Welcome to MAT136 LEC0501 (Assaf)

Administrative Announcements

us Class will "meet" at $2: 10 \mathrm{pm}$ MWF on BB Collaborate
us Classes will all be recorded
me My office hour times are now after every class, and will be held on BB Collaborate
me In-Class TopHat is ungraded, and is replaced by assigned TopHat questions
you Pre-reading, WeBWork stay the same
you Watch the videos on the main site!

S9.2 - Geometric Series

Assaf Bar-Natan

"If I could only reach you
If I could make you smile,
If I could only reach you,
That would really be a breakthrough."
-"Breakthru", Queen
March 16, 2020

Welcome to MAT136 LEC0501 (Assaf)

Administrative Announcements

us Class will "meet" at 2:10pm MWF on BB Collaborate
us Classes will all be recorded
me My office hour times are now after every class, and will be held on BB Collaborate
me In-Class TopHat is ungraded, and is replaced by assigned TopHat questions (due at the end of the class day)
you Pre-reading, WeBWork stay the same
you Watch the videos on the main site!

Series

We've seen sequences:

$$
a_{1}, a_{2}, a_{3}, \ldots
$$

Now, we're going to add them up:

$$
\begin{aligned}
& a_{1} \\
& a_{1}+a_{2} \\
& a_{1}+a_{2}+\cdots+a_{n}+\cdots
\end{aligned}
$$

Such a sum is called a series.

Takeaway

Q: What is the difference between a sum and a series?

Takeaway

Q: What is the difference between a sum and a series? A sum only adds up finitely many elements, but a series adds up ininitely many elements.

Takeaway

Q: What is the difference between a sum and a series?
A sum only adds up finitely many elements, but a series adds up ininitely many elements.

$$
\sum_{i=0}^{n} f\left(x_{i}\right) \Delta x
$$

is a sum.

$$
\sum_{n=0}^{\infty} \frac{1}{2^{n}}
$$

is a series (see Zeno's Paradox video)

A geometric series is characterized by...
A The terms in the sum are constant 6
B The ratios of subsequent terms in the sum is a fixed number 75
C The differences between subsequent terms in the sum is a fixed number 11
D Every term in the sum is a constant multiple of all the previous terms 26
E The terms in the sum are increasing 0

March 15 at 10:34 PM results			Segment Results			Compare with session				Show percentages	Hide Graph	Condense Text	
118/120 answered												CAsk Again	
\wedge	$<$	>		Open	θ		三 Responses	\checkmark Correct	>			Q 88\%	」 7

Takeaway

A geometric series is a special kind of series, where the ratio between subsequent terms is constant.

Marzipan's Problem

Marzipan is modeling the mouse population in the barn. She finds three mice in the barn, and measures that the number of mice is multiplied by a factor of 1.3 every week. She writes:
"I want to know how many mice will be in the barn by summertime. If summer many many weeks away, I'll approximate using the formula for the inifinite geometric series to get:
number of mice $=3+3(1.3)+3(1.3)^{2}+\cdots=\frac{3}{1-1.3}=-10$
So there will be -10 mice over the summer."
Can you help Marzipan interpret her answer?

7
 Submissions Closed

Which of the following add up to 10 ?

A $\sum_{n=0}^{\infty} \frac{9}{10^{n}}$		${ }^{68}$
$\mathrm{B}_{\mathrm{B}} \sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{m}^{10}}{}$	\square	15
c $\sum_{n=0}^{\infty} \frac{9^{n}}{10^{n}}$	-	28
- $\sum_{n=0}^{\infty} \frac{9}{10}$	I	3

Plans for the Future

For next time:
Do WeBWork 9.3 and actively read section 9.3

What is the area of the shaded region?

A π

15
B $\frac{2 \pi}{3}$
75
C $\frac{4 \pi}{3}$
24

D ∞
23

Invalid da	,		Results	Compare with session						Show percentages	Hide Graph	Conden	Text
137/137 answered $\square_{\text {Ask Again }}$													
\wedge	$<$	>	-		θ closed	三 Responses		Correct	>			Q 88\%	7

" Submissions Closed

Write the limit of the sequence $\{1,1.1,1.11,1.111,1.1111,1.11111,1.111111, \ldots\}$ as a series.

Write the limit of the sequence $\{0.9,0.99,0.999,0.9999,0.99999, \ldots\}$ as a series．

							\checkmark 45\％Answered Correctly			
A	$\sum_{n=0}^{\infty}$	$(0.9)^{\mathrm{n}}$							7	
B	$\sum_{n=0}^{\infty}$	$9(0.1)^{n}$							45	
C	$\sum_{n=0}^{\infty}$	$0.9(1)^{r}$							23	
D	$\sum_{n=0}^{\infty}$	$0.9(0.1$							61	
Invalid date	－Se	Segment Results co	mpare with sessio				Show percentages	Hide Graph	h Condens	e Text
136／136 an	nswered								$\mathrm{Cl}^{\text {ask }}$	Again
\wedge	＜＞	－Open	θ Closed	三 Responses	\checkmark Correct	》			Q 88%	$\xrightarrow{\text { 」 }}$

