# Welcome to MAT136 LEC0501 (Assaf)

#### COURSE EVALUATIONS ARE OPEN! PLEASE PLEASE PLEASE SUBMIT THEM!!!

Especially important: feedback about online learning, the transition process, the overall course structure given the situation, and your suggestions for next semester if we still need to do things online by then.

### S10.2 – Taylor Series – Back Again

#### Assaf Bar-Natan

"I never knew I'd love this world they've let me into And the memories were lost long ago So I'll dance with these beautiful ghosts"

- "Beautiful Ghosts (Cats movie)", Taylor Swift

March 25, 2020

March 25, 2020 - S10.2 - Taylor Series - Back Again

Assaf Bar-Natan 2/20

Recall that if f is some function, we can approximate f around a using a Taylor polynomial:

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

where x is close to a.

Recall that if f is some function, we can approximate f around a using a Taylor polynomial:

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

where x is close to a. Use the following Geogebra applet to investigate what happens when n gets big:

https://www.geogebra.org/m/s9SkCsvC

### The Taylor Series

Take a Taylor polynomial to the extreme, and use a **power series** to approximate f:

$$f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

This is called the **Taylor Series of** f at x = a

#### True or False: A Taylor series always converges

| A | True                    |
|---|-------------------------|
| В | False                   |
| С | Depends on the function |



#### Takeaway

The Taylor series is a power series, so, just like any power series, it might converge for some values of x and diverge for other values of x.

For what values of  $\mathbf x$  is it possible that

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots?$$

A This is true for all values of  $\mathbf x$  because of the Taylor series formula

B This may only be true for x > -1 because of our graphical evaluation (geogebra)

c This may only be true for -1 < x < 1 because the series doesn't have a finite value for other values of x





# We use the ratio test to check when a Taylor series converges

For which values of x is it possible that  $\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$ 

A This is true for all values of x because of the Taylor series formula.

B This appears to be true for all values of x based on the graphical evaluation (geogebra).

C This may only be true for -5 < x < 5 because the series doesn't have a value for other values of x

**D** For all values of x, because of the ratio test



$$\sin(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots$$

$$\sin(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots$$

My first approximation will be sin(100000)  $\approx$  1000000. But this is garbage! I know that sin(1000000) < 1.

$$\sin(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots$$

My first approximation will be  $\sin(1000000)\approx 1000000$ . But this is garbage! I know that  $\sin(1000000)<1.$  Let me try again....

$$\sin(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots$$

My first approximation will be  $sin(1000000) \approx 1000000$ . But this is garbage! I know that sin(1000000) < 1. Let me try again....

$$\sin(1000000)\approx 1000000 - \frac{(1000000)^3}{6}\approx -1.6\times 10^{17}$$

Wow! That's even worse than the first time... Let me try again...

$$\sin(x)\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+\cdots$$

My first approximation will be  $sin(1000000) \approx 1000000$ . But this is garbage! I know that sin(1000000) < 1. Let me try again....

$$\sin(1000000) pprox 1000000 - rac{(1000000)^3}{6} pprox -1.6 imes 10^{17}$$

Wow! That's even worse than the first time... Let me try again...

$$\sin(1000000) pprox 1000000 - rac{(1000000)^3}{6} + rac{(1000000)^5}{5!} pprox 8.3 imes 10^{27}$$

My approximations on the previous slide were trash.  $-1 < \sin(1000000) < 1$ , but I kept getting absurdly high numbers. Q: What is something I can do to get good approximations of  $\sin(1000000)$ ? My approximations on the previous slide were trash.

-1 < sin(1000000) < 1, but I kept getting absurdly high numbers.</li>Q: What is something I can do to get good approximations of sin(1000000)?

- I could choose to expand at a point close to 1000000
- I could keep going, and take many many many more terms in the series
- I could use the fact that sin is periodic, and get that sin(1000000) = sin(x), where -π < x < π. Then I could approximate.

#### Takeaway

Some functions have Taylor series that have an infinite radius of convergence (eg: sin, cos,  $e^x$ ). For these functions, the Taylor series always converges, but it might converge very slowly!

