S6.1 - Analyzing Antiderivatives Algebraically

Assaf Bar-Natan

" Now the teacher would say to learn your algebra
But I'd bring home C's and D's
How could I make an A when there's a swingin' maid On the left and on the right and in the back and the front of me?"

-" Straight A's in Love ", Johnny Cash

Jan. 17, 2020

WeBWork Reflection

- Get into groups of two or three.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.
- Pick a WeBWork question from this section that you struggled with.

WeBWork Reflection

- Get into groups of two or three.
- Look around you for someone who is not in a group, and invite them to your group.
- Pick a WeBWork question from this section that you struggled with.
- Share with your group your progress or how you solved it.

Takeaway

MAT136 tip: WeBWork questions are hard! Help each other!

7
 Submissions Closed

What type of object is each of the following 'integrals'?

Premise
$1 \int_{t}^{3} f(x) d x$
$2 \int_{\pi}^{100} g(t) d t$
$3 \int 2 d x$
$4 \int_{1}^{x} h(t) d t$

Response
\rightarrow A function of t
\rightarrow B infinite family of functions
\rightarrow C function of x
\rightarrow D number

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.
- Find the antiderivative of $3 e^{-0.2 t}$.

Cats and Hay-Bales

The cats (Marzipan, Obie, Blackie, and Roy) are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of $3 e^{-0.2 t}$ degrees Celsius per minute. After six minutes, the temperature was measured to be $13^{\circ} \mathrm{C}$.

- Write an expression for the temperature two minutes after the cats jumped into the cavity.
- Find the antiderivative of $3 e^{-0.2 t}$.
- What was the temperature when $t=2$?

Solution

$$
\begin{aligned}
& \text { - } T(2)=13-\int_{2}^{6} 3 e^{-0.2 t} d t \\
& \text { - } \int 3 e^{-0.2 t} d t=3 \int e^{-0.2 t} d t=\frac{3 e^{-0.2 t}}{-0.2}
\end{aligned}
$$

Takeaway

For any function, f, and a co-ordinate (x, y), there is a single antiderivative F, for which $F(x)=y$.

```
F Submissions Closed
```

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of

A f

B $2 f$
C Any constant
D 0

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

This means that $F-G$ is constant.

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 .

This means that $F-G$ is constant. Why?

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 . So $F-G$ is constant.

Punctuated Lecture - Finding All Antiderivatives

If F and G are antiderivatives of f, then $F-G$ is an antiderivative of 0 . So $F-G$ is constant.

What does this tell us about any other antiderivative of f ?

Cats and Logs

Mia and Obie are having a fight. Both want to compute $\int \frac{1}{5 x}$.

Mia says:
"I can pull out $\frac{1}{5}$, and use

$$
\frac{d}{d x} \log (|x|)=\frac{1}{x}
$$

to get that every antiderivative of $\frac{1}{5 x}$ is of the form $\frac{1}{5} \log (|x|)+C . "$

Obie says:
"When I compute the derivative of $\frac{1}{5} \log (\pi|x|)$, I get $\frac{1}{5 x}$, so

$$
\frac{1}{5} \log (\pi|x|)
$$

is an antiderivative of $\frac{1}{5 x}$ that doesn't fit your pattern."

Who is right?

Solution

Both are right, because if we apply logarithm rules, we get:

$$
\frac{1}{5} \log (\pi|x|)=\frac{1}{5} \log (|x|)+\frac{1}{5} \log (\pi)
$$

which is of the form that Mia wanted.

Plans for the Future

For next time:

WeBWork 6.3 and read section 6.3

