Welcome to MAT135 LEC0501 (Assaf)

Now is a good time to think about the midterm!

S6.4 – The Other Fundamental Theorem – The Construction Theorem

Assaf Bar-Natan

"Try to change. I try to change. I make a list of all the ways to change my ways. But I stay the same, I stay the s-ame."

- "Try To Change", Mother Mother

Jan. 22, 2020

Jan. 22, 2020 - S6.4 - The Other Fundamental Theorem - The Construction Theorem

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: sin(e^{3x+5}), log(x), log²(x)...

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: sin(e^{3x+5}), log(x), log²(x)...

Today: Functions defined as integrals of other functions:

$$f(x) = \int_a^x g(t) dt$$

where *a* is some constant.

Functions Defined by Integrals

Some examples:

$$Si(x) = \int_0^x \frac{\sin(t)}{t} dt$$
$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
$$li(x) = \int_0^x \frac{1}{\log(t)} dt$$

(log is the natural logarithm here)

Jan. 22, 2020 - S6.4 - The Other Fundamental Theorem - The Construction Theorem

A table of values of a function p(t) is shown below. Consider the function $S(y) = \int_{8}^{y} p(t) dt$. Which of the following is the best estimate for S(5), given the information provided

50% Answered Correctly

-22.5 106 **B** -9 67 **C** 9 27 D 22.5 10 Invalid date 👻 Segment Results Compare with session Show percentages Hide Graph Condense Tex 210/210 answered CAsk Again Q 100% 11 < > ● Open O Closed E Responses ✓ Correct >>

Let's say that we have a function, f(x). In groups, write an explanation of the difference between:

- A definite integral of *f*.
- The antiderivatives of f.
- A function defined by an integral of f.

Let's say that we have a function, f(x). In groups, write an explanation of the difference between:

- A definite integral of f.
- The antiderivatives of f.
- A function defined by an integral of f.

Hint: think about the definitions!

Let's say that we have a function, f(x). In groups, write an explanation of the difference between:

- A definite integral of *f*. This is a number.
- The antiderivatives of *f*. This is a family of functions whose derivative is *f*.
- A function defined by an integral of *f*. This is a function defined by an expression of the form ∫_a[×] f(t)dt.

Hint: think about the definitions!

The Construction Theorem

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t) dt$.

The Construction Theorem

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t) dt$.

Write the limit definition of the derivative of F

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t)dt$. We have:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

We can rewrite this as:

$$F'(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t)dt$. We have:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

We can rewrite this as:

$$F'(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Explain why we can do this to your neighbour

Jan. 22, 2020 – S6.4 – The Other Fundamental Theorem – The Construction Theorem

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t) dt$. We have:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Let f(t) be a continuous function defined everywhere, and we will write $F(x) = \int_{a}^{x} f(t) dt$. We have:

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$$

Draw a picture representing the integral above as a small rectangle. What does the limit above equal to?

The Construction Theorem

Theorem

(Construction Theorem, or, the Second Fundamental Theorem of Calculus) If f is continuous, then the function defined by the integral $F(x) = \int_{a}^{x} f(t) dt$ satisfies F'(x) = f(x).

Takeaway

Functions defined by integrals are antiderivatives of the integrands

Jan. 22, 2020 – S6.4 – The Other Fundamental Theorem – The Construction Theorem Ass

Below is the graph of a function f. Let
$$g(x) = \int_0^x f(t) dt$$
.
Then for $0 < x < 2$, $g(x)$ is:
A increasing and concave up
B increasing and concave down
C decreasing and concave up
D decreasing and concave down
17

Invalid date 💌	Segment Results	Compare with sessio	1			Show percentages Hide Gra	ph Condens	se Text
209/209 answered								< Again
^ <	> • Op	en 🛇 Closed	Responses	✓ Correct	»		Q 100%	45

T Submissions Closed

Below is the graph of a function
$${f f}$$
 . Let $g(x)=\int_0^x f(t)dt$.
Then:

✓ 88% Answered Correctly

A $g(0) = 0, g'(0) = 0, g'(2) = 0$		14
B $g(0) = 0, g'(0) = 4, g'(2) = 0$		183
c $g(0) = 1, g'(0) = 0, g'(2) = 1$		2
D $g(0) = 0, g'(0) = 0, g'(2) = 1$	1.1	10

Invalid	dat	• •	Seg	gmen	nt Results	Con	pare with sess	on						Show percentages Hide	Graph Cor	ndense	Text
209/209	9 a	nsw	ered													C Ask A	sgain
^		<	>		• op	en	♦ Closed) =	Responses	~	Corre	t	»		Q 10	00%	41

We define:

$$F(x) = \int_5^{e^x} \frac{\sin(t)}{t} dt$$

1

Our goal is to find F'(x).

We define:

$$F(x) = \int_5^{e^x} \frac{\sin(t)}{t} dt$$

Our goal is to find F'(x).

• Use Si(x), and the net change theorem to write F(x) explicitly.

We define:

$$F(x) = \int_5^{e^x} \frac{\sin(t)}{t} dt$$

Our goal is to find F'(x).

- Use Si(x), and the net change theorem to write F(x) explicitly.
- Use differentiation rules to compute F'(x)

We define:

$$F(x) = \int_5^{e^x} \frac{\sin(t)}{t} dt$$

Our goal is to find F'(x).

- Use Si(x), and the net change theorem to write F(x) explicitly.
- Use differentiation rules to compute F'(x)
- Use the construction theorem to simplify

Bonus: replace $\frac{\sin(t)}{t}$ with $\sin(t^3)$. How does your solution change?

We define:

$$F(x) = \int_5^{e^x} \frac{\sin(t)}{t} dt$$

Our goal is to find F'(x).

- Use Si(x), and the net change theorem to write F(x) explicitly. $F(x) = Si(e^x) - Si(5)$
- Use differentiation rules to compute F'(x). By the chain rule: $F'(x) = Si'(e^x) \cdot e^x$
- Use the construction theorem to simplify. Since Si(x) is an antiderivative of sin(x)/x, we get: F'(x) = sin(e^x)/e^x = sin(e^x)
 Bonus: replace sin(t)/t with sin(t³). How does your solution change?
 We get sin(e^{3x})e^x

Jan. 22, 2020 - S6.4 - The Other Fundamental Theorem - The Construction Theorem

Submissions Closed

If
$$f(t) = \int_{t}^{7} \cos x \, dx$$
, then:
A $f'(t) = \cos(t)$
B $f'(t) = \sin(t)$

c
$$f'(t) = sin(7) - sin(t)$$
 17

 D $f'(t) = -cos(t)$
 127

 E $f'(t) = -sin(t)$
 12

G3% Answered Correctly 29

16

Invalid date Segment Results Compare with session	aph Condense Text
201/201 answered	C Ask Again
∧ ✓ > Open So Closed ≥ Responses ✓ Correct ≫	Q 100% 11

Plans for the Future

For next time: WeBWork 7.1 and read section 7.1