Welcome to MAT135 LEC0501 (Assaf)

Share with your neighbour something you did during this rainy weekend.

Jan. 13, 2020 - S5.4 - Properties, Theorems, and Bounds on Definite Integrals

Submissions Closed

Suppose that f is a continuous function. Then $\int_0^2 f(x) dx = \int_0^2 f(t) dt$

77% Answered Correctly

A True, and I am confident in my answer.	85
B True, and I am not confident in my answer.	45
C False, and I am not confident in my answer.	17
D False, and I am confident in my answer.	22

Januar	y 1	1 at 8:	32 PN	(resu	lts 👻	Segme	ent Resu	ilts Co	mpare	with session							Show percentages Hide Gr	ph Con	dense	Text
169 /17	'0 a	answ	erec															C	Ask /	Again
^		<	>	•	C	Open	0	Closed) =	Respons	es	~	Correc	:	×	>		Q 100	0%	42

S5.4 – Properties, Theorems, and Bounds on Definite Integrals

Assaf Bar-Natan

" On a tour of one-night stands my suitcase and guitar in hand And every stop is neatly planned for a poet and a one-man band... Homeward bound "

-" Homeward Bound ", Simon & Garfunkel

Jan. 13, 2020

Jan. 13, 2020 - S5.4 - Properties, Theorems, and Bounds on Definite Integrals

Assaf Bar-Natan 3/3

Takeaway

In expressions like $\int_{a}^{b} f(x) dx$, the variable x is a dummy variable – It only is there to remind us that f is a function and that we are integrating with respect to its input.

Integration Theorems Round Robin

Get into groups of 3-4.

Integration Theorems Round Robin

Get into groups of 3-4.

• Go around your group, and one by one state an integration theorem.

Integration Theorems Round Robin

Get into groups of 3-4.

- Go around your group, and one by one state an integration theorem.
- Go through the textbook, and make sure all of the theorems from chapter 5.4 have been stated.

Draw a Theorem

Below is a summary of some of the theorems from chapter 5.4:

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

And some of the bounds:

$$m \le f(x) \le M \Rightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$
$$f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

Jan. 13, 2020 - S5.4 - Properties, Theorems, and Bounds on Definite Integrals

Draw a Theorem

Below is a summary of some of the theorems from chapter 5.4:

$$\int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx$$
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$

And some of the bounds:

$$m \le f(x) \le M \Rightarrow m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$
$$f(x) \le g(x) \Rightarrow \int_a^b f(x) dx \le \int_a^b g(x) dx$$

In your group, choose one of these theorems and one of these bounds, and draw a picture explaining why it's true.

T Submissions Closed

1

$$\int_a^b f(x) dx \leq \int_a^b g(x) dx$$
 then on the interval [a,b], $f(x) \leq g(x)$

✓ 63% Answered Correctly

A True, and I can explain why	50
B True, and I'm not sure why	29
C False and I'm not sure why	24
D False, and I have a counter-example	108

January	y 1	1 at 8:	34 PI	4 resu	ilts 🔹	Segm	ent Resul	ts Co	mpare w	ith session					Show percentages Hide Graph Condens	se Text
211/211	1 ā	insw	erec	1											Cyver	к Again
^		<	;	•	•	Open	0	Closed	=	Responses	~	Corre	t	»	Q 100%	45

Takeaway

If we know that $f(x) \le g(x)$ on [a, b], then $\int_a^b f(x) dx \le \int_a^b g(x) dx$. However, we cannot reverse this!

Marzipan is chasing a mouse along the side of the barn. The mouse has a head start of about 1m, and the velocities of Marzipan (red) and the mouse (blue) are plotted below:

Will Marzipan catch the mouse?

Marzipan is chasing a mouse along the side of the barn. The mouse has a head start of about 1m, and the velocities of Marzipan (red) and the mouse (blue) are plotted below:

Will Marzipan catch the mouse? When?

Submissions Closed

Obie's weight over the fall season is plotted below:

Estimate Obie's average weight during this time.

Plans for the Future

For next time: WeBWork 6.1 and read section 6.1