Welcome to MAT135 LEC0501 (Assaf)

Have you formed a study group yet?

S5.3 - The FUNdamental Theorem

Assaf Bar-Natan

" F is for friends who do stuff together
U is for you and me
N is for anywhere and anytime at all
Down here in the deep blue sea "
-" F.U.N Song ", Spongebob
Jan. 10, 2020

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.
- Share with your group what made something click for you in this chapter.

Ice-Cream Sandwich

Spend a minute to think about:

- Something in the chapter that you've mastered.
- Something in the chapter that was hard.
- Share with your group what made something click for you in this chapter.
For me, the intuition for the F.T.C was something new that really made me understand what's going on.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately \qquad liters.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

- In the 30 seconds, they eat approximately \qquad liters.
- In the next 30 seconds, they eat approximately \qquad liters.

Write an expression for the approximate amount of food the cats ate in five minutes. Use summation notation.

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

$$
\sum_{i=0}^{9} r\left(\frac{i}{2}\right) \cdot \frac{1}{2}
$$

This looks like a Riemann sum!

Intuition for the F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. We'd like to find out how much the cats have eaten in the first five minutes of their feast.

They ate approximately:

$$
\sum_{i=0}^{9} r\left(\frac{i}{2}\right) \cdot \frac{1}{2}
$$

This looks like a Riemann sum!
Write an expression for the exact amount of food the cats ate in five minutes.

Takeaway

If f is a differentiable function on an interval $[a, b]$ then

$$
\int_{a}^{b} f^{\prime}(x) d x=f(b)-f(a) .
$$

Let $f(x)=\log (\log (x))$, where \log is taken with base \boldsymbol{e}. Then the integral $\int_{3}^{5} f^{\prime \prime}(x) d x$ is (submit 0 if you don't have any idea how to do this)

Estimating using F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. This quantity is measured in the table below:

t	0	2	3	4	5
$r(t)$	0.5	0.3	0.2	0.1	0.05

Give your best upper or lower estimate for the total amount of food the cats ate in the first five minutes.

Estimating using F.T.C

Rainbow, Marzipan, Blackie, and Lexi are eating from the cat-dish, depleting the Christmas left-overs at a rate of $r(t)$ liters per minute. This quantity is measured in the table below:

t	0	2	3	4	5
$r(t)$	0.5	0.3	0.2	0.1	0.05

Give your best upper or lower estimate for the total amount of food the cats ate in the first five minutes.
Find a group around you that estimated differently than you (ie, if you did a lower estimate, find a group who did an upper esimate), and explain to each other how you arrived at your estimates.

Takeaway

The fundamental theorem gives us a link between areas and rates!

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter It costs the bakery exactly $\$ 3.50$ less to buy 14 pounds butter than it does to buy 15 pounds of butter. Which of the following expressions represents this statement?
$\checkmark 71 \%$ Answered Correctly

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies.
Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter.
Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter If the bakery spends $\$ 10$ on butter, then it can make 20 cups of cookie dough. Which of the following expressions represents the statement?

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies. Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter 10 pounds of butter makes 40 cups more cookie dough than 5 pounds of butter. Which of the following expressions most accurately represents the statement?

A bakery orders a special European butter especially for their cranberry-orange-pecan cookies. Let $C(b)$ be the bakery's cost, in dollars, to buy b pounds of this special butter.
Let $\mathrm{K}(\mathrm{b})$ be the amount of cookie dough, in cups, the bakery makes from b pounds of butter
What are the units of $\int_{a}^{b} K\left(C^{-1}(x)\right) d x$?

A cups-pounds
B dollars-cups/pound
C dollar-cups $\quad \square 63$

D dollar-pounds/cup 25

E I've got no idea.
I 6

Takeaway

When doing interpretation questions, work slowly, and watch for units!

Plans for the Future

For next time:

WeBWork 5.4 and read section 5.4

