Welcome to MAT136 LEC0501 (Assaf)

How similar are other online classes to this one? What's different? Answer in the chat.

S9.3 – Series & Convergence

Assaf Bar-Natan

"One thing I can tell you is You got to be free Come together, right now Over me"

-"Come Together", The Beatles

March 18, 2020

March 18, 2020 - S9.3 - Series & Convergence

Assaf Bar-Natan 2/17

Fill in the Blanks

- We say that a series $\sum_{k=1}^{\infty} a_k$ c_____ if the p_____ s____, $\sum_{k=1}^{n} a_k$ converge
- We define the value of a series as the _____ of the partial sums.
- The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ —— if $p \leq 1$, by the ——-test

Partial Sums and Convergence

When we write:

$$\sum_{k=1}^\infty \mathsf{a}_k$$

what we really mean is:

$$\lim_{n\to\infty}\sum_{k=1}^n a_k$$

Partial Sums and Convergence

When we write:

$$\sum_{k=1}^\infty \mathsf{a}_k$$

what we really mean is:

$$\lim_{n\to\infty}\sum_{k=1}^n a_k$$

If we write $S_n = \sum_{k=1}^n a_k$, and call it the **partial sum**, then the series $\sum_{k=1}^{\infty} a_k$ converges when $\lim_{n\to\infty} S_n$ converges.

Partial Sums – Geometric Series

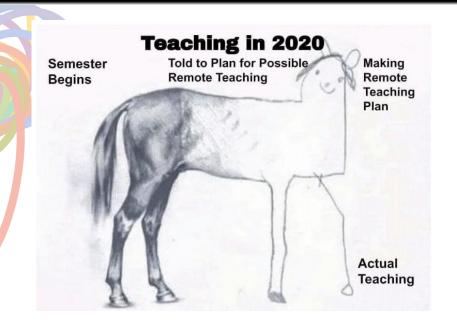
Consider the series:

$$1 + 0.2 + (0.2)^2 + (0.2)^3 + \cdots$$

- What is *a_k*?
- What is S_n ?
- What is $\lim_{n\to\infty} S_n$?
- What integral do we use in the integral test?

Partial Sums – Geometric Series

Consider the series:


$$1 + 0.2 + (0.2)^2 + (0.2)^3 + \cdots$$

• What is
$$a_k?a_k = (0.2)^k$$

• What is
$$S_n ? S_n = \frac{1 - (0.2)^{n+1}}{0.8}$$

• What is
$$\lim_{n\to\infty} S_n?\frac{1}{0.8}$$

What integral do we use in the integral test? We use the integrand (0.2)^x

Suppose a_n = f(n), where f(x) is decreasing and positive.
If ∫₁[∞] f(x)dx diverges, then ∑ a_n diverges.
If ∫₁[∞] f(x)dx converges, then ∑ a_n converges.
Q: Does the series:

$$e^4 - 0.2 + \pi + 1 + rac{1}{4} + rac{1}{9} + rac{1}{16} + \cdots$$

converge?

Suppose a_n = f(n), where f(x) is decreasing and positive.
If ∫₁[∞] f(x)dx diverges, then ∑ a_n diverges.
If ∫₁[∞] f(x)dx converges, then ∑ a_n converges.
Q: Does the series:

$$e^4 - 0.2 + \pi + 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots$$

converge?

A: Yes! We only care about the tail of the series, which converges by the integral test.

The series
$$\sum_{n=1}^{\infty} \frac{n}{n^2+1}$$
 converges

A	True and I am confident in my answer.	13
в	True and I am not confident in my answer.	11
с	False and I am not confident in my answer.	25
D	False and I am confident in my answer.	29

Invalid date Segment Results Compare with session Show percentages	Hide Graph	Condense	e Text
78/78 answered		CAsk	Again
∧ <	0	Q 72%	45

✓ 69% Answered Correctly

Lexi, the tail-less cat (she was born that way) is practicing her convergence properties. She writes:

'I want to see if the series $\sum \left(\frac{1}{n} - \frac{1}{n+1}\right)$ converges. I'll split it up to get:

$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1} = \sum_{n=1}^{\infty} \frac{1}{n} - \sum_{n=1}^{\infty} \frac{1}{n+1}$$

The series on the right is the Harmonic series, which diverges, so the whole thing diverges."

Is Lexi's reasoning correct?

The series
$$\sum_{n=1}^{\infty} \frac{1}{n} - \frac{1}{n+1}$$
 converges

✓ 62% Answered Correctly

March 18 at 12:10 PM results 💌 Segment Results Compare with session	e Graph Condens	se Text
73/76 answered	Cast	« Again
∧ <	Q 72%	45

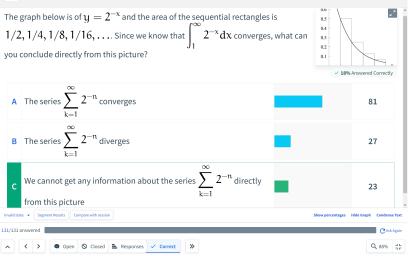
When all else fails, look at the partial sums!

Plans for the Future

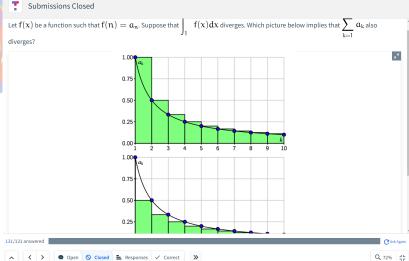
For next time: Do WeBWork 9.3 and actively read section 9.3

True / False: Since
$$\lim_{n \to \infty} 1/n = 0$$
, $\sum_{n=1}^{\infty} 1/n$ converges.

- A True, and I am very certain
- B True, but I am not very certain
- C False, but I am not very certain
- D False, and I am very certain



True / False: Since
$$\lim_{n\to\infty} 1/n = 0$$
, $\sum_{n=1}^{\infty} 1/n$ converges.


✓ 20% Answered Correctly

Invalid date 🔻 Segment Results Compare with session Show percentages Hide Gray	oh Condense	Text
132/132 answered	C ^{Ask A}	Again
∧ ✓ > Open ⊗ Closed ≥ Responses ✓ Correct ≫	Q 88%	45

•	Submissions Closed	
$\sum_{n=1}^{\infty}$	$1 + (-1)^n$	
$\sum_{n=1}^{n}$	$1 + (-1)^n)_{}$	
		59% Answered Correctl
A	converges	27
в	diverges	77
с	we cannot determine with what we've learned so far	26
Invalid di	te 👻 Segment Results Compare with session Show percent	ages Hide Graph Condense
<mark>30/1</mark> 30	answered	CAsk
^	S Open S Closed E Responses Correct S	Q 72%

