Welcome to MAT136 LEC0501 (Assaf)

No more in-class TopHats. The software isn't working and I'm tired of fighting it.

S9.5 - Power Series \& Convergence Interval

Assaf Bar-Natan

"You and me got staying power yeah
You and me we got staying power Staying power (I got it I got it)"
-"Staying Power", Queen
March 23, 2020

Using the Ratio Test on a Power Series

We are given the power series:

$$
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
$$

To check for convergence, apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|
$$

The series $\sum C_{n}(x-a)^{n}$ converges when the above is less than 1 .

Using the Ratio Test on a Power Series

We are given the power series:

$$
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
$$

To check for convergence, apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|
$$

The series $\sum C_{n}(x-a)^{n}$ converges when the above is less than 1 .
Q: If $\lim _{n \rightarrow \infty}\left|C_{n+1} / C_{n}\right|=3$, what is the radius of convergence?

Using the Ratio Test on a Power Series

We are given the power series:

$$
\sum_{n=1}^{\infty} C_{n}(x-a)^{n}
$$

To check for convergence, apply the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}(x-a)^{n+1}}{C_{n}(x-a)^{n}}\right|=\lim _{n \rightarrow \infty}|x-a|\left|\frac{C_{n+1}}{C_{n}}\right|=|x-a| \lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|$
The series $\sum C_{n}(x-a)^{n}$ converges when the above is less than 1 . Q: If $\lim _{n \rightarrow \infty}\left|C_{n+1} / C_{n}\right|=3$, what is the radius of convergence? A: We want $3|x-a|<1$, so $|x-a|<\frac{1}{3}$, and this is the radius of convergence.

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

- What are the variables?
- What are the parameters?
- What plays the role of the index?

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

- What are the variables? x
- What are the parameters? c and a
- What plays the role of the index?n
- What is the radius of convergence of this power series?

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

- What are the variables? x
- What are the parameters? c and a
- What plays the role of the index?n
- What is the radius of convergence of this power series?
- What is the interval of convergence of this power series?

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

What is the radius of convergence of this power series?

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

What is the radius of convergence of this power series?
We compute:

$$
\lim _{n \rightarrow \infty} \frac{c^{(n+1) / 2}}{c^{n / 2}} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n+1} c^{1 / 2}=\sqrt{c}
$$

So the radius of convergence is $\frac{1}{\sqrt{c}}$.
What is the interval of convergence of this power series?

Variables, Indices, and Parameters

Consider the following power series:

$$
\sum_{n=1}^{\infty} \frac{c^{n / 2}}{n}(x-a)^{n}
$$

What is the radius of convergence of this power series?
We compute:

$$
\lim _{n \rightarrow \infty} \frac{c^{(n+1) / 2}}{c^{n / 2}} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{n}{n+1} c^{1 / 2}=\sqrt{c}
$$

So the radius of convergence is $\frac{1}{\sqrt{c}}$.
What is the interval of convergence of this power series?
The power series is centered at $x=a$, so it will converge for

$$
a-\frac{1}{\sqrt{c}}<x<a+\frac{1}{\sqrt{c}}
$$

Takeaway

In general, for $\sum c_{n}(x-a)^{n}$, the interval of convergence is centered at a.

The power series $\sum c_{n}(x-5)^{n}$ converges at $x=-5$ and diverges at $x=-10$. At $\chi=-13$, the series is:

A Convergent
B Divergent
C Cannot determine

The power series $\sum c_{n}(x-5)^{n}$ converges at $\chi=-5$ and diverges at $x=-10$. At $\chi=17$, the series is:

A Convergent
B Divergent
C Cannot determine

The power series $\sum c_{n}(x-5)^{n}$ converges at $\chi=-5$ and diverges at $x=-10$. At $\chi=14$, the series is:

A Convergent
B Divergent
C Cannot determine

What Possible Interval?

Draw a possible interval of convergence for $\sum c_{n}(x-5)^{n}$, given that the series converges at $x=-5$ and diverges at

$$
x=-10
$$

What Possible Interval?

Draw a possible interval of convergence for $\sum c_{n}(x-5)^{n}$, given that the series converges at $x=-5$ and diverges at

$$
x=-10
$$

We know that the interval needs to be centered at 5. Since the series converges at -5 , this means that the radius of convergence is at least 10. Since the series diverges at $x=-10$, this means that the radius of convergence is less than 15. A possible interval of convergence is:

$$
\begin{gathered}
|x-5|<11 \\
-6<x<16
\end{gathered}
$$

What Possible Interval?

Draw a possible interval of convergence for $\sum c_{n}(x-5)^{n}$, given that the series converges at $x=-5$ and diverges at

$$
x=-10
$$

We know that the interval needs to be centered at 5. Since the series converges at -5 , this means that the radius of convergence is at least 10. Since the series diverges at $x=-10$, this means that the radius of convergence is less than 15. A possible interval of convergence is:

$$
\begin{gathered}
|x-5|<11 \\
-6<x<16
\end{gathered}
$$

Note that the interval $|x-5|<14$ (ie $-9<x<19$) is also possible

Plans for the Future

For next time:
Watch the week 11 videos, do WeBWork 10.2, actively read section 10.2

Suppose that a power series centered at $\chi=0$ converges when $\chi=-4$ and diverges when $\chi=13$. Which of the following are necessarily true?
$\checkmark \mathbf{8 1 \%}$ Answered Correctly

A	The power series converges when $x=10$	23
B	The power series converges when $x=3$	37
C	The power series converges when $x=1$	19
D	The power series converges when $x=6$	4
E	The power series converges when $x=-1$	59

March 22 at9 953 PM results			\checkmark	Segment Results		Compare with session				Show percentages	Hide Graph	Condense Text	
142/142 answered											$\mathrm{C}_{\text {Ask Again }}$		
\wedge	$<$	>		Open			三 Responses	\checkmark Correct	>			Q 72%	$\stackrel{\text { at }}{7}$

If a power series converges at $\chi=4$, then the power series will necessarily also converge at $\chi=-4$

Which of the following series has the smallest radius of convergence?
A $\quad \sum(-1)^{n}(n+2)(x-1)^{n}$
18
B $\sum \frac{(x-1)^{n}}{3^{n}}$
44
c $\sum \frac{(x-1)^{n}}{\sqrt{(n+1)!}}$
48
D $\sum 3^{n}(x-1)^{n}$

March 22 at 9-59 PM results			- Segment Results			Compare with session				Show percentages	Hide Graph	Conden	Text
141/141 answered			- C Ask Again										
\wedge	$<$	>		Open	Q		三 Responses	\checkmark Correct	>			Q 72%	」 4

