Welcome to MAT136 LEC0501 (Assaf)

Online final exam is happening April 9 between 1:30pm and 5:30pm EST. See main course page for details (none posted yet).

S9.3 - Series \& The Ratio Test

Assaf Bar-Natan

"Life is a series of hellos and goodbyes
I'm afraid it's time for goodbye again
Say goodbye to Hollywood
Say goodbye my baby"
-"Say Goodbye to Hollywood", Billy Joel
March 20, 2020

Fill in the Blanks

We have a series, $\sum a_{n}$.

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L<1$, then the series $\sum a_{n}$ grows
\qquad a geometric series with factor \qquad , which is _ $(<,>,=)$

1. Hence, the series \qquad .

Fill in the Blanks

We have a series, $\sum a_{n}$.

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L<1$, then the series $\sum a_{n}$ grows
__ a geometric series with factor __ which is __ $(<,>,=)$

1. Hence, the series \qquad .

If the ratios $\frac{a_{n+1}}{a_{n}}$ approach L, and $L>1$, then the series $\sum a_{n}$ grows
__ a geometric series with factor \qquad , which is __ $(<,>,=)$

1. Hence, the series \qquad .
```
F Submissions Closed
```


Suppose that $\lim _{\mathrm{k} \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=1$.

Then the series $\sum a_{k}$ neither converges nor diverges.

		\checkmark 58\%Answered Correctly
A	True	26
B	False	36

Invalid dat	e		Results	Compare with session					Show percentages	Hide Graph	Condense Text	
62/62 answered										$C^{\text {Ask Again }}$		
\wedge	$<$	>	-		θ Closed	三 Responses	\checkmark Correct	》			Q 72%	7

Why the Ratio Test

Let's assume that for any sufficiently large $n, \frac{a_{n+1}}{a_{n}} \approx L$. Then:

$$
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
$$

Continuing in this manner, we get:

Why the Ratio Test

Let's assume that for any sufficiently large $n, \frac{a_{n+1}}{a_{n}} \approx L$. Then:

$$
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
$$

Continuing in this manner, we get:

$$
a_{k}+a_{k+1}+a_{k+2}+\cdots \approx a_{k}\left(1+L+L^{2}+L^{3}+\cdots\right)
$$

If $L<1$, then the right hand side is a geometric series, which converges!

Why the Ratio Test

Let's assume that for any sufficiently large $n, \frac{a_{n+1}}{a_{n}} \approx L$. Then:

$$
\begin{aligned}
& a_{k+1} \approx L a_{k} \\
& a_{k+2} \approx L a_{k+1} \approx L^{2} a_{k}
\end{aligned}
$$

Continuing in this manner, we get:

$$
a_{k}+a_{k+1}+a_{k+2}+\cdots \approx a_{k}\left(1+L+L^{2}+L^{3}+\cdots\right)
$$

If $L<1$, then the right hand side is a geometric series, which converges!
If $L=0$, replace all \approx with $<$, and replace L with $\frac{1}{2}$

Takeaway

The ratio test measures how much a series looks like a geometric series. If the limit of the ratio $\frac{a_{n+1}}{a_{n}}$ is <1, the series converges, and if it is >1, it diverges. Just like a geometric series!

Obie and Limits

Obie (the bully cat) says:
"In examining the series:

$$
\sum_{n=0}^{\infty} \frac{n}{(1.05)^{n}}=0.95+1.181+2.59+3.29+\cdots
$$

I notice that the terms are getting larger, so $L>1$. Thus, by the ratio test, this series diverges."

Is Obie correct?

Obie and Limits

Obie (the bully cat) says:
"In examining the series:

$$
\sum_{n=0}^{\infty} \frac{n}{(1.05)^{n}}=0.95+1.181+2.59+3.29+\cdots
$$

I notice that the terms are getting larger, so $L>1$. Thus, by the ratio test, this series diverges."

Is Obie correct?
If this still confuses you, write a star in your notebook to go over this later

Takeaway

We really do need to take a limit in the ratio test. We don't care what the series' terms do early. The limit captures this "end behaviour"

```
－Submissions Closed
```

For the series $\sum_{k=1}^{\infty} \frac{k+1}{k!}$ ，which test would you use？
$\checkmark 77 \%$ Answered Correctly

A	Ratio Test	
B Integral Test		47
C	Divergence Test	

March 20 at 12；43 PM results			Segment Results			Compare with session				Show percentages	Hide Graph	Condense Text	
61／62 answered												$C^{\text {Ask Again }}$	
\wedge	$<$	＞		Open	θ		三 Responses	\checkmark Correct	》			Q 72%	」 7

```
T Submissions Closed
```

$$
\text { For the series } \sum_{k=1}^{\infty} \frac{k}{(k+1)^{2}} \text {, which test would you use? }
$$

$\checkmark 51 \%$ Answered Correctly


```
* Submissions Closed
```

$$
\text { For the series } \sum_{\mathrm{k}=1}^{\infty} \frac{\mathrm{k}}{\mathrm{k}+1} \text {, which test would you use? }
$$

March 20 at 12：45 PM results			Segment Results			Compare with session				Show percentages	Hide Graph	Condense Text	
59／60 answered												$\mathrm{C}_{\text {Ask Again }}$	
\wedge	$<$	＞		Open	θ		三 Responses	\checkmark Correct	》			Q 72%	$\xrightarrow{\text { 」 }}$

Inconclusive Test Results

Write a series which diverges, but for which the ratio test gives a limit of 1 .
Challenge: write a series which converges, but for which the ratio test gives a limit of 1 .

Plans for the Future

For next time:
Do WeBWork 9.5, actively read section 9.5, and watch the videos!

```
F Submissions Closed
```

Which test (or tests) can you use to determine if the following series converges?
$\sum_{k=1}^{\infty} e^{-k}$

B	Integral Test	
C	Ratio Test	76

Invalid date	-		t Results	Compare with session					Show percentages	Hide Graph	Condense	
159/159 answered											C Ask Again	
\wedge	$<$	>			θ closed	三 Responses	\checkmark Correct	》			Q 72%	

```
T Submissions Closed
```

Which test (or tests) can you use to determine if the following series converges?
$\sum_{k=1}^{\infty} e^{k}$

A	Divergence Test	
B	Integral Test	42
C	Ratio Test	

- Submissions Closed

Suppose that you have a series that has negative terms as well as positive terms. Which of the following tests could you still try?
$\checkmark \mathbf{7 7} \%$ Answered Correctly

A	Divergence Test		49
B	Integral Test		
C	Ratio Test		

Invalid date	\cdots		Results	Compare with session					Show percentages	Hide Graph	Condense Text	
158/158 answered								>			$\mathbf{C a}_{\text {Ask Again }}$	
\wedge	$<$	>	- Open		Q Closed	ㄹ. Responses	\checkmark Correct				Q 72%	$\xrightarrow{\text { 」 }}$ ¢