Check that sin, cos, and  $e^{\times}$  indeed have this property: https://www.geogebra.org/m/s9SkCsvC

We know:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

These look related

We know:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

#### These look related

Let  $i = \sqrt{-1}$  be an imaginary number (don't worry about it, just pretend that all algebra works the same, but  $i^2 = -1$ ). **Q:** Write the Taylor series for  $e^{ix}$ .

We know:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \cdots$$
$$\sin(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \cdots$$

#### These look related

Let  $i = \sqrt{-1}$  be an imaginary number (don't worry about it, just pretend that all algebra works the same, but  $i^2 = -1$ ). **Q:** Write the Taylor series for  $e^{ix}$ .  $e^{ix} = 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$ 

March 25, 2020 - S10.2 - Taylor Series - Back Again

We know:

$$e^{ix} = 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \cdots$$
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

**Q:** Relate  $e^{ix}$ ,  $\cos(x)$ , and  $\sin(x)$  using the above.

We know:

$$e^{ix} = 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \cdots$$
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

**Q:** Relate  $e^{ix}$ ,  $\cos(x)$ , and  $\sin(x)$  using the above. Hint: multiply  $\sin(x)$  by i...

We know:

$$e^{ix} = 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \cdots$$
$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots$$

**Q:** Relate  $e^{ix}$ ,  $\cos(x)$ , and  $\sin(x)$  using the above. Hint: multiply  $\sin(x)$  by i...

$$e^{ix} = \cos(x) + i\sin(x)$$

**Q**: Compute  $e^{i\pi}$ .

 $e^{i\pi} = -1$ 

# $e^{i\pi} = -1$

A good explanation of this: https://www.youtube.com/watch?v=v0YEaeIC1KY

# Plans for the Future

For next time: Watch the week 11 videos, do WeBWork 10.3, actively read section 10.3





| Invalid da | ate 👻 | Seg  | ment | Results | Compare with session | n           |           |   | Show percentages Hide Graj | h Condens | se Text |
|------------|-------|------|------|---------|----------------------|-------------|-----------|---|----------------------------|-----------|---------|
| 129/129    | answ  | ered |      |         |                      |             |           |   |                            | CAsk      | < Again |
| ^          | <     | >    |      | Open    | O Closed             | 🖹 Responses | 🗸 Correct | » |                            | Q 72%     | ::      |

Let

$$g(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$
  
s x = 2 in the domain of g(x)?





The graphs of 3 functions are shown below. For which functions is  $-1+0.3x-0.1x^2+0.08x^3+\cdots$  the Taylor series around x=0?



| Α | f(x)                                         | 25 |
|---|----------------------------------------------|----|
| в | g(x)                                         | 30 |
| с | h(x)                                         | 27 |
| D | it could be more than one of these functions | 30 |
| E | it cannot be any of these functioons         | 15 |

| Invalid date   Segment Results Compare with session                                           | Show percentages Hide Graph Condense Text |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|
| 127/127 answered                                                                              | C Ask Again                               |
| ▲     >     ●     Open     Open     S     Closed     E     Responses     ✓     Correct     >> | Q 72% ++                                  |

| Comp  | oute                           |
|-------|--------------------------------|
| 1.    | $1 - \cos x$                   |
| lim · |                                |
| x→0   | x-                             |
| using | a Taylor series approximation. |

| 1                                 |    | 17                                      |  |  |
|-----------------------------------|----|-----------------------------------------|--|--|
| -0.25                             |    | 1                                       |  |  |
| 0                                 |    | 35                                      |  |  |
| 0.21                              |    | 1                                       |  |  |
| 0.5                               |    | 45                                      |  |  |
| 1.32079632                        |    | 1                                       |  |  |
| 2                                 |    | 12                                      |  |  |
| nvalid date 💌                     | Sh | ow percentages Hide Graph Condense Text |  |  |
| 13/123 answered CAsk Again        |    |                                         |  |  |
| ∧ < > ● Open ○ Closed ≥ Responses |    | Q 72% -                                 |  |  |