Welcome to MAT136 LEC0501 (Assaf)

Critical Incident Questionnaire 3:
https://tinyurl.com/March2020CIQ

S10.3 - Taylor Series - Applications (Part 2)

Assaf Bar-Natan

"Everything will be alright, if We just keep dancing like we're twenty-two..."
-"'22", Taylor Swift
March 30, 2020

Taylor Series and Substitution

Recall:

If a Taylor series for $f(x)$ converges for x on some interval, then the Taylor series for $f(g(x))$ converges whenever $g(x)$ is in that interval

If a Taylor series for $f(x)$ converges for x on some interval, then the Taylor series for $f^{\prime}(x)$ converges on the same interval

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
$14 x \cdot e^{x} \cos (x)$
$2 \frac{1}{1-(x / 4)}$
$3 \frac{1}{4(1-(x / 4))^{2}}$
$4 \cos \left(x^{2}+4 x^{3}\right)$

Response
\rightarrow A ∞ by substitution of polynomials into known Taylor Series
\rightarrow B 4 by differentiation of known Taylor series
\rightarrow c 4 by substitution of polynomials into known Taylor Series
\rightarrow D ∞ by multiplication of known Taylor series and polynomials

Radius of Convergence

Consider $\frac{1}{1-(x / 4)}$. The Taylor series around 0 is:

$$
1+y+y^{2}+\cdots
$$

Where $y=x / 4$.
This converges when $-1<y<1$, ie, when $-4<x<4$, so the Taylor series converges on this interval by subtituting $x / 4$ into a known Taylor series.

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
$14 x \cdot e^{x} \cos (x)$
$2 \frac{1}{1-(x / 4)}$
$3 \frac{1}{4(1-(x / 4))^{2}}$
$4 \cos \left(x^{2}+4 x^{3}\right)$

Response
\rightarrow A ∞ by substitution of polynomials into known Taylor Series
\rightarrow B 4 by differentiation of known Taylor series
\rightarrow c 4 by substitution of polynomials into known Taylor Series
\rightarrow D ∞ by multiplication of known Taylor series and polynomials

Radius of Convergence

Consider $\frac{1}{4(1-(x / 4))^{2}}$. Can we interpret this function as a derivative of something?

Radius of Convergence

Consider $\frac{1}{4(1-(x / 4))^{2}}$. Can we interpret this function as a derivative of something?

$$
\frac{d}{d x}\left(\frac{1}{1-(x / 4)}\right)=\frac{1}{4(1-(x / 4))^{2}}
$$

Radius of Convergence

Consider $\frac{1}{4(1-(x / 4))^{2}}$. Can we interpret this function as a derivative of something?

$$
\frac{d}{d x}\left(\frac{1}{1-(x / 4)}\right)=\frac{1}{4(1-(x / 4))^{2}}
$$

We know that converges when $-4<x<4$, because it's the derivative of a Taylor series that converges on that interval.

Determine the Radius of Convergence of each of the following series, by using Radii of convergence that you know.

Premise
$14 x \cdot e^{x} \cos (x)$
$2 \frac{1}{1-(x / 4)}$
$3 \frac{1}{4(1-(x / 4))^{2}}$
$4 \cos \left(x^{2}+4 x^{3}\right)$

Response
\rightarrow A ∞ by substitution of polynomials into known Taylor Series
\rightarrow B 4 by differentiation of known Taylor series
\rightarrow c 4 by substitution of polynomials into known Taylor Series
\rightarrow D ∞ by multiplication of known Taylor series and polynomials

Radius of Convergence

The Taylor series for $\cos (x)$ converges for any x, so no matter what we substitute into cos, the Taylor series will converge.

Radius of Convergence

The Taylor series for $\cos (x)$ converges for any x, so no matter what we substitute into cos, the Taylor series will converge.

