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S10.3 – Taylor Series – Applications (Part 2)

Assaf Bar-Natan

“Everything will be alright, if
We just keep dancing like we’re twenty-two...”

–“22”, Taylor Swift

March 30, 2020
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Taylor Series and Substitution

Recall:

If a Taylor series for f (x) converges for x on some interval,
then the Taylor series for f (g(x)) converges whenever g(x) is

in that interval

If a Taylor series for f (x) converges for x on some interval,
then the Taylor series for f ′(x) converges on the same

interval
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Radius of Convergence

Consider 1
1−(x/4) . The Taylor series around 0 is:

1 + y + y2 + · · ·

Where y = x/4.
This converges when −1 < y < 1, ie, when −4 < x < 4, so the
Taylor series converges on this interval by subtituting x/4 into a
known Taylor series.
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Radius of Convergence

Consider 1
4(1−(x/4))2 . Can we interpret this function as a derivative

of something?

d

dx

(
1

1− (x/4)

)
=

1

4(1− (x/4))2

We know that converges when −4 < x < 4, because it’s the
derivative of a Taylor series that converges on that interval.
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Radius of Convergence

The Taylor series for cos(x) converges for any x , so no matter what
we substitute into cos, the Taylor series will converge.

If two functions have Taylor series which converge
everywhere, then their product also has a Taylor series that

converges everywhere

This is just an application of the product formula for Taylor series
(Example 4)
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Computing Series Using Derivatives

We are going to compute the series:

∞∑
n=1

32n−12n

n!

Identify constants, indices, and patterns in the series

Substitute a variable into the series

Interpret each term as an integral or derivative of something

Integrate or differentiate term by term to get a new series

Do you recognize the new series? If not, go back to step 2.

Write the new series in closed form, and interpret the original
series as its derivative or integral
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Computing Series Using Derivatives

∞∑
n=1

32n−12n

n!

The constants here are 2, 3 (and 1). The index is n. We will try
replacing all instances of 3 with the variable x :

∞∑
n=1

x2n−12n

n!

Q: Can we interpret each term as the derivative of something?

x2n−12n

n!
=

d

dx

(
x2n

n!

)
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Computing Series Using Derivatives

Remembering that we are evaluating when x = 3...

∞∑
n=1

x2n−12n

n!
=
∞∑
n=1

d

dx

(
x2n

n!

)
=

d

dx

∞∑
n=1

(
x2n

n!

)
Q: Do you recognize this series?

∞∑
n=1

x2n−12n

n!
=

d

dx

∞∑
n=1

(
x2n

n!

)
=

d

dx

(
ex

2 − 1
)
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Computing Series Using Derivatives

Remembering that we are evaluating when x = 3...

∞∑
n=1

x2n−12n

n!
=

d

dx

(
ex

2 − 1
)

= 2xex
2

Q: What is
∑∞

n=1
32n−12n

n! ?

We plug in x = 3 to get:

∞∑
n=1

32n−12n

n!
= 6e9
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The Series
∑

n(0.2)n−1

Folllowing the steps we’ve outlined, replace 0.2 with x , and get:

∞∑
n=1

nxn−1

Interpret each term as a derivative to get:

∞∑
n=1

nxn−1 =
d

dx

∞∑
n=1

xn =
d

dx

(
1

1− x
− 1

)
Finally, differentiate and plug in x = 0.2:

∞∑
n=1

n(0.2)n−1 =
1

(1− (0.2))2
= 1.5625

Everything worked because |x | < 1, so the series above
converge

March 30, 2020 – S10.3 – Taylor Series – Applications (Part 2) Assaf Bar-Natan



15 / 17

The Series
∑

n(0.2)n−1

Folllowing the steps we’ve outlined, replace 0.2 with x , and get:

∞∑
n=1

nxn−1

Interpret each term as a derivative to get:

∞∑
n=1

nxn−1 =
d

dx

∞∑
n=1

xn =
d

dx

(
1

1− x
− 1

)

Finally, differentiate and plug in x = 0.2:

∞∑
n=1

n(0.2)n−1 =
1

(1− (0.2))2
= 1.5625

Everything worked because |x | < 1, so the series above
converge

March 30, 2020 – S10.3 – Taylor Series – Applications (Part 2) Assaf Bar-Natan



15 / 17

The Series
∑

n(0.2)n−1

Folllowing the steps we’ve outlined, replace 0.2 with x , and get:

∞∑
n=1

nxn−1

Interpret each term as a derivative to get:

∞∑
n=1

nxn−1 =
d

dx

∞∑
n=1

xn =
d

dx

(
1

1− x
− 1

)
Finally, differentiate and plug in x = 0.2:

∞∑
n=1

n(0.2)n−1 =
1

(1− (0.2))2
= 1.5625

Everything worked because |x | < 1, so the series above
converge

March 30, 2020 – S10.3 – Taylor Series – Applications (Part 2) Assaf Bar-Natan



15 / 17

The Series
∑

n(0.2)n−1

Folllowing the steps we’ve outlined, replace 0.2 with x , and get:

∞∑
n=1

nxn−1

Interpret each term as a derivative to get:

∞∑
n=1

nxn−1 =
d

dx

∞∑
n=1

xn =
d

dx

(
1

1− x
− 1

)
Finally, differentiate and plug in x = 0.2:

∞∑
n=1

n(0.2)n−1 =
1

(1− (0.2))2
= 1.5625

Everything worked because |x | < 1, so the series above
convergeMarch 30, 2020 – S10.3 – Taylor Series – Applications (Part 2) Assaf Bar-Natan



16 / 17

Takeaway

When we have a series, we can plug in a variable, x, then
interpret it as a derivative or an integral of series that we

know
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Plans for the Future

For next time:
Watch the uploaded Section 10.3 video, and go over Taylor
Solutions to ODEs
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