Welcome to MAT136 LEC0501 (Assaf)

COURSE EVALUATIONS ARE OPEN! PLEASE PLEASE PLEASE SUBMIT THEM!!!

Especially important: feedback about online learning, the transition process, the overall course structure given the situation, and your suggestions for next semester if we still need to do things online by then.

S10.2 - Taylor Series - Back Again

Assaf Bar-Natan

"I never knew I'd love this world they've let me into
And the memories were lost long ago So l'll dance with these beautiful ghosts"
-"Beautiful Ghosts (Cats movie)", Taylor Swift
March 25, 2020

Review: Taylor Polynomials

Recall that if f is some function, we can approximate f around a using a Taylor polynomial:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where x is close to a.

Review: Taylor Polynomials

Recall that if f is some function, we can approximate f around a using a Taylor polynomial:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

where x is close to a.
Use the following Geogebra applet to investigate what happens when n gets big:
https://www.geogebra.org/m/s9SkCsvC

The Taylor Series

Take a Taylor polynomial to the extreme, and use a power series to approximate f :
$f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\cdots$
This is called the Taylor Series of f at $x=a$

True or False: A Taylor series always converges

A True
B False
C Depends on the function

Takeaway

The Taylor series is a power series, so, just like any power series, it might converge for some values of x and diverge for other values of x.

For what values of χ is it possible that
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots ?$

A This is true for all values of $\boldsymbol{\chi}$ because of the Taylor series formula
B This may only be true for $\boldsymbol{x}>-1$ because of our graphical evaluation (geogebra)
c This may only be true for $-1<x<1$ because the series doesn't have a finite value for other values of χ

Takeaway

We use the ratio test to check when a Taylor series converges

For which values of x is it possible that $\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
A This is true for all values of x because of the Taylor series formula.
B This appears to be true for all values of x based on the graphical evaluation (geogebra).

C This may only be true for $-5<x<5$ because the series doesn't have a value for other values of x

D For all values of x, because of the ratio test

The Miracle of Taylor Series

I'd like to use my Taylor series to approximate $\sin (1000000)$. I know:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

The Miracle of Taylor Series

I'd like to use my Taylor series to approximate $\sin (1000000)$. I know:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

My first approximation will be $\sin (1000000) \approx 1000000$. But this is garbage! I know that $\sin (1000000)<1$.

The Miracle of Taylor Series

I'd like to use my Taylor series to approximate $\sin (1000000)$. I know:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

My first approximation will be $\sin (1000000) \approx 1000000$. But this is garbage! I know that $\sin (1000000)<1$.
Let me try again....

The Miracle of Taylor Series

I'd like to use my Taylor series to approximate $\sin (1000000)$. I know:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

My first approximation will be $\sin (1000000) \approx 1000000$. But this is garbage! I know that $\sin (1000000)<1$.
Let me try again....

$$
\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6} \approx-1.6 \times 10^{17}
$$

Wow! That's even worse than the first time... Let me try again...

The Miracle of Taylor Series

I'd like to use my Taylor series to approximate $\sin (1000000)$. I know:

$$
\sin (x) \approx x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

My first approximation will be $\sin (1000000) \approx 1000000$. But this is garbage! I know that $\sin (1000000)<1$.
Let me try again....

$$
\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6} \approx-1.6 \times 10^{17}
$$

Wow! That's even worse than the first time... Let me try again... $\sin (1000000) \approx 1000000-\frac{(1000000)^{3}}{6}+\frac{(1000000)^{5}}{5!} \approx 8.3 \times 10^{27}$

The Miracle of Taylor Series

My approximations on the previous slide were trash.
$-1<\sin (1000000)<1$, but I kept getting absurdly high numbers.
Q: What is something I can do to get good approximations of $\sin (1000000)$?

The Miracle of Taylor Series

My approximations on the previous slide were trash.
$-1<\sin (1000000)<1$, but I kept getting absurdly high numbers.
Q: What is something I can do to get good approximations of $\sin (1000000)$?

- I could choose to expand at a point close to 1000000
- I could keep going, and take many many many more terms in the series
- I could use the fact that sin is periodic, and get that $\sin (1000000)=\sin (x)$, where $-\pi<x<\pi$. Then I could approximate.

Takeaway

Some functions have Taylor series that have an infinite radius of convergence (eg: \sin , \cos , e^{x}). For these functions, the Taylor series always converges, but it might converge very slowly!

Check that \sin , \cos, and e^{x} indeed have this property: https://www.geogebra.org/m/s9SkCsvC

Euler's Identity

We know:

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

These look related

Euler's Identity

We know:

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

These look related

Let $i=\sqrt{-1}$ be an imaginary number (don't worry about it, just pretend that all algebra works the same, but $i^{2}=-1$).
Q: Write the Taylor series for $e^{i x}$.

Euler's Identity

We know:

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

These look related

Let $i=\sqrt{-1}$ be an imaginary number (don't worry about it, just pretend that all algebra works the same, but $i^{2}=-1$).
Q: Write the Taylor series for $e^{i x}$.
$e^{i x}=1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots$

Euler's Identity

We know:

$$
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Q: Relate $e^{i x}, \cos (x)$, and $\sin (x)$ using the above.

Euler's Identity

We know:

$$
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Q: Relate $e^{i x}, \cos (x)$, and $\sin (x)$ using the above. Hint: multiply $\sin (x)$ by $i \ldots$

Euler's Identity

We know:

$$
\begin{aligned}
e^{i x} & =1+i x-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+i \frac{x^{5}}{5!}+\cdots \\
\sin (x) & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots \\
\cos (x) & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

Q: Relate $e^{i x}, \cos (x)$, and $\sin (x)$ using the above. Hint: multiply $\sin (x)$ by $i \ldots$

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Q: Compute $e^{i \pi}$.

$e^{i \pi}=-1$

$$
e^{i \pi}=-1
$$

A good explanation of this: https://www.youtube.com/watch?v=v0YEaeIClKY

Plans for the Future

For next time:
Watch the week 11 videos, do WeBWork 10.3, actively read section 10.3

$$
\begin{aligned}
& \frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots \\
& -1=\frac{1}{1-2}=1+2+4+8+\cdots
\end{aligned}
$$

A	True		62
B	False		67

> Let
> $g(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
> Is $x=2$ in the domain of $g(x)$?
$\checkmark 41 \%$ Answered Correctly

A
Yes: the series converges by the Ratio Test
B Yes, the series converges by the Integral Test
C No, the series diverges by the Ratio Test
D No, the series diverges by the Integral Test

The graphs of 3 functions are shown below. For which functions is
$-1+0.3 x-0.1 \chi^{2}+0.08 x^{3}+\cdots$
the Taylor series around $x=0$?

A $f(x)$
25

B $g(x)$
30

C $h(x)$
27

D it could be more than one of these functions
30

E it cannot be any of these functioons

Invalid dat	e		Results	Compare with session								Show percentages	Hide Graph	Condense Text	
127/127 answered														$\mathbf{C l}_{\text {Ask Again }}$	
\wedge	$<$	>	O		θ	Closed		Responses		Correct	》			Q 72%	」 ${ }_{\text {¢ }}$

> Compute
> $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
> using a Taylor series approximation.
$\checkmark 14 \%$ Answered Correctly

