Welcome to MAT136 LEC0501 (Assaf)

Today: ODEs
Friday: Review

COURSE EVALUATIONS!!!!!!

http://uoft.me/openevals

Taylor Expansions and ODEs - Part 2

Assaf Bar-Natan

"It goes, all my troubles on a burning pile
All lit up and I start to smile If I, catch fire then I change my aim
Throw my troubles at the pearly gates"
-"Burning Pile", Mother Mother
April 1, 2020

Welcome to MAT136 LEC0501 (Assaf)

COURSE EVALUATIONS!!!!!!

http://uoft.me/openevals

Last time: What is a Solution?

How do we solve an ODE?

Depending on the ODE, and depending on how we want our solution presented, we use different solution strategies.

Today's Main Idea

Express a function as a Taylor polynomial, and solve for the coefficients.

A First Example

We will try to solve:

$$
\begin{array}{rlrl}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0)=0 & y^{\prime}(0) & =1
\end{array}
$$

This equation is not separable, and we do not have other techniques to solve it.

The Steps

- Write the solution (which we want to find) as a Taylor series
- Find the Taylor series for every term in the differential equation
- Group together like terms
- Write out the differential equation as a Taylor series equation
- Solve for the coefficients
- (Hopefully) Identify the Taylor series as a known function

Step 1: Writing Taylor series

We will try to solve:

$$
\begin{array}{rlrl}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0)=0 & y^{\prime}(0) & =1
\end{array}
$$

We write

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

From now on, assume that our solution has this form.

Step 2: Find the Taylor Series of the other terms

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Q: What are the formulas for $y^{\prime \prime}$ and $2 y^{\prime}$?

Step 2: Find the Taylor Series of the other terms

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Q: What are the formulas for $y^{\prime \prime}$ and $2 y^{\prime}$?

$$
\begin{aligned}
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} \\
2 y^{\prime} & =2 \sum_{n=1}^{\infty} n a_{n} x^{n-1}
\end{aligned}
$$

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the constant term in $y^{\prime \prime}-2 y^{\prime}+y$?

Step 3: Group Terms

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+y=0 \\
& y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
& 2 y^{\prime}=\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the constant term in $y^{\prime \prime}-2 y^{\prime}+y$?
A: The constant term is $2 a_{2}-2 a_{1}+a_{0}$

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the linear term in $y^{\prime \prime}-2 y^{\prime}+y$?

Step 3: Group Terms

$$
\begin{aligned}
& y^{\prime \prime}-2 y^{\prime}+y=0 \\
& y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
& 2 y^{\prime}=\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
& y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the linear term in $y^{\prime \prime}-2 y^{\prime}+y$?
A: The linear term is $6 a_{3} x-4 a_{2} x+a_{1} x$

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the quadratic term in $y^{\prime \prime}-2 y^{\prime}+y$?

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

We want to add up these series. Q: What is the quadratic term in $y^{\prime \prime}-2 y^{\prime}+y$?
A: The quadratic term is $12 a_{4} x^{2}-6 a_{3} x^{2}+a_{2} x^{2}$

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

Q: In general, what is the coefficient of x^{n} ?

Step 3: Group Terms

$$
\begin{aligned}
y^{\prime \prime} & -2 y^{\prime}+y=0 \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2}+6 a_{3} x+\cdots \\
2 y^{\prime} & =\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=2 a_{1}+4 a_{2} x+6 a_{3} x^{2}+\cdots \\
y(x) & =\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
\end{aligned}
$$

Q: In general, what is the coefficient of x^{n} ?

$$
(n+2)(n+1) a_{n+2} x^{n}-2(n+1) a_{n+1} x^{n}+a_{n} x^{n}
$$

Step 4: Write the Equation as a series

We know: $y^{\prime \prime}-2 y^{\prime}+y=0$, so when expressing this equation as a series, we get:

$$
0=\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}-2(n+1) a_{n+1} x^{n}+a_{n} x^{n}
$$

This means that every coefficient here needs to be 0 . In other words:

$$
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
$$

Step 5: Solve for the coefficients

$$
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
$$

This means:

$$
0=2 a_{2}-2 a_{1}+a_{0}
$$

Q: Knowing $y(0)=0$ and $y^{\prime}(0)=1$, what does this tell us about a_{0} and a_{1} ?

Step 5: Solve for the coefficients

$$
(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}=0
$$

This means:

$$
0=2 a_{2}-2 a_{1}+a_{0}
$$

Q: Knowing $y(0)=0$ and $y^{\prime}(0)=1$, what does this tell us about a_{0} and a_{1} ? A: $a_{0}=0$ and $a_{1}=1$
Q: What is a_{2} ?

Takeaway

Using an initial condition and the differential equation, we can write the solution as a Taylor polynomial, and solve for the coefficients

This is an entirely new way to solve ODEs!

Step 5: Solving For the Coefficients

$$
0=(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}
$$

Or:

$$
a_{n+2}=\frac{2 a_{n+1}}{(n+2)}-\frac{a_{n}}{(n+1)(n+2)}
$$

We know $a_{0}=0, a_{1}=1$, and $a_{2}=1$. Use this to find a_{3} and a_{4}.

Step 5: Solving For the Coefficients

$$
0=(n+2)(n+1) a_{n+2}-2(n+1) a_{n+1}+a_{n}
$$

Or:

$$
a_{n+2}=\frac{2 a_{n+1}}{(n+2)}-\frac{a_{n}}{(n+1)(n+2)}
$$

We know $a_{0}=0, a_{1}=1$, and $a_{2}=1$. Use this to find a_{3} and a_{4}. The sequence turns out to be...

$$
0,1,1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}
$$

Interlude: Properties of the solution

Knowing that $a_{0}=0, a_{1}=1$, and $a_{2}=1$, what does this tell us about the shape of the solution at $x=0$?

Interlude: Properties of the solution

Knowing that $a_{0}=0, a_{1}=1$, and $a_{2}=1$, what does this tell us about the shape of the solution at $x=0$?

The solution is positive, increasing, and concave up at $x=0$

Takeaway

We can get information about convexity or other properties of the function by looking at the coefficients of its solution. For example, increasing, decreasing, concavity,...

Step 6: Identify the Function

The solution to the differential equation:

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
$$

is:

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

We've checked, and saw that $a_{n+1}=\frac{1}{n!}$, and $a_{0}=0$ So:

$$
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
$$

Step 6: Identify the Function

The solution to the differential equation:

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
$$

is:

$$
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
$$

Q: Can you identify this function?

Step 6: Identify the Function

The solution to the differential equation:

$$
\begin{aligned}
y^{\prime \prime}-2 y^{\prime}+y & =0 \\
y(0) & =0 y^{\prime}(0)=1
\end{aligned}
$$

is:

$$
y(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+1}
$$

Q: Can you identify this function?
A: This is $x e^{x}$.

Plans for the Future

For next time:
Pick a lesson in the course. Write down the list of concepts, and how they connect to each other

