S6.3 - Differential Equations and Motion

Assaf Bar-Natan

"'Cause you can't stop the motion of the ocean or the sun in the sky
You can wonder, if you wanna, but I never ask why
And if you try to hold me down, I'm gonna spit in your eye and say That you can't stop the beat!"
-" You can't Stop The Beat ", Hairspray

Jan. 20, 2020

Example: The S.I.R Model of Infection

The cats are getting sick. Let t be the time, in days, since the illness outbreak, and let:

- N be the total number of cats
- $S(t)$ be the number of cats susceptible to the disease
- I(t) be the number of cats infected with the disease
- $R(t)$ be the number of cats who recovered from the disease

Example: The S.I.R Model of Infection

The cats are getting sick. Let t be the time, in days, since the illness outbreak, and let:

- N be the total number of cats
- $S(t)$ be the number of cats susceptible to the disease
- I(t) be the number of cats infected with the disease
- $R(t)$ be the number of cats who recovered from the disease The S.I.R model says that I, S, and R satisfy:

$$
\begin{aligned}
& \frac{d S}{d t}=-\beta \frac{I(t) S(t)}{N} \\
& \frac{d I}{d t}=\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
& \frac{d R}{d t}=\gamma I(t)
\end{aligned}
$$

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.
Very difficult goal: Find the functions S, I, and R

Example: The S.I.R Model of Infection

The equations:

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{I(t) S(t)}{N} \\
\frac{d I}{d t} & =\beta \frac{I(t) S(t)}{N}-\gamma I(t) \\
\frac{d R}{d t} & =\gamma I(t)
\end{aligned}
$$

are called differential equations. They relate a function's derivative to other variables. We would like to find out how the disease spreads.
Very difficult goal: Find the functions S, I, and R Use these equations to show that $\frac{d S}{d t}+\frac{d I}{d t}+\frac{d R}{t}=0$. What does this tell us about $S+I+R$?

Takeaway

Differential equations appear in unlikely places, and their solutions have important real-world reprecussions.

For the differential equation $\frac{d y}{d x}=5$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

For the differential equation $\frac{d y}{d x}=5 x$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

For the differential equation $\frac{d y}{d x}=5 y$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential

For the differential equation $\frac{d y}{d x}=0$, what is the most general family of functions that solves it?

A Constant
B Linear
C Polynomial
D Exponential (or vertically-shifted exponential)

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min . What is a family of functions that satisfy the above equation?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min . What is a family of functions that satisfy the above equation?
$v(t)=-9.8 t+C$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min . What is a family of functions that satisfy the above equation?
$v(t)=-9.8 t+C$
1 min . What is the appropriate constant to choose?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow.
Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.
1 min . Write a differential equation that involves Blackie's velocity (in m / s) while he's in the air. $\frac{d v}{d t}=-9.8$, where t is measured in seconds

1 min . What is a family of functions that satisfy the above equation?
$v(t)=-9.8 t+C$
1 min . What is the appropriate constant to choose? $C=3$ because $v(0)=3 \mathrm{~m} / \mathrm{s}$

If two solutions to $\frac{d y}{d x}=f(x)$ have different values at $x=3$ then they have different values at every x .

A True, and I am confident in my answer.
B True, and I am not confident in my answer.
C False, and I am not confident in my answer.
D False, and I am confident in my answer.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation?

$$
h(t)=-\frac{9.8}{2} t^{2}+3 t+D
$$

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation? $h(t)=-\frac{9.8}{2} t^{2}+3 t+D$
1 min . What is the appropriate constant to choose?

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. We know that Blackie's velocity, $v(t)=3-9.8 t$, measured in m / s.
1 min . Write a differential equation that involves Blackie's height above the ground (in m) while he's in the air. $\frac{d h}{d t}=3-9.8 t$
1 min . What is a family of functions that satisfy the above equation? $h(t)=-\frac{9.8}{2} t^{2}+3 t+D$
1 min . What is the appropriate constant to choose? $D=0$ because Blackie starts on the ground.

We've just seen that if acceleration is constant, then the position is a quadratic function of time. Is the reverse true? That is, if position is a quadratic function of time, then acceleration is constant

A True, and I can prove it.
B True, and I am not sure how to prove it.
C False, but I'm not sure why.
D False, and I have a counter-example.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$.

Cats Jumping

Roy sneaks up on Blackie, and surprises him with a loud meow. Blackie jumps straight into the air at a speed of $3 \mathrm{~m} / \mathrm{s}$. Spend one minute writing a list of steps (from the start of the question to its finish) outlining how you could compute how high Blackie jumps.

PCats Jumping - The Steps

- Read the question
- Write the differential equation
- Find a family of solutions to the differential equation
- Find the right constants, and narrow down the family to one function
- Repeat the last three steps until we have the desired function (in our case, it was the height function)
- Optimize

Plans for the Future

For next time:

WeBWork 6.4 and read section 6.4

