Welcome to MAT135 LEC0501 (Assaf)

Now is a good time to think about the midterm!

S6.4 - The Other Fundamental Theorem - The Construction Theorem

Assaf Bar-Natan

"Try to change.
I try to change.
I make a list of all the ways to change my ways.
But I stay the same,
I stay the s-ame."
-"Try To Change", Mother Mother
Jan. 22, 2020

Functions Defined by Integrals

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: $\sin \left(e^{3 x+5}\right), \log (x), \log ^{2}(x) \ldots$

Functions Defined by Integrals

We've encountered many functions in MAT135, and in this course:

- Some functions are given as tables, verbally, or as a graph...
- Some functions are defined algebraically or geometrically: trigonometric, polynomials, exponents..
- Some functions are inverses or compositions of others: $\sin \left(e^{3 x+5}\right), \log (x), \log ^{2}(x) \ldots$
Today: Functions defined as integrals of other functions:

$$
f(x)=\int_{a}^{x} g(t) d t
$$

where a is some constant.

Functions Defined by Integrals

Some examples:

$$
\begin{aligned}
\operatorname{Si}(x) & =\int_{0}^{x} \frac{\sin (t)}{t} d t \\
\operatorname{erf}(x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t \\
\operatorname{li}(x) & =\int_{0}^{x} \frac{1}{\log (t)} d t
\end{aligned}
$$

(log is the natural logarithm here)

```
- Submissions Closed
```

A table of values of a function $p(t)$ is shown below. Consider the function $S(y)=\int_{8}^{y} p(t) d t$. Which of the following is the best estimate for $S(5)$, given the information provided

| t | 5 | 8 | 10 |
| :---: | :---: | :---: | :---: | :---: |
| $p(t)$ | 10 | 7 | 12 |

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f.
- The antiderivatives of f.
- A function defined by an integral of f.

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f.
- The antiderivatives of f.
- A function defined by an integral of f.

Hint: think about the definitions!

What's The Difference

Let's say that we have a function, $f(x)$. In groups, write an explanation of the difference between:

- A definite integral of f. This is a number.
- The antiderivatives of f. This is a family of functions whose derivative is f.
- A function defined by an integral of f. This is a function defined by an expression of the form $\int_{a}^{x} f(t) d t$.
Hint: think about the definitions!

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$.

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$.

Write the limit definition of the derivative of F

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

We can rewrite this as:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}
$$

We can rewrite this as:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Explain why we can do this to your neighbour

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

The Construction Theorem

Let $f(t)$ be a continuous function defined everywhere, and we will write $F(x)=\int_{a}^{x} f(t) d t$. We have:

$$
F^{\prime}(x)=\lim _{h \rightarrow 0} \frac{F(x+h)-F(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t
$$

Draw a picture representing the integral above as a small rectangle. What does the limit above equal to?

The Construction Theorem

Theorem

(Construction Theorem, or, the Second Fundamental Theorem of Calculus)
If f is continuous, then the function defined by the integral $F(x)=\int_{a}^{x} f(t) d t$ satisfies $F^{\prime}(x)=f(x)$.

Takeaway

Functions defined by integrals are antiderivatives of the integrands

Below is the graph of a function f. Let $g(x)=\int_{0}^{x} f(t) d t$. Then for $0<x<2, g(x)$ is:

A increasing and concave up
B increasing and concave down
C decreasing and concave up
D decreasing and concave down

Below is the graph of a function f. Let $g(x)=\int_{0}^{x} f(t) d t$. Then:

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.
- Use differentiation rules to compute $F^{\prime}(x)$

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly.
- Use differentiation rules to compute $F^{\prime}(x)$
- Use the construction theorem to simplify

Bonus: replace $\frac{\sin (t)}{t}$ with $\sin \left(t^{3}\right)$. How does your solution change?

Hard Derivatives

We define:

$$
F(x)=\int_{5}^{e^{x}} \frac{\sin (t)}{t} d t
$$

Our goal is to find $F^{\prime}(x)$.

- Use $\operatorname{Si}(x)$, and the net change theorem to write $F(x)$ explicitly. $F(x)=S i\left(e^{x}\right)-\operatorname{Si}(5)$
- Use differentiation rules to compute $F^{\prime}(x)$. By the chain rule: $F^{\prime}(x)=\operatorname{Si}^{\prime}\left(e^{x}\right) \cdot e^{x}$
- Use the construction theorem to simplify. Since $\operatorname{Si}(x)$ is an antiderivative of $\frac{\sin (x)}{x}$, we get: $F^{\prime}(x)=\frac{\sin \left(e^{x}\right)}{e^{x}} e^{x}=\sin \left(e^{x}\right)$
Bonus: replace $\frac{\sin (t)}{t}$ with $\sin \left(t^{3}\right)$. How does your solution change? We get $\sin \left(e^{3 x}\right) e^{x}$

```
F Submissions Closed
```

$$
\text { If } f(t)=\int_{t}^{7} \cos x d x \text {, then: }
$$

Plans for the Future

For next time:

WeBWork 7.1 and read section 7.1

