\begin{array}{rlrl}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0)=0 & y^{\prime}(0) & =1
\end{array}
\]

We write
\[
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

From now on, assume that our solution has this form.

\section*{Step 2: Find the Taylor Series of the other terms}
\[
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Q: What are the formulas for \(y^{\prime \prime}\) and \(2 y^{\prime}\) ?

\section*{Step 2: Find the Taylor Series of the other terms}
\[
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Q: What are the formulas for \(y^{\prime \prime}\) and \(2 y^{\prime}\) ?
\[
\begin{aligned}
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
2 y^{\prime} & =2 \sum_{n=1}^{\infty} n a_{n} x^{n-1}
\end{aligned}
\]

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the constant term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the constant term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?
A: The constant term is \(2 a_{2}-2 a_{1}+a_{0}\)

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the linear term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the linear term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?
A: The linear term is \(6 a_{3} x-4 a_{2} x+a_{1} x\)

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the quadratic term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

We want to add up these series. Q: What is the quadratic term in \(y^{\prime \prime}-2 y^{\prime}+y\) ?
A: The quadratic term is \(12 a_{4} x^{2}-6 a_{3} x^{2}+a_{2} x^{2}\)

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

Q: In general, what is the coefficient of \(x^{n}\) ?

\section*{Step 3: Group Terms}
\[
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
\]

Q: In general, what is the coefficient of \(x^{n}\) ?
\[
(n+2)(n+1) a_{n+2} x^{n}-2(n+1) a_{n+1} x^{n}+a_{n} x^{n}
\]

\section*{Step 4: Write the Equation as a series}

We know: \(y^{\prime \prime}-2 y^{\prime}+y=0\), so when expressing this equation as a series, we get:
\[
0=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-2(n+1) a_{n+1} x^{n}+a_{n} x^{n}
\]

This means that every coefficient here needs to be 0 . In other words:
\[
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
\]

\section*{Step 5: Solve for the coefficients}
\[
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
\]

This means:
\[
0=2 a_{2}-2 a_{1}+a_{0}
\]

Q: Knowing \(y(0)=0\) and \(y^{\prime}(0)=1\), what does this tell us about \(a_{0}\) and \(a_{1}\) ?

\section*{Step 5: Solve for the coefficients}
\[
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
\]

This means:
\[
0=2 a_{2}-2 a_{1}+a_{0}
\]

Q: Knowing \(y(0)=0\) and \(y^{\prime}(0)=1\), what does this tell us about \(a_{0}\) and \(a_{1}\) ? A: \(a_{0}=0\) and \(a_{1}=1\)
Q: What is \(a_{2}\) ?

\section*{Takeaway}

\title{
Using an initial condition and the differential equation, we can write the solution as a Taylor polynomial, and solve for the coefficients
}

This is an entirely new way to solve ODEs!

\section*{Step 5: Solving For the Coefficients}
\[
0=(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}
\]

Or:
\[
a_{n+2}=\frac{2 a_{n+1}}{(n+2)}-\frac{a_{n}}{(n+1)(n+2)}
\]

We know \(a_{0}=0, a_{1}=1\), and \(a_{2}=1\). Use this to find \(a_{3}\) and \(a_{4}\).

\section*{Step 5: Solving For the Coefficients}
\[
0=(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}
\]

Or:
\[
a_{n+2}=\frac{2 a_{n+1}}{(n+2)}-\frac{a_{n}}{(n+1)(n+2)}
\]

We know \(a_{0}=0, a_{1}=1\), and \(a_{2}=1\). Use this to find \(a_{3}\) and \(a_{4}\). The sequence turns out to be...
\[
0,1,1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}
\]

\section*{Interlude: Properties of the solution}

Knowing that \(a_{0}=0, a_{1}=1\), and \(a_{2}=1\), what does this tell us about the shape of the solution at \(x=0\) ?

\section*{Interlude: Properties of the solution}

Knowing that \(a_{0}=0, a_{1}=1\), and \(a_{2}=1\), what does this tell us about the shape of the solution at \(x=0\) ?

The solution is positive, increasing, and concave up at \(x=0\)

\section*{Takeaway}

We can get information about convexity or other properties of the function by looking at the coefficients of its solution. For example, increasing, decreasing, concavity,...

\section*{Step 6: Identify the Function}

The solution to the differential equation:
\[
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
\]
is:
\[
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

We've checked, and saw that \(a_{n+1}=\frac{1}{n!}\), and \(a_{0}=0\) So:
\[
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
\]

\section*{Step 6: Identify the Function}

The solution to the differential equation:
\[
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
\]
is:
\[
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
\]

Q: Can you identify this function?

\section*{Step 6: Identify the Function}

The solution to the differential equation:
\[
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
\]
is:
\[
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
\]

Q: Can you identify this function? A: This is \(x e^{x}\).

