S6.1 - New Technology - Antiderivatives

Assaf Bar-Natan (Replacing Josh Lackman)

"They took the credit for your second symphony Rewritten by machine on new technology And now I understand the problems you can see Oh, ah, oh! "

-" Video Killed the Radio Star ", The Buggles

Jan. 16, 2020

Jan. 16, 2020 - S6.1 - New Technology - Antiderivatives

Assaf Bar-Natan 1/13

The Definition of an Antiderivative

If f and F are two functions, we say that F is an antiderivative of f if F'(x) = f(x).

The Definition of an Antiderivative

If f and F are two functions, we say that F is an antiderivative of f if F'(x) = f(x).

For example: if f(x) = 2x and $F(x) = x^2$, then F(x) is an antiderivative of f(x).

If F(x) and G(x) are antiderivatives of a function f(x), then H(x) = F(x)+G(x) is also an antiderivative of f(x)

- A True, and I am confident in my answer.
- **B** True, and I am not confident in my answer.
- **C** False, and I am not confident in my answer.
- **D** False, and I am confident in my answer.

MAT136 tip: When you know the definition, use it instead of taking shortcuts.

• Take out a sheet of paper, or borrow one from your neighbour.

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on [0, 5] which is:
 - Decreasing and linear on [0,2].
 - Positive at 0 and negative at 2
 - Sequal to a positive constant between 4 and 5.

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on [0, 5] which is:
 - Decreasing and linear on [0,2].
 - Positive at 0 and negative at 2
 - Sequal to a positive constant between 4 and 5.

Make sure your axes are labelled!

• Find a partner, and exchange your papers

- Take out a sheet of paper, or borrow one from your neighbour.
 - Draw a continuous function defined on [0,5] which is:
 - Decreasing and linear on [0,2].
 - Positive at 0 and negative at 2
 - **③** Equal to a positive constant between 4 and 5.

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.

- Take out a sheet of paper, or borrow one from your neighbour.
 - Draw a continuous function defined on [0,5] which is:
 - Decreasing and linear on [0,2].
 - Positive at 0 and negative at 2
 - **③** Equal to a positive constant between 4 and 5.

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.
- Pass the papers back to your partner, and compare your answers. Explain what you drew.

- Take out a sheet of paper, or borrow one from your neighbour.
- Draw a continuous function defined on [0,5] which is:
 - Decreasing and linear on [0, 2].
 - Positive at 0 and negative at 2
 - Sequal to a positive constant between 4 and 5.

- Find a partner, and exchange your papers
- Draw the graph of an antiderivative of the function your partner drew.
- Pass the papers back to your partner, and compare your answers. Explain what you drew.
- With your partner, pick a drawing, and draw on it an antiderivative of the original function that is different from the one you already drew

Draw The Antiderivative – My Drawing

Draw The Antiderivative – My Drawing

Draw The Antiderivative – My Drawing

If F is an antiderivative of f, then F + c is an antiderivative of f for any constant c

Feature of function at a	Feature of an antideriva-	
point	tive at that point	
positive		
negative		
<i>x</i> -intercept		
increasing		
decreasing		
maximum		
minimum		

Feature of function at a	Feature of an antideriva-
point	tive at that point
positive	increasing
negative	decreasing
<i>x</i> -intercept	critical point
increasing	concave up
decreasing	concave down
maximum	inflection point
minimum	inflection point

Takeaway

In the same way that we sketch a function's derivative, we can reverse the process to sketch the antiderivative.

Recall that if F is a differentiable function on an interval [a, b], and F' = f, then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Recall that if F is a differentiable function on an interval [a, b], and F' = f, then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

Knowing the antiderivative allows us to compute definite integrals easily.

Jan. 16, 2020 - S6.1 - New Technology - Antiderivatives

Assaf Bar-Natan 10/13

The cats are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of r(t) degrees Celsius per minute. Knowing r(t) for all t between 0 and 6 is enough information to determine the temperature of the cavity at t = 6

A True, and I know how to compute it.

- **B** True, but I'm not sure why.
- C False, but I can't explain why I think this.
- **D** False, and I know what information is missing.

X END (ESC) Submissions Closed

The cats are cuddling up in a carved out hay bale. Let t be the time, in minutes, that the cats spend in the cavity. They heat up the cavity at a rate of r(t) degrees Celsius per minute. After six minutes, the temperature was measured to be 13° C. What is a formula that describes the temperature at t = 0?

A
$$\int_{6}^{0} r(t)dt + 13$$

B
$$\int_{0}^{6} r(t)dt - 13$$

C
$$\int_{0}^{6} r(t)dt + 13$$

D
$$\int_{6}^{0} r(t)dt - 13$$

0/10 answered								
~ <	>	Open	O Closed	🖹 Responses	🗸 Correct	»	Q 88%	46

Plans for the Future

For next time: WeBWork 6.2 and read section 6.2