If two functions have Taylor series which converge everywhere, then their product also has a Taylor series that converges everywhere

This is just an application of the product formula for Taylor series (Example 4)

Computing Series Using Derivatives

We are going to compute the series:

$$
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
$$

- Identify constants, indices, and patterns in the series
- Substitute a variable into the series
- Interpret each term as an integral or derivative of something
- Integrate or differentiate term by term to get a new series
- Do you recognize the new series? If not, go back to step 2.
- Write the new series in closed form, and interpret the original series as its derivative or integral

Computing Series Using Derivatives

$$
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
$$

The constants here are 2, 3 (and 1). The index is n. We will try replacing all instances of 3 with the variable x :

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
$$

Computing Series Using Derivatives

$$
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
$$

The constants here are 2, 3 (and 1). The index is n. We will try replacing all instances of 3 with the variable x :

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
$$

Q: Can we interpret each term as the derivative of something?

Computing Series Using Derivatives

$$
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}
$$

The constants here are 2, 3 (and 1). The index is n. We will try replacing all instances of 3 with the variable x :

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}
$$

Q: Can we interpret each term as the derivative of something?

$$
\frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)
$$

Computing Series Using Derivatives

Remembering that we are evaluating when $x=3 \ldots$

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)
$$

Q: Do you recognize this series?

Computing Series Using Derivatives

Remembering that we are evaluating when $x=3 \ldots$

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)
$$

Q: Do you recognize this series?

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x} \sum_{n=1}^{\infty}\left(\frac{x^{2 n}}{n!}\right)=\frac{d}{d x}\left(e^{x^{2}}-1\right)
$$

Computing Series Using Derivatives

Remembering that we are evaluating when $x=3 \ldots$

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(e^{x^{2}}-1\right)=2 x e^{x^{2}}
$$

$\mathbf{Q}:$ What is $\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}$?

Computing Series Using Derivatives

Remembering that we are evaluating when $x=3 \ldots$

$$
\sum_{n=1}^{\infty} \frac{x^{2 n-1} 2 n}{n!}=\frac{d}{d x}\left(e^{x^{2}}-1\right)=2 x e^{x^{2}}
$$

Q: What is $\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}$? We plug in $x=3$ to get:

$$
\sum_{n=1}^{\infty} \frac{3^{2 n-1} 2 n}{n!}=6 e^{9}
$$

Find the exact sum of the series
$\sum_{n=1}^{\infty} n(0.2)^{n-1}$

The Series $\sum n(0.2)^{n-1}$

Folllowing the steps we've outlined, replace 0.2 with x, and get:

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

The Series $\sum n(0.2)^{n-1}$

Folllowing the steps we've outlined, replace 0.2 with x, and get:

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

Interpret each term as a derivative to get:

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
$$

The Series $\sum n(0.2)^{n-1}$

Folllowing the steps we've outlined, replace 0.2 with x, and get:

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

Interpret each term as a derivative to get:

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
$$

Finally, differentiate and plug in $x=0.2$:

$$
\sum_{n=1}^{\infty} n(0.2)^{n-1}=\frac{1}{(1-(0.2))^{2}}=1.5625
$$

The Series $\sum n(0.2)^{n-1}$

Folllowing the steps we've outlined, replace 0.2 with x, and get:

$$
\sum_{n=1}^{\infty} n x^{n-1}
$$

Interpret each term as a derivative to get:

$$
\sum_{n=1}^{\infty} n x^{n-1}=\frac{d}{d x} \sum_{n=1}^{\infty} x^{n}=\frac{d}{d x}\left(\frac{1}{1-x}-1\right)
$$

Finally, differentiate and plug in $x=0.2$:

$$
\sum_{n=1}^{\infty} n(0.2)^{n-1}=\frac{1}{(1-(0.2))^{2}}=1.5625
$$

Everything worked because $|x|<1$, so the series above

Takeaway

When we have a series, we can plug in a variable, x, then interpret it as a derivative or an integral of series that we know

Plans for the Future

For next time:
Watch the uploaded Section 10.3 video, and go over Taylor Solutions to ODEs