\section*{Plans for the Future}

For next time:
Pick a lesson in the course. Write down the list of concepts, and how they connect to each other

\section*{Welcome to MAT136 LEC0501 (Assaf)}

\section*{COURSE EVALUATIONS!!!!!!}

\author{
http://uoft.me/openevals
}

\section*{Review Session}

\section*{Assaf Bar-Natan}
"You vitriolic, patriotic, slam fight, bright light
Feeling pretty psyched
It's the end of the world as we know it
It's the end of the world as we know it
It's the end of the world as we know it and I feel fine"
-"It's the End of the World as we Know it", R.E.M

April 3, 2020

\section*{Today's Plan}

Here's what we will do today. For every unit, you will:
- Pick a TopHat question or textbook question that you found challenging or informative
- Identify the goals and ideas behind that question
- Share where this goal fits in the bigger picture
- Add it to the communal concept map: https://witeboard. com/8e0615c0-7548-11ea-afcf-8f5dcb39ca2d
- Then I will do the same.

We will do this for units \(3,4,5,6\), as these are the units that were not covered in the midterm (YOU STILL NEED TO STUDY THEM)

\section*{Unit 3 - Differential Equations}
- Pick a TopHat question or textbook question that you found challenging or informative
- Identify the goals and ideas behind that question
- Share where this goal fits in the bigger picture
- Add it to the communal concept map: https://witeboard. com/8e0615c0-7548-11ea-afcf-8f5dcb39ca2d

Below is pictured the slope field for some differential equation. For the initial condition \(\mathrm{y}(1)=\mathrm{c}\), will Euler's method give an over- or an under-estimate when trying to estimate \(y(2)\) ?

\(\checkmark\) 27\% Answered Correctly

Correct Order
\begin{tabular}{|l|l|l|l|}
\hline \(\mathbf{1} \mathbf{C}=\mathbf{0}\) & \(\rightarrow\) & \begin{tabular}{l} 
The estimate matches the \\
solution
\end{tabular} & \(\mathbf{6 6}\) \\
\hline \(\mathbf{2 C}=1\) & \(\rightarrow\) B Underestimate & \(\mathbf{5 8}\) \\
\hline \(\mathbf{3 C}=-1\) & \(\rightarrow\) E Overestimate & \(\mathbf{4 7}\) \\
\hline
\end{tabular}


\section*{Unit 4 - Slicing}
- Pick a TopHat question or textbook question that you found challenging or informative
- Identify the goals and ideas behind that question
- Share where this goal fits in the bigger picture
- Add it to the communal concept map: https://witeboard. com/8e0615c0-7548-11ea-afcf-8f5dcb39ca2d
```

T
Submissions Closed

```

True or False: A different city, Montrealville, occupies a region in the xy-plane, with population density \(\delta(y)=1+y\). To set up an integral representing the total population in the city, we should slice the region into...
A Pieces that run parallel to the \(x\) axis 96

B Annuli around a center point
C Pieces that run parallel to the \(y\) axis 54

D Depends on the shape of Montrealville
I
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Invalid da & - & & Results & \multicolumn{2}{|l|}{Compare with session} & & & & Show percentages & Hide Graph & \multicolumn{2}{|l|}{Condense Text} \\
\hline \multicolumn{3}{|l|}{173/173 answered} & & & & & & & & & \multicolumn{2}{|l|}{\(\mathbf{C l}^{\text {Ask Again }}\)} \\
\hline \(\wedge\) & \(<\) & > & ** & & Q Closed & ㄹ Responses & \(\checkmark\) Correct & > & & & Q 88\% & 」 7 \\
\hline
\end{tabular}

April 3, 2020 - Review Session
Assaf Bar-Natan

\section*{Unit 5 - Sequences and Series}
- Pick a TopHat question or textbook question that you found challenging or informative
- Identify the goals and ideas behind that question
- Share where this goal fits in the bigger picture
- Add it to the communal concept map: https://witeboard. com/8e0615c0-7548-11ea-afcf-8f5dcb39ca2d
```

T
Submissions Closed

```

True / False: Since \(\lim _{n \rightarrow \infty} 1 / n=0, \sum_{n=1}^{\infty} 1 / n\) converges.

A True, and I am very certain41
B True, but I am not very certain ..... 47
C False, but I am not very certain ..... 18
D False, and I am very certain ..... 26


\section*{Unit 6 - Taylor Series \& Taylor Polynomials}
- Pick a TopHat question or textbook question that you found challenging or informative
- Identify the goals and ideas behind that question
- Share where this goal fits in the bigger picture
- Add it to the communal concept map: https://witeboard. com/8e0615c0-7548-11ea-afcf-8f5dcb39ca2d
```

T
Submissions Closed

```

The graphs of 3 functions are shown below. For which functions is \(-1+0.3 x-0.1 x^{2}+0.08 x^{3}+\cdots\)
the Taylor series around \(x=0\) ?


A \(f(x)\)
B \(g(x)\)
C \(\mathrm{h}(\mathrm{x})\)
D it could be more than one of these functions
E it cannot be any of these functioons


\section*{Resource Reminder}

In addition to everything on the main site:
- Lec. 16 Study Tips TopHat Discussion
- Your groups from lecture
- Assaf will post a list of ALL course learning objectives together
- Old TopHat questions

\section*{Plans for the Future}

For next time:
There is no next time. I'm going to miss you. I only wish I could have said goodbye in person```

