Welcome to MAT135 LEC0501 (Assaf)

Critical Incident Questionnaire:

https://tinyurl.com/Unit1CIQ

If you've done this, here's two challenging integrals (answers next week):

$$
\begin{array}{r}
\int \sin \left(e^{t}\right) d t \\
\int \sqrt{\tan (x)} d x
\end{array}
$$

S7.1 - Integration Methods - Substitution

Assaf Bar-Natan

"You don't have to feel like a waste of space
You're original, cannot be replaced."
-"Firework", Katy Perry

Jan. 24, 2020

Reading Comprehension

The substitution technique tells us that if F is an antiderivative of f, then \qquad is an antiderivative of $f(g) g^{\prime}$.

Takeaway

When faced with an integral that has a function g inside another function, try a substitution.

All results

A $\int x \sin \left(x^{2}\right) d x$
B $\int x \sin (x) d x$

C $\int x^{2} \sin (x) d x$
D $\int(3 x+2)\left(x^{3}+5 x\right)^{7} d x$
E $\int e^{x} \sqrt{1+e^{x}} d x$
F $\quad \int \frac{e^{x}-e^{-x}}{\left(e^{x}+e^{-x}\right)^{3}} d x$

G $\int \frac{\sin x}{x} d x$

If we are trying to evaluate the integral $\int e^{\cos \theta} \sin \theta d \theta$, which substitution would be most helpful?

A u	$=\cos \theta$	138
B $u=\sin \theta$	17	
C $u=e^{\cos \theta}$	\square	

A Simple Substitution

Find an antiderivative, F of $\int e^{\cos \theta} \sin \theta d \theta$, with $F(0)=0$.

A Simple Substitution

Find an antiderivative, F of $\int e^{\cos \theta} \sin \theta d \theta$, with $F(0)=0$.
We substitute $\cos (\theta)=u$. Then $\frac{d u}{d \theta}=-\sin (\theta)$. Thus,

$$
\int e^{\cos \theta} \sin (\theta) d \theta=\int e^{u(\theta)}\left(-u^{\prime}(\theta)\right) d \theta=-e^{u(\theta)}
$$

Thus, all of the antiderivatives of $e^{\cos \theta} \sin (\theta)$ are of the form $-e^{\cos \theta}+C$. To find the appropriate C, we plug in $\theta=0$, and solve, to get:

$$
F(\theta)=-e^{\cos \theta}+e
$$

F Submissions Closed

If we make the substitution $\mathcal{w}=\ln \chi$, which of the following statements is true?

A $\int \frac{1}{x \ln x} \mathrm{~d} x=\int w \mathrm{~d} w$.	【	13
в $\int \frac{1}{x \ln x} \mathrm{~d} x=\int \ln (w) \mathrm{d} w$.	\square	27
c $\int \frac{1}{x \ln x} \mathrm{~d} x=\int \frac{1}{w} \mathrm{~d} w$		146
$D \int \frac{1}{x \ln x} d x=\int \frac{1}{\ln (w)} d w$	I	6
		Q. 1006

Substituting Back

Compute:

$$
\int \frac{1}{x(\log (x))^{2}}
$$

Where log is the natural logarithm.

Substituting Back

Compute:

$$
\int \frac{1}{x(\log (x))^{2}}
$$

Where log is the natural logarithm.

$$
\int \frac{1}{x(\log (x))^{2}} d x=\frac{-1}{\log (x)}+C
$$

We can verify this by differentiating.

Spot the Error

Blackie is sitting in the yard, lying on his back in the sun, computing integrals. That's just what cats do. He writes:

Spot the Error

Blackie is sitting in the yard, lying on his back in the sun, computing integrals. That's just what cats do. He writes:

To compute $\int_{1}^{4} \sqrt{1+\sqrt{x}} d x$, I will let $w=1+\sqrt{x}$, so $\frac{d w}{d x}=\frac{1}{2 \sqrt{x}}$. Thus,

$$
d x=d w(2 \sqrt{x})=d w(2(w-1))
$$

Plugging this in, I get:

$$
\begin{aligned}
\int_{1}^{4} \sqrt{1+\sqrt{x}} d x & =\int_{1}^{4} \sqrt{w}(2(w-1)) d w \\
& =\int_{1}^{4}\left(2 w^{3 / 2}-2 w^{1 / 2}\right) d w \\
& =\left[2 \frac{2}{5} w^{5 / 2}-2 \frac{2}{3} w^{3 / 2}\right]_{1}^{4}
\end{aligned}
$$

Takeaway

When substituting in a definite integral, don't forget to change your bounds!

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.
Let m be the volume of the meow. Denote by $\frac{d m}{d S}=f(S)$, and let Δm be the change in meow volume between $1 s$ and $2 s$.

Lexi and Obie and Mouse

Lexi, the tail-less cat, is meowing at Obie for stealing her mouse. As her mouth opens, the size, S, of the opening changes as a function of time: $S=g(t)$.
Let m be the volume of the meow. Denote by $\frac{d m}{d S}=f(S)$, and let Δm be the change in meow volume between $1 s$ and $2 s$.
Fill in the following:

$$
\begin{aligned}
& \Delta m=\int_{\square}^{\square} f(g(t)) g^{\prime}(t) d t \\
& \Delta m=\int_{\square}^{\square} f(s) d s \\
& \Delta m=\int_{\square}^{\square} d m
\end{aligned}
$$

Lexi and Obie and Mouse

$$
\begin{aligned}
& \Delta m=\int_{1}^{2} f(g(t)) g^{\prime}(t) d t \\
& \Delta m=\int_{g(1)}^{g(2)} f(s) d s \\
& \Delta m=\int_{m(g(1))}^{m(g(2))} d m
\end{aligned}
$$

Plans for the Future

For next time:

WeBWork 7.2 and read section 7.2

